Ungulate herbivores promote beta diversity and drive stochastic plant community assembly by selective defoliation and trampling: From a four‐year simulation experiment

Ungulate herbivores shape grassland plant communities at multiple scales, ultimately affecting ecosystem function. However, ungulates have complex effects on grasslands, including defoliation, trampling, excreta return and their interactions. Moreover, the effects of ungulate density on grasslands a...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 112; no. 9; pp. 1992 - 2006
Main Authors Guo, Tongtian, Guo, Meiqi, Pang, Yue, Sun, Xiangyun, Ryo, Masahiro, Liu, Nan, Zhang, Yingjun
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.09.2024
Subjects
Online AccessGet full text
ISSN0022-0477
1365-2745
DOI10.1111/1365-2745.14370

Cover

Loading…
Abstract Ungulate herbivores shape grassland plant communities at multiple scales, ultimately affecting ecosystem function. However, ungulates have complex effects on grasslands, including defoliation, trampling, excreta return and their interactions. Moreover, the effects of ungulate density on grasslands are regulated by these three mechanisms. Nevertheless, how these three mechanisms affect biodiversity at multiple scales and community assembly remains poorly understood. Here, we conducted a 4‐year novel field experiment to disentangle the effects of defoliation, trampling, and excreta return by ungulates on plant community assembly in a temperate grassland in Inner Mongolia, China. This experiment set two different scenarios: moderate ungulate density (Moderate, characterised by selective defoliation and moderate trampling) and high ungulate density (Intense, characterised by non‐selective defoliation and heavy trampling), including different combinations of defoliation, trampling and excreta return in each scenario. We found that defoliation and trampling increased stochasticity in community assembly and promoted alpha and beta diversity under both scenarios. Specifically, defoliation promoted the coexistence of species with multiple resource acquisition strategies (higher functional trait diversity) by reducing interspecific competition; trampling tended to facilitate random species colonisation. Conversely, excreta return favoured grasses, promoting deterministic assembly and impacting species coexistence. Notably, selective defoliation in the Moderate scenario led to a dominance of stochastic processes during community assembly, whereas non‐selective defoliation still did not change the dominance of deterministic processes. Further, communities subject to selective defoliation were insensitive to changes in soil properties caused by trampling and excreta return, maintaining a high‐level beta diversity and the stochastic of community assembly. Synthesis: Our study provides important insights into the mechanisms by which ungulate herbivores influence plant community assembly, suggesting that defoliation and trampling have the potential to drive stochastic processes, while excreta return plays the opposite role. Our study also suggests that selective foraging by ungulates acts as stronger stochastic forces during community assembly compared to non‐selective defoliation. These results imply that considering ungulate feeding preferences and foraging behaviour in grassland management will help prevent biodiversity loss and biotic homogenisation. 摘要 有蹄类食草动物在多个尺度上塑造草地植物群落,最终影响生态系统功能。然而,有蹄类动物对草原的影响是复杂的,包括采食、践踏和排泄物返还。此外,有蹄类动物密度对草地的影响也通过这三种机制来调控。然而,人们对这三种机制如何影响植物多样性和群落构建的认识仍然不足。 我们在中国内蒙古的温带草原上进行了一项为期4年的野外实验,以厘清有蹄类动物的采食、践踏和排泄物返还对植物群落构建的影响。该实验设定了两种不同的情景:中等有蹄类动物密度(Moderate,以选择性采食和适度践踏为特征)和高有蹄类动物密度(Intense,以非选择性采食和重度践踏为特征)。每种情景中包括采食、践踏和排泄物返还的不同组合。 我们发现,采食和践踏增加群落构建的随机性,促进了两种情景下的α和β多样性。具体来说,采食通过减少种间竞争,促进具有多种资源获取策略的物种共存(更高的功能多样性);践踏则倾向于促进物种的随机定殖。相反,排泄物返还有利于禾本科植物生长,促进确定性过程,进而影响多物种共存。值得注意的是,在Moderate情景下的选择性采食导致群落构建中随机过程占主导地位,而非选择性采食并没有改变确定性过程的主导地位。此外,经过选择性采食处理的群落对践踏和排泄物返还引起的土壤性质变化不敏感,保持了较高的β多样性和随机的群落构建模式。 我们的研究为理解有蹄类食草动物影响植物群落构建的机制提供重要见解,表明采食和践踏驱动了随机过程,而排泄物返还则起相反作用。我们的研究还发现与非选择性采食相比,有蹄类动物的选择性采食在植物群落构建过程中起到了更强的随机效应。综上,在草地管理中考虑有蹄类动物的采食偏好和食草行为将有助于防止草地生物多样性丧失和同质化。 This study provides insights into the mechanisms by which ungulate herbivores influence plant community assembly, suggesting that defoliation and trampling drive stochastic processes, while excreta return plays the opposite role. Selective foraging under moderate ungulate density acts as stronger stochastic forces compared to non‐selective defoliation and leads to a less sensitive community response to trampling and excreta return.
AbstractList Ungulate herbivores shape grassland plant communities at multiple scales, ultimately affecting ecosystem function. However, ungulates have complex effects on grasslands, including defoliation, trampling, excreta return and their interactions. Moreover, the effects of ungulate density on grasslands are regulated by these three mechanisms. Nevertheless, how these three mechanisms affect biodiversity at multiple scales and community assembly remains poorly understood. Here, we conducted a 4‐year novel field experiment to disentangle the effects of defoliation, trampling, and excreta return by ungulates on plant community assembly in a temperate grassland in Inner Mongolia, China. This experiment set two different scenarios: moderate ungulate density (Moderate, characterised by selective defoliation and moderate trampling) and high ungulate density (Intense, characterised by non‐selective defoliation and heavy trampling), including different combinations of defoliation, trampling and excreta return in each scenario. We found that defoliation and trampling increased stochasticity in community assembly and promoted alpha and beta diversity under both scenarios. Specifically, defoliation promoted the coexistence of species with multiple resource acquisition strategies (higher functional trait diversity) by reducing interspecific competition; trampling tended to facilitate random species colonisation. Conversely, excreta return favoured grasses, promoting deterministic assembly and impacting species coexistence. Notably, selective defoliation in the Moderate scenario led to a dominance of stochastic processes during community assembly, whereas non‐selective defoliation still did not change the dominance of deterministic processes. Further, communities subject to selective defoliation were insensitive to changes in soil properties caused by trampling and excreta return, maintaining a high‐level beta diversity and the stochastic of community assembly. Synthesis: Our study provides important insights into the mechanisms by which ungulate herbivores influence plant community assembly, suggesting that defoliation and trampling have the potential to drive stochastic processes, while excreta return plays the opposite role. Our study also suggests that selective foraging by ungulates acts as stronger stochastic forces during community assembly compared to non‐selective defoliation. These results imply that considering ungulate feeding preferences and foraging behaviour in grassland management will help prevent biodiversity loss and biotic homogenisation. 摘要 有蹄类食草动物在多个尺度上塑造草地植物群落,最终影响生态系统功能。然而,有蹄类动物对草原的影响是复杂的,包括采食、践踏和排泄物返还。此外,有蹄类动物密度对草地的影响也通过这三种机制来调控。然而,人们对这三种机制如何影响植物多样性和群落构建的认识仍然不足。 我们在中国内蒙古的温带草原上进行了一项为期4年的野外实验,以厘清有蹄类动物的采食、践踏和排泄物返还对植物群落构建的影响。该实验设定了两种不同的情景:中等有蹄类动物密度(Moderate,以选择性采食和适度践踏为特征)和高有蹄类动物密度(Intense,以非选择性采食和重度践踏为特征)。每种情景中包括采食、践踏和排泄物返还的不同组合。 我们发现,采食和践踏增加群落构建的随机性,促进了两种情景下的α和β多样性。具体来说,采食通过减少种间竞争,促进具有多种资源获取策略的物种共存(更高的功能多样性);践踏则倾向于促进物种的随机定殖。相反,排泄物返还有利于禾本科植物生长,促进确定性过程,进而影响多物种共存。值得注意的是,在Moderate情景下的选择性采食导致群落构建中随机过程占主导地位,而非选择性采食并没有改变确定性过程的主导地位。此外,经过选择性采食处理的群落对践踏和排泄物返还引起的土壤性质变化不敏感,保持了较高的β多样性和随机的群落构建模式。 我们的研究为理解有蹄类食草动物影响植物群落构建的机制提供重要见解,表明采食和践踏驱动了随机过程,而排泄物返还则起相反作用。我们的研究还发现与非选择性采食相比,有蹄类动物的选择性采食在植物群落构建过程中起到了更强的随机效应。综上,在草地管理中考虑有蹄类动物的采食偏好和食草行为将有助于防止草地生物多样性丧失和同质化。 This study provides insights into the mechanisms by which ungulate herbivores influence plant community assembly, suggesting that defoliation and trampling drive stochastic processes, while excreta return plays the opposite role. Selective foraging under moderate ungulate density acts as stronger stochastic forces compared to non‐selective defoliation and leads to a less sensitive community response to trampling and excreta return.
Ungulate herbivores shape grassland plant communities at multiple scales, ultimately affecting ecosystem function. However, ungulates have complex effects on grasslands, including defoliation, trampling, excreta return and their interactions. Moreover, the effects of ungulate density on grasslands are regulated by these three mechanisms. Nevertheless, how these three mechanisms affect biodiversity at multiple scales and community assembly remains poorly understood. Here, we conducted a 4‐year novel field experiment to disentangle the effects of defoliation, trampling, and excreta return by ungulates on plant community assembly in a temperate grassland in Inner Mongolia, China. This experiment set two different scenarios: moderate ungulate density (Moderate, characterised by selective defoliation and moderate trampling) and high ungulate density (Intense, characterised by non‐selective defoliation and heavy trampling), including different combinations of defoliation, trampling and excreta return in each scenario. We found that defoliation and trampling increased stochasticity in community assembly and promoted alpha and beta diversity under both scenarios. Specifically, defoliation promoted the coexistence of species with multiple resource acquisition strategies (higher functional trait diversity) by reducing interspecific competition; trampling tended to facilitate random species colonisation. Conversely, excreta return favoured grasses, promoting deterministic assembly and impacting species coexistence. Notably, selective defoliation in the Moderate scenario led to a dominance of stochastic processes during community assembly, whereas non‐selective defoliation still did not change the dominance of deterministic processes. Further, communities subject to selective defoliation were insensitive to changes in soil properties caused by trampling and excreta return, maintaining a high‐level beta diversity and the stochastic of community assembly. Synthesis: Our study provides important insights into the mechanisms by which ungulate herbivores influence plant community assembly, suggesting that defoliation and trampling have the potential to drive stochastic processes, while excreta return plays the opposite role. Our study also suggests that selective foraging by ungulates acts as stronger stochastic forces during community assembly compared to non‐selective defoliation. These results imply that considering ungulate feeding preferences and foraging behaviour in grassland management will help prevent biodiversity loss and biotic homogenisation.
Ungulate herbivores shape grassland plant communities at multiple scales, ultimately affecting ecosystem function. However, ungulates have complex effects on grasslands, including defoliation, trampling, excreta return and their interactions. Moreover, the effects of ungulate density on grasslands are regulated by these three mechanisms. Nevertheless, how these three mechanisms affect biodiversity at multiple scales and community assembly remains poorly understood. Here, we conducted a 4‐year novel field experiment to disentangle the effects of defoliation, trampling, and excreta return by ungulates on plant community assembly in a temperate grassland in Inner Mongolia, China. This experiment set two different scenarios: moderate ungulate density (Moderate, characterised by selective defoliation and moderate trampling) and high ungulate density (Intense, characterised by non‐selective defoliation and heavy trampling), including different combinations of defoliation, trampling and excreta return in each scenario. We found that defoliation and trampling increased stochasticity in community assembly and promoted alpha and beta diversity under both scenarios. Specifically, defoliation promoted the coexistence of species with multiple resource acquisition strategies (higher functional trait diversity) by reducing interspecific competition; trampling tended to facilitate random species colonisation. Conversely, excreta return favoured grasses, promoting deterministic assembly and impacting species coexistence. Notably, selective defoliation in the Moderate scenario led to a dominance of stochastic processes during community assembly, whereas non‐selective defoliation still did not change the dominance of deterministic processes. Further, communities subject to selective defoliation were insensitive to changes in soil properties caused by trampling and excreta return, maintaining a high‐level beta diversity and the stochastic of community assembly. Synthesis : Our study provides important insights into the mechanisms by which ungulate herbivores influence plant community assembly, suggesting that defoliation and trampling have the potential to drive stochastic processes, while excreta return plays the opposite role. Our study also suggests that selective foraging by ungulates acts as stronger stochastic forces during community assembly compared to non‐selective defoliation. These results imply that considering ungulate feeding preferences and foraging behaviour in grassland management will help prevent biodiversity loss and biotic homogenisation. 有蹄类食草动物在多个尺度上塑造草地植物群落,最终影响生态系统功能。然而,有蹄类动物对草原的影响是复杂的,包括采食、践踏和排泄物返还。此外,有蹄类动物密度对草地的影响也通过这三种机制来调控。然而,人们对这三种机制如何影响植物多样性和群落构建的认识仍然不足。 我们在中国内蒙古的温带草原上进行了一项为期4年的野外实验,以厘清有蹄类动物的采食、践踏和排泄物返还对植物群落构建的影响。该实验设定了两种不同的情景:中等有蹄类动物密度(Moderate,以选择性采食和适度践踏为特征)和高有蹄类动物密度(Intense,以非选择性采食和重度践踏为特征)。每种情景中包括采食、践踏和排泄物返还的不同组合。 我们发现,采食和践踏增加群落构建的随机性,促进了两种情景下的α和β多样性。具体来说,采食通过减少种间竞争,促进具有多种资源获取策略的物种共存(更高的功能多样性);践踏则倾向于促进物种的随机定殖。相反,排泄物返还有利于禾本科植物生长,促进确定性过程,进而影响多物种共存。值得注意的是,在Moderate情景下的选择性采食导致群落构建中随机过程占主导地位,而非选择性采食并没有改变确定性过程的主导地位。此外,经过选择性采食处理的群落对践踏和排泄物返还引起的土壤性质变化不敏感,保持了较高的β多样性和随机的群落构建模式。 我们的研究为理解有蹄类食草动物影响植物群落构建的机制提供重要见解,表明采食和践踏驱动了随机过程,而排泄物返还则起相反作用。我们的研究还发现与非选择性采食相比,有蹄类动物的选择性采食在植物群落构建过程中起到了更强的随机效应。综上,在草地管理中考虑有蹄类动物的采食偏好和食草行为将有助于防止草地生物多样性丧失和同质化。
Author Guo, Tongtian
Sun, Xiangyun
Guo, Meiqi
Liu, Nan
Zhang, Yingjun
Pang, Yue
Ryo, Masahiro
Author_xml – sequence: 1
  givenname: Tongtian
  orcidid: 0000-0003-1967-0349
  surname: Guo
  fullname: Guo, Tongtian
  organization: Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture and Rural Affairs
– sequence: 2
  givenname: Meiqi
  surname: Guo
  fullname: Guo, Meiqi
  organization: Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture and Rural Affairs
– sequence: 3
  givenname: Yue
  surname: Pang
  fullname: Pang, Yue
  organization: Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture and Rural Affairs
– sequence: 4
  givenname: Xiangyun
  surname: Sun
  fullname: Sun, Xiangyun
  organization: Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture and Rural Affairs
– sequence: 5
  givenname: Masahiro
  surname: Ryo
  fullname: Ryo, Masahiro
  organization: Brandenburg University of Technology Cottbus–Senftenberg
– sequence: 6
  givenname: Nan
  orcidid: 0000-0002-4759-1448
  surname: Liu
  fullname: Liu, Nan
  email: liunan@cau.edu.cn
  organization: Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture and Rural Affairs
– sequence: 7
  givenname: Yingjun
  orcidid: 0000-0001-5776-4392
  surname: Zhang
  fullname: Zhang, Yingjun
  email: zhangyj@cau.edu.cn
  organization: Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture and Rural Affairs
BookMark eNqFkb1u1TAUxy1UJG4LM6slFpa0duzECRu6avlQJRY6W45z3Lpy7GA7hWw8Aq_Ba_EkOPcihi71cuSj3_98_U_RiQ8eEHpNyTkt74KytqlqwZtzypkgz9Duf-YE7Qip64pwIV6g05TuCSGtaMgO_b7xt4tTGfAdxME-hAgJzzFMoaQGyAqP9gFisnnFyo94jOWLUw76TqVsNZ6d8hnrME2LP0ApwTS4FQ8rTuBA500wggnOqmyDP5TJUU2zs_72Hb4qzbDCJizxz89fK6iIk522mTYYfswQ7QQ-v0TPjXIJXv2LZ-jm6vLr_mN1_eXDp_3760oz3pGKGc5YPfC-6anQhLVdZ8Q4CF0z0o1MaK571vLBEANjy40BYhTtB8ZpO3LdsDP09li3XOHbAinLySYNruwJYUmS0YaJTtCGFPTNI_S-bOHLdIUihPV1123UxZHSMaQUwci5bKTiKimRm3VyM0puRsmDdUXRPFJomw_3KHez7mndd-tgfaqN_Hy5P-r-AoeKsoc
CitedBy_id crossref_primary_10_3390_d16080467
crossref_primary_10_1111_1365_2745_14370
Cites_doi 10.1007/s11258‐021‐01213‐6
10.1016/j.agee.2023.108358
10.1111/ele.13212
10.1038/s43017‐021‐00207‐2
10.1111/nph.15789
10.1038/s41467‐020‐18560‐z
10.1016/j.tplants.2013.04.012
10.1007/s10980‐015‐0252‐y
10.1111/1365‐2745.13454
10.1016/j.baae.2021.02.009
10.1111/ele.13826
10.1111/avsc.12250
10.1002/eap.2052
10.1111/oik.04813
10.1890/07‐0971.1
10.1002/eap.2803
10.1111/1365‐2745.14099
10.1086/670928
10.1111/1365‐2745.13983
10.1111/ele.13789
10.1126/science.280.5364.745
10.1002/ecy.2052
10.1002/ldr.2300
10.1016/j.scitotenv.2023.164191
10.1111/ele.12277
10.1016/j.tree.2018.04.012
10.21105/joss.03139
10.1002/ecy.1741
10.1890/02‐5199
10.1002/ecy.2401
10.1111/gcb.15681
10.1111/1365‐2435.12666
10.1890/13‐1875.1
10.1111/gcb.14169
10.1126/science.1169640
10.1038/nplants.2015.33
10.1016/j.atmosenv.2013.07.003
10.1016/j.rama.2014.12.001
10.1111/1365‐2745.13200
10.1111/1365-2745.14370
10.1016/j.rama.2020.01.001
10.1111/ecog.05844
10.1111/ele.13281
10.1111/grs.12314
10.1002/fee.2405
10.1007/s11427‐021‐1963‐2
10.1890/14‐1368.1
10.1111/gcb.13783
10.1016/j.gecco.2020.e01161
10.1016/j.geoderma.2020.114828
10.1890/15‐0917.1
10.1002/ecs2.3285
10.1038/nature20575
10.2307/3237032
10.1038/s41586‐022‐05383‐9
10.1111/1365‐2745.13253
10.1007/s00572‐017‐0812‐x
10.1111/brv.12145
10.1890/02‐0274
10.1111/1365‐2745.12613
10.1007/s11104‐020‐04430‐6
10.1111/oik.06310
10.1007/s11104‐021‐04901‐4
10.1017/CBO9780511617461
10.3168/jds.2016‐11494
10.1071/bt12225
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Ecology © 2024 British Ecological Society.
Journal of Ecology © 2024 British Ecological Society
Copyright_xml – notice: 2024 The Author(s). Journal of Ecology © 2024 British Ecological Society.
– notice: Journal of Ecology © 2024 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
DOI 10.1111/1365-2745.14370
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 2006
ExternalDocumentID 10_1111_1365_2745_14370
JEC14370
Genre researchArticle
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 32192463; 31830092
– fundername: 2115 Talent Development Program of China Agricultural University
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABTAH
ABTLG
ABXSQ
ABYAD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACTWD
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFXHP
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
Y6R
YF5
YQT
YXE
YZZ
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABAWQ
ABSQW
ACHJO
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
7QG
7SN
7SS
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c3480-3f4332b495917c03688f7db7c2308d37c4c9364bf0fed64ffe0fa19b3416d4c53
IEDL.DBID DR2
ISSN 0022-0477
IngestDate Fri Jul 11 18:38:00 EDT 2025
Fri Jul 25 10:53:23 EDT 2025
Tue Jul 01 00:44:30 EDT 2025
Thu Apr 24 23:12:15 EDT 2025
Wed Jan 22 17:14:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3480-3f4332b495917c03688f7db7c2308d37c4c9364bf0fed64ffe0fa19b3416d4c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4759-1448
0000-0001-5776-4392
0000-0003-1967-0349
PQID 3100392880
PQPubID 37508
PageCount 15
ParticipantIDs proquest_miscellaneous_3153787150
proquest_journals_3100392880
crossref_primary_10_1111_1365_2745_14370
crossref_citationtrail_10_1111_1365_2745_14370
wiley_primary_10_1111_1365_2745_14370_JEC14370
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2021; 24
2021; 27
1998; 280
2023; 33
2021; 67
2018; 127
2013; 61
2015; 30
2003; 13
2016; 30
2016; 540
2023; 346
2020; 448
2019; 128
2016; 104
2020; 11
2022; 65
2024
2022; 611
1997; 8
2013; 18
2019; 22
2015; 85
2015; 90
2014; 17
2014; 95
2018; 33
2003; 84
2009; 324
2015; 1
2021; 6
2018; 28
2022; 110
2022; 473
2021; 2
2016; 19
2017; 28
2017; 23
2016; 97
2019; 223
2006
2023; 889
2019; 107
2021; 385
2021; 52
2013; 182
2020; 108
2018; 24
2015; 68
2022; 2022
2020; 30
2020; 73
2013; 79
2017; 98
2023; 111
2021; 19
2008; 89
2017
2016
2020; 23
2014
2017; 100
2018; 99
2022; 223
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Savory A. (e_1_2_10_50_1) 2016
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 67
  start-page: 275
  year: 2021
  end-page: 284
  article-title: Effects of mowing regimes on forage yield and crude protein of (Trin.) Tzvel in Songnen grassland
  publication-title: Grassland Science
– volume: 889
  year: 2023
  article-title: Grazing‐induced cattle behaviour modulates the secondary production in a Eurasian steppe ecosystem
  publication-title: Science of the Total Environment
– volume: 22
  start-page: 1233
  year: 2019
  end-page: 1242
  article-title: Experimental dominant plant removal results in contrasting assembly for dominant and non‐dominant plants
  publication-title: Ecology Letters
– volume: 6
  start-page: 3139
  year: 2021
  article-title: performance: An R package for assessment, comparison and testing of statistical models
  publication-title: Journal of Open Source Software
– volume: 84
  start-page: 2258
  year: 2003
  end-page: 2268
  article-title: Herbivore‐mediated linkages between aboveground and belowground communities
  publication-title: Ecology
– volume: 17
  start-page: 866
  year: 2014
  end-page: 880
  article-title: Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales
  publication-title: Ecology Letters
– year: 2024
– volume: 99
  start-page: 148
  year: 2018
  end-page: 157
  article-title: Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient
  publication-title: Ecology
– volume: 23
  start-page: 4318
  year: 2017
  end-page: 4332
  article-title: Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity
  publication-title: Global Change Biology
– volume: 90
  start-page: 979
  year: 2015
  end-page: 994
  article-title: Ecology of grazing lawns in Africa
  publication-title: Biological Reviews
– volume: 128
  start-page: 1515
  year: 2019
  end-page: 1524
  article-title: Defoliation of a grass is mediated by the positive effect of dung deposition, moss removal and enhanced soil nutrient contents: Results from a reindeer grazing simulation experiment
  publication-title: Oikos
– volume: 28
  start-page: 117
  year: 2018
  end-page: 127
  article-title: Long‐term effects of grazing and topography on extra‐radical hyphae of arbuscular mycorrhizal fungi in semi‐arid grasslands
  publication-title: Mycorrhiza
– year: 2014
– volume: 89
  start-page: 2165
  year: 2008
  end-page: 2171
  article-title: Scale‐dependent responses of plant biodiversity to nitrogen enrichment
  publication-title: Ecology
– volume: 611
  start-page: 301
  year: 2022
  end-page: 305
  article-title: Light competition drives herbivore and nutrient effects on plant diversity
  publication-title: Nature
– volume: 107
  start-page: 2121
  year: 2019
  end-page: 2132
  article-title: Resource addition drives taxonomic divergence and phylogenetic convergence of plant communities
  publication-title: Journal of Ecology
– volume: 13
  start-page: 1346
  year: 2003
  end-page: 1354
  article-title: Grass response to clipping in an African savanna: Testing the grazing optimization hypothesis
  publication-title: Ecological Applications
– volume: 79
  start-page: 576
  year: 2013
  end-page: 581
  article-title: Dynamic changes of CH and CO emission from grazing sheep urine and dung patches in typical steppe
  publication-title: Atmospheric Environment
– volume: 540
  start-page: 266
  year: 2016
  end-page: 269
  article-title: Land‐use intensification causes multitrophic homogenization of grassland communities
  publication-title: Nature
– volume: 110
  start-page: 2850
  year: 2022
  end-page: 2869
  article-title: Multiple global changes drive grassland productivity and stability: A meta‐analysis
  publication-title: Journal of Ecology
– volume: 52
  start-page: 46
  year: 2021
  end-page: 56
  article-title: Changing assembly rules during secondary succession: Evidence for non‐random patterns
  publication-title: Basic and Applied Ecology
– volume: 33
  start-page: 12
  year: 2023
  article-title: Changes in plant community assembly from patchy degradation of grasslands and grazing by different‐sized herbivores
  publication-title: Ecological Applications
– volume: 448
  start-page: 265
  year: 2020
  end-page: 276
  article-title: High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi‐arid steppe grassland
  publication-title: Plant and Soil
– volume: 73
  start-page: 452
  year: 2020
  end-page: 461
  article-title: Trampling and cover effects on soil compaction and seedling establishment in reseeded pasturelands over time
  publication-title: Rangeland Ecology & Management
– volume: 24
  start-page: 3849
  year: 2018
  end-page: 3861
  article-title: An empirical test of the relative and combined effects of land‐cover and climate change on local colonization and extinction
  publication-title: Global Change Biology
– volume: 11
  start-page: 12
  year: 2020
  article-title: A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming
  publication-title: Nature Communications
– volume: 385
  start-page: 9
  year: 2021
  article-title: Transformation of litter carbon to stable soil organic matter is facilitated by ungulate trampling
  publication-title: Geoderma
– volume: 11
  year: 2020
  article-title: Controls of forage selective defoliation by sheep in arid rangelands
  publication-title: Ecosphere
– volume: 18
  start-page: 584
  year: 2013
  end-page: 593
  article-title: Advances in modeling trait‐based plant community assembly
  publication-title: Trends in Plant Science
– volume: 104
  start-page: 1284
  year: 2016
  end-page: 1298
  article-title: Regeneration: An overlooked aspect of trait‐based plant community assembly models
  publication-title: Journal of Ecology
– volume: 8
  start-page: 873
  year: 1997
  end-page: 880
  article-title: Effects of trampling and vegetation removal on species diversity and micro‐environment under different shade conditions
  publication-title: Journal of Vegetation Science
– volume: 22
  start-page: 563
  year: 2019
  end-page: 571
  article-title: Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities
  publication-title: Ecology Letters
– volume: 223
  start-page: 493
  year: 2022
  end-page: 506
  article-title: Seed burial depth, seedling emergence, and height as affected by animal trampling in marl soils
  publication-title: Plant Ecology
– volume: 127
  start-page: 780
  year: 2018
  end-page: 791
  article-title: Seed dispersal in both space and time is necessary for plant diversity maintenance in fragmented landscapes
  publication-title: Oikos
– volume: 19
  start-page: 584
  year: 2021
  end-page: 592
  article-title: The paradox of forbs in grasslands and the legacy of the mammoth steppe
  publication-title: Frontiers in Ecology and the Environment
– volume: 24
  start-page: 11
  year: 2021
  article-title: Grazing‐induced biodiversity loss impairs grassland ecosystem stability at multiple scales
  publication-title: Ecology Letters
– volume: 30
  year: 2020
  article-title: Land use alters relationships of grassland productivity with plant and arthropod diversity in Inner Mongolian grassland
  publication-title: Ecological Applications
– volume: 182
  start-page: 169
  year: 2013
  end-page: 179
  article-title: Spatial variability in plant predation determines the strength of stochastic community assembly
  publication-title: The American Naturalist
– volume: 2022
  year: 2022
  article-title: Using multi‐scale spatially explicit frameworks to understand the relationship between functional diversity and species richness
  publication-title: Ecography
– volume: 2
  start-page: 720
  year: 2021
  end-page: 735
  article-title: Combatting global grassland degradation
  publication-title: Nature Reviews Earth and Environment
– volume: 97
  start-page: 65
  year: 2016
  end-page: 74
  article-title: A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe
  publication-title: Ecology
– volume: 1
  year: 2015
  article-title: Complementary effects of species and genetic diversity on productivity and stability of sown grasslands
  publication-title: Nature Plants
– volume: 28
  start-page: 822
  year: 2017
  end-page: 832
  article-title: Belowground bud bank responses to grazing intensity in the inner‐Mongolia steppe, China
  publication-title: Land Degradation & Development
– year: 2016
– volume: 33
  start-page: 549
  year: 2018
  end-page: 564
  article-title: Beta‐diversity, community assembly, and ecosystem functioning
  publication-title: Trends in Ecology & Evolution
– volume: 223
  start-page: 1106
  year: 2019
  end-page: 1126
  article-title: Demystifying dominant species
  publication-title: New Phytologist
– volume: 30
  start-page: 1894
  year: 2016
  end-page: 1903
  article-title: A common framework for identifying linkage rules across different types of interactions
  publication-title: Functional Ecology
– volume: 111
  start-page: 1174
  year: 2023
  end-page: 1187
  article-title: Litter accumulation, not light limitation, drives early plant recruitment
  publication-title: Journal of Ecology
– volume: 473
  start-page: 9
  year: 2022
  end-page: 31
  article-title: Effects of stocking rate on the interannual patterns of ecosystem biomass and soil nitrogen mineralization in a meadow steppe of northeast China
  publication-title: Plant and Soil
– volume: 30
  start-page: 1767
  year: 2015
  end-page: 1782
  article-title: Selective grazing and seasonal precipitation play key roles in shaping plant community structure of semi‐arid grasslands
  publication-title: Landscape Ecology
– volume: 23
  start-page: 10
  year: 2020
  article-title: Short‐term effects of experimental trampling on alpine grasslands in Shangri‐la, China
  publication-title: Global Ecology and Conservation
– volume: 24
  start-page: 1668
  year: 2021
  end-page: 1680
  article-title: Unveiling ecological assembly rules from commonalities in trait distributions
  publication-title: Ecology Letters
– volume: 108
  start-page: 2336
  year: 2020
  end-page: 2351
  article-title: Traits link drought resistance with herbivore defence and plant economics in semi‐arid grasslands: The central roles of phenology and leaf dry matter content
  publication-title: Journal of Ecology
– volume: 95
  start-page: 2443
  year: 2014
  end-page: 2452
  article-title: Height and clonality traits determine plant community responses to fertilization
  publication-title: Ecology
– year: 2006
– volume: 99
  start-page: 1847
  year: 2018
  end-page: 1856
  article-title: Defoliation and arbuscular mycorrhizal fungi shape plant communities in overgrazed semiarid grasslands
  publication-title: Ecology
– volume: 98
  start-page: 961
  year: 2017
  end-page: 970
  article-title: Herbivore exclusion promotes a more stochastic plant community assembly in a natural grassland
  publication-title: Ecology
– volume: 65
  start-page: 830
  year: 2022
  end-page: 837
  article-title: The relative and combined effects of herbivore assemblage and soil nitrogen on plant diversity
  publication-title: Science China. Life Sciences
– volume: 85
  start-page: 269
  year: 2015
  end-page: 286
  article-title: Changes in plant, soil, and microbes in a typical steppe from simulated grazing: Explaining potential change in soil C
  publication-title: Ecological Monographs
– volume: 68
  start-page: 54
  year: 2015
  end-page: 64
  article-title: Impacts of differing grazing rates on canopy structure and species composition in Hulunber Meadow Steppe
  publication-title: Rangeland Ecology & Management
– volume: 100
  start-page: 1019
  year: 2017
  end-page: 1036
  article-title: Using plant wax markers to estimate the diet composition of grazing Holstein dairy cows
  publication-title: Journal of Dairy Science
– volume: 61
  start-page: 167
  year: 2013
  end-page: 234
  article-title: New handbook for standardised measurement of plant functional traits worldwide
  publication-title: Australian Journal of Botany
– volume: 107
  start-page: 2747
  year: 2019
  end-page: 2759
  article-title: Using the beta distribution to analyse plant cover data
  publication-title: Journal of Ecology
– volume: 324
  start-page: 636
  year: 2009
  end-page: 638
  article-title: Competition for light causes plant biodiversity loss after eutrophication
  publication-title: Science
– year: 2017
– volume: 280
  start-page: 745
  year: 1998
  end-page: 747
  article-title: Modulation of diversity by grazing and mowing in native tallgrass prairie
  publication-title: Science
– volume: 346
  year: 2023
  article-title: Mowing mitigates the adverse effects of fertilization on plant diversity and changes soil bacterial and fungal community structure in the Inner Mongolia grassland
  publication-title: Agriculture Ecosystems & Environment
– volume: 19
  start-page: 557
  year: 2016
  end-page: 566
  article-title: Disentangling grazing effects: Trampling, defoliation and urine deposition
  publication-title: Applied Vegetation Science
– volume: 27
  start-page: 3939
  year: 2021
  end-page: 3950
  article-title: Long‐term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland
  publication-title: Global Change Biology
– ident: e_1_2_10_26_1
  doi: 10.1007/s11258‐021‐01213‐6
– ident: e_1_2_10_34_1
  doi: 10.1016/j.agee.2023.108358
– ident: e_1_2_10_69_1
  doi: 10.1111/ele.13212
– ident: e_1_2_10_5_1
  doi: 10.1038/s43017‐021‐00207‐2
– ident: e_1_2_10_4_1
  doi: 10.1111/nph.15789
– ident: e_1_2_10_42_1
  doi: 10.1038/s41467‐020‐18560‐z
– ident: e_1_2_10_31_1
  doi: 10.1016/j.tplants.2013.04.012
– ident: e_1_2_10_57_1
  doi: 10.1007/s10980‐015‐0252‐y
– ident: e_1_2_10_9_1
  doi: 10.1111/1365‐2745.13454
– ident: e_1_2_10_13_1
  doi: 10.1016/j.baae.2021.02.009
– ident: e_1_2_10_36_1
  doi: 10.1111/ele.13826
– ident: e_1_2_10_33_1
  doi: 10.1111/avsc.12250
– ident: e_1_2_10_58_1
  doi: 10.1002/eap.2052
– ident: e_1_2_10_46_1
  doi: 10.1111/oik.04813
– ident: e_1_2_10_11_1
  doi: 10.1890/07‐0971.1
– ident: e_1_2_10_51_1
  doi: 10.1002/eap.2803
– ident: e_1_2_10_29_1
– ident: e_1_2_10_27_1
  doi: 10.1111/1365‐2745.14099
– ident: e_1_2_10_18_1
  doi: 10.1086/670928
– ident: e_1_2_10_53_1
  doi: 10.1111/1365‐2745.13983
– ident: e_1_2_10_20_1
  doi: 10.1111/ele.13789
– ident: e_1_2_10_12_1
  doi: 10.1126/science.280.5364.745
– ident: e_1_2_10_40_1
  doi: 10.1002/ecy.2052
– ident: e_1_2_10_48_1
  doi: 10.1002/ldr.2300
– ident: e_1_2_10_25_1
  doi: 10.1016/j.scitotenv.2023.164191
– ident: e_1_2_10_52_1
  doi: 10.1111/ele.12277
– ident: e_1_2_10_41_1
  doi: 10.1016/j.tree.2018.04.012
– ident: e_1_2_10_39_1
  doi: 10.21105/joss.03139
– ident: e_1_2_10_2_1
  doi: 10.1002/ecy.1741
– ident: e_1_2_10_45_1
– ident: e_1_2_10_32_1
  doi: 10.1890/02‐5199
– ident: e_1_2_10_65_1
  doi: 10.1002/ecy.2401
– ident: e_1_2_10_38_1
  doi: 10.1111/gcb.15681
– ident: e_1_2_10_8_1
  doi: 10.1111/1365‐2435.12666
– ident: e_1_2_10_16_1
  doi: 10.1890/13‐1875.1
– ident: e_1_2_10_62_1
  doi: 10.1111/gcb.14169
– ident: e_1_2_10_22_1
  doi: 10.1126/science.1169640
– ident: e_1_2_10_47_1
  doi: 10.1038/nplants.2015.33
– ident: e_1_2_10_59_1
  doi: 10.1016/j.atmosenv.2013.07.003
– ident: e_1_2_10_63_1
  doi: 10.1016/j.rama.2014.12.001
– ident: e_1_2_10_14_1
  doi: 10.1111/1365‐2745.13200
– ident: e_1_2_10_21_1
  doi: 10.1111/1365-2745.14370
– ident: e_1_2_10_56_1
  doi: 10.1016/j.rama.2020.01.001
– ident: e_1_2_10_54_1
  doi: 10.1111/ecog.05844
– ident: e_1_2_10_3_1
  doi: 10.1111/ele.13281
– ident: e_1_2_10_70_1
  doi: 10.1111/grs.12314
– ident: e_1_2_10_10_1
  doi: 10.1002/fee.2405
– ident: e_1_2_10_66_1
  doi: 10.1007/s11427‐021‐1963‐2
– ident: e_1_2_10_37_1
  doi: 10.1890/14‐1368.1
– ident: e_1_2_10_67_1
  doi: 10.1111/gcb.13783
– ident: e_1_2_10_35_1
  doi: 10.1016/j.gecco.2020.e01161
– ident: e_1_2_10_61_1
  doi: 10.1016/j.geoderma.2020.114828
– ident: e_1_2_10_55_1
  doi: 10.1890/15‐0917.1
– ident: e_1_2_10_43_1
  doi: 10.1002/ecs2.3285
– ident: e_1_2_10_19_1
  doi: 10.1038/nature20575
– ident: e_1_2_10_28_1
  doi: 10.2307/3237032
– ident: e_1_2_10_17_1
  doi: 10.1038/s41586‐022‐05383‐9
– ident: e_1_2_10_64_1
  doi: 10.1111/1365‐2745.13253
– ident: e_1_2_10_49_1
  doi: 10.1007/s00572‐017‐0812‐x
– ident: e_1_2_10_23_1
  doi: 10.1111/brv.12145
– volume-title: Holistic management: a commonsense revolution to restore our environment
  year: 2016
  ident: e_1_2_10_50_1
– ident: e_1_2_10_6_1
  doi: 10.1890/02‐0274
– ident: e_1_2_10_30_1
  doi: 10.1111/1365‐2745.12613
– ident: e_1_2_10_60_1
  doi: 10.1007/s11104‐020‐04430‐6
– ident: e_1_2_10_7_1
  doi: 10.1111/oik.06310
– ident: e_1_2_10_68_1
  doi: 10.1007/s11104‐021‐04901‐4
– ident: e_1_2_10_15_1
  doi: 10.1017/CBO9780511617461
– ident: e_1_2_10_24_1
  doi: 10.3168/jds.2016‐11494
– ident: e_1_2_10_44_1
  doi: 10.1071/bt12225
SSID ssj0006750
Score 2.4672155
Snippet Ungulate herbivores shape grassland plant communities at multiple scales, ultimately affecting ecosystem function. However, ungulates have complex effects on...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1992
SubjectTerms Assembly
Biodiversity
Biodiversity loss
China
Coexistence
community assembly
Defoliation
Density
Dominance
Ecological function
Excreta
excreta return
Feeding behavior
Feeding preferences
field experimentation
Foraging
Foraging behavior
grassland
Grassland management
Grasslands
Herbivores
homogenization
interspecific competition
Plant communities
Plants
plant–herbivore interactions
selective defoliation
Shape effects
soil
Soil properties
species
species diversity
stochastic and deterministic processes
Stochastic models
Stochastic processes
Stochasticity
Trampling
ungulate herbivores
Ungulates
Title Ungulate herbivores promote beta diversity and drive stochastic plant community assembly by selective defoliation and trampling: From a four‐year simulation experiment
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.14370
https://www.proquest.com/docview/3100392880
https://www.proquest.com/docview/3153787150
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQRSUu_BQQWwoaJA5cskrXzs9yg2pXVSU4IFbiFnn8AxXbZLXJIqWnPgKvwWvxJMw4yW6phBDi5iR27Gg8nm_i8TdCvFQJc95JGaG25KAY46LcWoxwglOXe2lTw4eT371PTxfq7FMyRBPyWZiOH2L7w401I6zXrOAa62tK3p-mUgkpu8zYa-c7DIs-7AikCA7HA194rLKsJ_fhWJ4b7X-3SzuweR2yBpszvydwGG0XavJ1vGlwbC5vEDn-1-fcF3d7RApvuin0QNxy5YHY73JUtgfi9tuK8CMV9meB4Lp9KH4sypDA3gEJHM-_VeSywyrE9TlA12iwQ7QH6NKCXdMlEMo0XzTTQsNqSfIE051N4Up17S5w2QK2UIfEPNzAOl8tu5kTXtOsNYe_l59fw5w6Aw2exv7z6ntL2gr1-UWfiQx2WQseicV89vHkNOpTPkRGqpwsgmc-NSSvjdxIQ9Y1z31mMTPkKeVWZkaZqUwV-tg7myrvXez18RTJFqdWmUQ-FntlVbonAibeZcYf55hqp3KpdRxrzCdS2amOE5uOxHgQeGF6PnROy7EsBr-IRVKwSIogkpF4tW2w6qhA_lz1aJhBRb8m1AVvpRAapQVzJF5sH5M28xaNLl214TqJpCWUUDoNL0yXv3VVnM1OQuHwXxs8FXcmhNC6gLkjsdesN-4ZIawGnwcl-gVjcx4O
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hQgUXHgVEaIFB4sDFkZtdP9JbWyUKpe0BNVJv1j6hIrWj2EEyJ34Cf4O_xS9hZm0noRJCiJst78uanZ1vdme_YeyNiIjzjvNASYMOitY2SI1RgRqooU0dN7Gmy8ln5_FkKk4uo8uNuzANP8Rqw400w6_XpOC0Ib2h5e11KhGhtvME3fbblNfbu1Uf1hRSCIjDjjE8FEnS0vtQNM-NBn63TGu4uQlavdUZP2C6G28TbPK5v6xUX3-9QeX4fz_0kN1vQSkcNrPoEbtl8x223aSprHfYnaMCISQ-bI88x3X9mP2Y5j6HvQWUubr6UqDXDnMf2mdB2UqC6QI-QOYGzAJfAYGm_iSJGRrmMxQp6OZ6ChUqS3utZjWoGkqfm4cqGOuKWTN5fDPVQlIEfP7xAMbYGUhwOPaf377XqLBQXl23ychgnbjgCZuORxfHk6DN-hBoLlI0Co4o1RQ6buhJajSwaeoSoxKNzlJqeKKFHvJYKBc6a2LhnA2d3B8qNMexETriT9lWXuT2GYOBs4l2-6mKpRUplzIMpUoHXJihDCMT91i_k3imW0p0yswxyzrXiESSkUgyL5Iee7uqMG_YQP5cdK-bQlm7LJQZnaYgIMU1s8derz6jQtMpjcxtsaQyEcdVFIE6Ds_Pl791lZ2Mjv3D83-t8IrdnVycnWan787f77J7AwRsTfzcHtuqFkv7AgFXpV56jfoFNxsiKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQoYgLPwXEQoFB4sAlq3TtJF5u0O6qFKgQYiVukX9LxTZZbbJI4cQj8Bq8Fk_CjJPslkoIIW6JYjuOZsbzTTz-hrGnIiHOO84jrSwGKMa4SFqrIz3SYyc9t6mhw8lvj9PDmTj6mPTZhHQWpuWHWP9wI8sI6zUZ-ML6c0benaYSCRo7zzBqvyzSWJJiH7zfMEghHo57wvBYZFnH7kPJPBcG-N0xbdDmecwanM70BtP9dNtck8_DVa2H5usFJsf_-p6b7HoHSeFFq0O32CVX7LDttkhls8OuvCwRQOLF9iQwXDe32Y9ZESrYO0CJ69MvJcbssAiJfQ60qxXYPt0DVGHBLvEWEGaaT4p4oWExR4GCaQ-nUKOqcmd63oBuoAqVeaiDdb6ct6oThqmXivLfi5PnMMWXgQKPc__57XuD5grV6VlXigw2ZQvusNl08mH_MOpqPkSGC4kuwROhmsawDeNIg-5VSp9ZnRkMlaTlmRFmzFOhfeydTYX3LvZqb6zRGadWmITfZVtFWbh7DEbeZcbvSZ0qJyRXKo6VliMu7FjFiU0HbNgLPDcdITrV5ZjnfWBEIslJJHkQyYA9W3dYtFwgf26622tQ3i0KVU57KQhHccUcsCfrx2jOtEejCleuqE3CcQ1FmI7TC-ryt1flR5P9cHH_Xzs8ZlffHUzzN6-OXz9g10aI1trkuV22VS9X7iGirVo_Cvb0C84yIOE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ungulate+herbivores+promote+beta+diversity+and+drive+stochastic+plant+community+assembly+by+selective+defoliation+and+trampling%3A+From+a+four%E2%80%90year+simulation+experiment&rft.jtitle=The+Journal+of+ecology&rft.au=Guo%2C+Tongtian&rft.au=Guo%2C+Meiqi&rft.au=Pang%2C+Yue&rft.au=Sun%2C+Xiangyun&rft.date=2024-09-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=112&rft.issue=9&rft.spage=1992&rft.epage=2006&rft_id=info:doi/10.1111%2F1365-2745.14370&rft.externalDBID=10.1111%252F1365-2745.14370&rft.externalDocID=JEC14370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon