Temporal Processing in the Auditory System Insights from Cochlear and Auditory Midbrain Implantees

Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Association for Research in Otolaryngology Vol. 14; no. 1; pp. 103 - 124
Main Authors McKay, Colette M., Lim, Hubert H., Lenarz, Thomas
Format Journal Article
LanguageEnglish
Published New York Springer-Verlag 01.02.2013
Subjects
Online AccessGet full text
ISSN1525-3961
1438-7573
1438-7573
DOI10.1007/s10162-012-0354-z

Cover

Loading…
Abstract Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding.
AbstractList Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding.Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding.
Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding.
Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding.
Author McKay, Colette M.
Lim, Hubert H.
Lenarz, Thomas
Author_xml – sequence: 1
  givenname: Colette M.
  surname: McKay
  fullname: McKay, Colette M.
  email: colette.mckay@manchester.ac.uk
  organization: Audiology & Deafness Research Group, School of Psychological Sciences, University of Manchester
– sequence: 2
  givenname: Hubert H.
  surname: Lim
  fullname: Lim, Hubert H.
  organization: Departments of Biomedical Engineering and Otorhinolaryngology, University of Minnesota
– sequence: 3
  givenname: Thomas
  surname: Lenarz
  fullname: Lenarz, Thomas
  organization: Department of Otorhinolaryngology, Hannover Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23073669$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMovn-AG-lShGpuk_ZONoKILxAU1HWoSTpG2mRMWmHm15syKupCF5dcyDkfh3u2yKrzzhCyB_QIKMXjCBSqIqeQhpU8X6yQTeBskmOJbDXtZVHmTFSwQbZifKEUsKzEOtkoGEVWVWKTHD6YbuZD3WZ3wSsTo3XTzLqsfzbZ6aBt78M8u5_H3nQ7ZK2p22h2P95t8nhx_nB2ld_cXl6fnd7kinFc5MD0E2eKM80FFhwRsJ5gSTXn0BhoGo0NVhNqQKhKa-BKCOBNPRGVQCY02yYnS-5seOqMVsb1KZ-cBdvVYS59beXPH2ef5dS_yXQCWiAkwMEHIPjXwcRedjYq07a1M36IEjgIhowx_r-0wFEGYqTuf4_1lefzlkmAS4EKPsZgGqlsX_fWjyltK4HKsTW5bE2m1uTYmlwkJ_xyfsL_8hRLT0xaNzVBvvghuFTMH6Z3wjGogA
CitedBy_id crossref_primary_10_1121_1_4874597
crossref_primary_10_1121_1_4819182
crossref_primary_10_1007_s10162_015_0530_z
crossref_primary_10_1088_1741_2560_11_4_046021
crossref_primary_10_1121_1_5025048
crossref_primary_10_1007_s10162_020_00767_y
crossref_primary_10_1016_j_heares_2014_09_009
crossref_primary_10_1152_jn_00022_2013
crossref_primary_10_1371_journal_pone_0082148
crossref_primary_10_1016_j_heares_2021_108176
crossref_primary_10_3389_fpsyg_2020_611517
crossref_primary_10_1007_s10162_016_0613_5
crossref_primary_10_1016_j_heares_2018_04_003
crossref_primary_10_1016_j_heares_2020_108163
crossref_primary_10_1007_s10162_018_0658_8
crossref_primary_10_1088_1741_2552_aa87ce
crossref_primary_10_1007_s10162_022_00834_6
crossref_primary_10_1121_1_5055989
crossref_primary_10_1097_AUD_0000000000001244
crossref_primary_10_1177_23312165211061116
crossref_primary_10_1016_j_heares_2015_01_006
crossref_primary_10_1016_j_heares_2020_107969
crossref_primary_10_1007_s10162_018_0675_7
crossref_primary_10_1007_s10162_013_0417_9
crossref_primary_10_1007_s13534_023_00340_5
crossref_primary_10_1007_s10162_015_0521_0
crossref_primary_10_1016_j_heares_2017_02_009
crossref_primary_10_1016_j_nicl_2022_102982
crossref_primary_10_1121_10_0012351
crossref_primary_10_1121_1_4890640
crossref_primary_10_1016_j_heares_2020_108091
crossref_primary_10_1097_AUD_0000000000000146
crossref_primary_10_1002_hbm_23515
Cites_doi 10.1111/j.1460-9568.2006.04774.x
10.1121/1.429609
10.1007/s10162-006-0056-5
10.1016/j.neuron.2005.06.009
10.1126/science.270.5234.303
10.1121/1.1760795
10.1121/1.421294
10.1097/00001756-199806010-00033
10.3758/PP.70.2.291
10.1121/1.426722
10.1097/01.mao.0000232010.01116.e9
10.1121/1.396055
10.1523/JNEUROSCI.3123-07.2007
10.1016/j.heares.2007.11.014
10.1121/1.3651820
10.1121/1.403807
10.1016/S0361-9230(03)00050-9
10.1121/1.414964
10.1121/1.2537501
10.1016/j.neuroscience.2008.03.065
10.1121/1.417949
10.1016/j.heares.2011.11.009
10.1152/jn.00111.2012
10.1152/physrev.00029.2003
10.1016/j.heares.2005.03.021
10.1159/000094651
10.1016/j.heares.2008.02.003
10.1007/0-387-27083-3_2
10.1016/0378-5955(91)90217-W
10.1121/1.1336501
10.1121/1.1514935
10.1121/1.401953
10.1016/j.nurt.2007.10.068
10.1097/MAO.0b013e3181a864f2
10.1097/AUD.0b013e318230fff8
10.1007/s10162-009-0194-7
10.1121/1.1558378
10.1152/jn.1995.73.1.227
10.1016/j.neuroscience.2008.02.041
10.1097/00001756-200209160-00013
10.1097/MAO.0b013e318159e74f
10.1016/0378-5955(91)90091-M
10.1016/0378-5955(94)90014-0
10.1121/1.423316
10.1121/1.418330
10.1007/s10162-009-0188-5
10.1121/1.399777
10.1007/0-387-27083-3_11
10.1121/1.3683248
10.1016/j.heares.2012.01.010
10.1097/01.mlg.0000178327.42926.ec
10.1016/j.heares.2009.01.009
10.1016/0378-5955(84)90052-2
10.1121/1.3621445
10.1016/S0378-5955(01)00296-9
10.1177/1084713809348372
10.1007/s10162-005-0007-6
10.1016/0378-5955(89)90160-3
ContentType Journal Article
Copyright The Author(s) 2012
Copyright_xml – notice: The Author(s) 2012
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1007/s10162-012-0354-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic


MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1438-7573
EndPage 124
ExternalDocumentID PMC3540271
23073669
10_1007_s10162_012_0354_z
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0701461
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAWUL
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DIK
DL5
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HYE
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
P9S
PF-
PQQKQ
PROAC
PSQYO
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPM
RPX
RRX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TR2
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
ZMTXR
ZOVNA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7X8
PUEGO
7TK
5PM
ID FETCH-LOGICAL-c347z-13db43c43d497247717a8750d441fe1ffd7f7680e19c6dd14c9914fa8969739d3
IEDL.DBID AGYKE
ISSN 1525-3961
1438-7573
IngestDate Thu Aug 21 18:33:00 EDT 2025
Thu Sep 04 20:46:18 EDT 2025
Fri Sep 05 03:26:29 EDT 2025
Mon Jul 21 06:07:41 EDT 2025
Tue Jul 01 00:35:27 EDT 2025
Thu Apr 24 23:03:19 EDT 2025
Fri Feb 21 02:35:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords cochlear implant
auditory midbrain implant
temporal resolution
loudness
temporal integration
Language English
License This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347z-13db43c43d497247717a8750d441fe1ffd7f7680e19c6dd14c9914fa8969739d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10162-012-0354-z
PMID 23073669
PQID 1273343191
PQPubID 23479
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3540271
proquest_miscellaneous_1419373334
proquest_miscellaneous_1273343191
pubmed_primary_23073669
crossref_citationtrail_10_1007_s10162_012_0354_z
crossref_primary_10_1007_s10162_012_0354_z
springer_journals_10_1007_s10162_012_0354_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130200
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 2
  year: 2013
  text: 20130200
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of the Association for Research in Otolaryngology
PublicationTitleAbbrev JARO
PublicationTitleAlternate J Assoc Res Otolaryngol
PublicationYear 2013
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
References GerkenGMSoleckiJMBoettcherFATemporal integration of electrical stimulation of auditory nuclei in normal-hearing and hearing-impaired catHear Res199153101112206627810.1016/0378-5955(91)90217-W1:STN:280:DyaK3M3psVSrsw%3D%3D
JorisPXSchreinerCEReesANeural processing of amplitude-modulated soundsPhysiol Rev2004845415771504468210.1152/physrev.00029.20031:STN:280:DC%2BD2c7lt1Wksw%3D%3D
OxenhamAJForward masking: adaptation or integration?J Acoust Soc Am20011097327411124897710.1121/1.13365011:STN:280:DC%2BD3M3lvVGhsw%3D%3D
SchaetteRKempterRDevelopment of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational modelEur J Neurosci200623312431381682000310.1111/j.1460-9568.2006.04774.x
CollettiVShannonRCarnerMVeroneseSCollettiLOutcomes in nontumor adults fitted with the auditory brainstem implant: 10 years' experienceOtol Neurotol2009306146181954683210.1097/MAO.0b013e3181a864f2
LapidEUlrichRRammsayerTOn estimating the difference limen in duration discrimination tasks: a comparison of the 2AFC and the reminder taskPercept Psychophys2008702913051837275010.3758/PP.70.2.291
FrisinaRDSubcortical neural coding mechanisms for auditory temporal processingHear Res20011581271150693310.1016/S0378-5955(01)00296-91:STN:280:DC%2BD3Mvns1amug%3D%3D
LimHHLenarzTAndersonDJLenarzMThe auditory midbrain implant: effects of electrode locationHear Res200824274851834890210.1016/j.heares.2008.02.003
GalvinJJFuQJEffects of stimulation rate, mode and level on modulation detection by cochlear implant usersJ Assoc Res Otolaryngol200562692791607519010.1007/s10162-005-0007-6
LenarzTLimHHReuterGPatrickJFLenarzMThe auditory midbrain implant: a new auditory prosthesis for neural deafness—concept and device descriptionOtol Neurotol2006278388431693657010.1097/01.mao.0000232010.01116.e9
KretschmannHJWeinrichWCranial neuroimaging and clinical neuroanatomy: magnetic resonance imaging and computed tomography1992New YorkThieme Medical Publishers
ZengFGGalvinJJ3rdZhangCEncoding loudness by electric stimulation of the auditory nerveNeuroreport1998918451848966561310.1097/00001756-199806010-000331:STN:280:DyaK1czivVGmsg%3D%3D
MullerMRobertsonDYatesGKRate-versus-level functions of primary auditory nerve fibres: evidence for square law behaviour of all fibre categories in the guinea pigHear Res1991555056175279410.1016/0378-5955(91)90091-M1:STN:280:DyaK38%2FptFamsA%3D%3D
SchwartzMSOttoSRShannonRVHitselbergerWEBrackmannDEAuditory brainstem implantsNeurotherapeutics200851281361816449210.1016/j.nurt.2007.10.068
OxenhamAJMooreBCModeling the additivity of nonsimultaneous maskingHear Res199480105118785219610.1016/0378-5955(94)90014-01:STN:280:DyaK2M7lsFWluw%3D%3D
GalvinJJFuQJInfluence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant usersHear Res200925046541945043210.1016/j.heares.2009.01.009
LimHHLenarzTJosephGBattmerRDSamiiASamiiMPatrickJFLenarzMElectrical stimulation of the midbrain for hearing restoration: insight into the functional organization of the human central auditory systemJ Neurosci20072713541135511805721210.1523/JNEUROSCI.3123-07.20071:CAS:528:DC%2BD1cXisVGksQ%3D%3D
MiddlebrooksJCEffects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholdsJ Acoust Soc Am20041164524681529600510.1121/1.1760795
ChatterjeeMOberzutCDetection and rate discrimination of amplitude modulation in electrical hearingJ Acoust Soc Am2011130156715802189509510.1121/1.3621445
Calixto R, Lenarz M, Neuheiser A, Scheper V, Lenarz T, Lim HH (2012) Co-activation of different neurons within an isofrequency lamina of the inferior colliculus elicits enhanced auditory cortical activation. J Neurophysiol
KangSYColesaDJSwiderskiDLSuGLRaphaelYPfingstBEEffects of hearing preservation on psychophysical responses to cochlear implant stimulationJ Assoc Res Otolaryngol2010112452651990229710.1007/s10162-009-0194-7
CarlyonRPVan WieringenADeeksJMLongCJLyzengaJWoutersJEffect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulationHear Res20052052102241595353010.1016/j.heares.2005.03.021
MooreBCPetersRWGlasbergBRDetection of decrements and increments in sinusoids at high overall levelsJ Acoust Soc Am19969936693677865579810.1121/1.4149641:STN:280:DyaK283ltVKqsg%3D%3D
ShannonRVTemporal modulation transfer functions in patients with cochlear implantsJ Acoust Soc Am19929121562164159760610.1121/1.4038071:STN:280:DyaK383osVSkug%3D%3D
OliverDLWinerJASchreinerCRNeuronal organization in the inferior colliculusThe inferior colliculus2005New YorkSpringer Science + Business Media6911410.1007/0-387-27083-3_2
McCreeryDBCochlear nucleus auditory prosthesesHear Res200824264731820767810.1016/j.heares.2007.11.0141:STN:280:DC%2BD1crgs1ChtQ%3D%3D
MooreBCGlasbergBRPlackCJBiswasAKThe shape of the ear's temporal windowJ Acoust Soc Am19888311021116335681510.1121/1.3960551:STN:280:DyaL1c7oslWktA%3D%3D
NelsonDADonaldsonGSPsychophysical recovery from pulse-train forward masking in electric hearingJ Acoust Soc Am2002112293229471250901410.1121/1.1514935
CantNBBensonCGParallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nucleiBrain Res Bull2003604574741278786710.1016/S0361-9230(03)00050-9
NelsonDASchmitzJLDonaldsonGSViemeisterNFJavelEIntensity discrimination as a function of stimulus level with electric stimulationJ Acoust Soc Am199610023932414886564610.1121/1.4179491:STN:280:DyaK2s%2FhvFSgsg%3D%3D
EggermontJJSmithGMSynchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortexJ Neurophysiol19957322724577145681:STN:280:DyaK2M3jtVegsA%3D%3D
ShannonRVForward masking in patients with cochlear implantsJ Acoust Soc Am199088741744221229810.1121/1.3997771:STN:280:DyaK3M%2FhtVahug%3D%3D
YoungEDPalmerARReesALevel and spectrumThe Oxford handbook of auditory science: the auditory brain2010New YorkOxford University Press93124
GreenTFaulknerARosenSVariations in carrier pulse rate and the perception of amplitude modulation in cochlear implant usersEar Hear2012332212302236709310.1097/AUD.0b013e318230fff8
LimHHLenarzMLenarzTAuditory midbrain implant: a reviewTrends Amplif2009131491801976242810.1177/1084713809348372
PfingstBEXuLThompsonCSEffects of carrier pulse rate and stimulation site on modulation detection by subjects with cochlear implantsJ Acoust Soc Am2007121223622461747173710.1121/1.2537501
DonaldsonGSViemeisterNFNelsonDAPsychometric functions and temporal integration in electric hearingJ Acoust Soc Am199710137063721919305810.1121/1.4183301:STN:280:DyaK2szjs1arsA%3D%3D
GeniecPMorestDKThe neuronal architecture of the human posterior colliculus: a study with the golgi methodActa Otolaryngol Suppl197129513341170001:STN:280:DyaE3s%2FisFyisQ%3D%3D
ShannonRVZengFGKamathVWygonskiJEkelidMSpeech recognition with primarily temporal cuesScience1995270303304756998110.1126/science.270.5234.3031:CAS:528:DyaK2MXoslehsL8%3D
FraserMMcKayCMTemporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cuesHear Res201228359692214642510.1016/j.heares.2011.11.009
McKayCMMcDermottHJLoudness perception with pulsatile electrical stimulation: the effect of interpulse intervalsJ Acoust Soc Am199810410611074971492510.1121/1.4233161:STN:280:DyaK1czotVKmtQ%3D%3D
DonaldsonGSViemeisterNFIntensity discrimination and detection of amplitude modulation in electric hearingJ Acoust Soc Am20001087607631095564310.1121/1.4296091:STN:280:DC%2BD3cvlvVOquw%3D%3D
McKayCMHenshallKRAmplitude modulation and loudness in cochlear implanteesJ Assoc Res Otolaryngol2010111011111979853310.1007/s10162-009-0188-5
WehrMZadorAMSynaptic mechanisms of forward suppression in rat auditory cortexNeuron2005474374451605506610.1016/j.neuron.2005.06.0091:CAS:528:DC%2BD2MXovFSjsLY%3D
FuQJTemporal processing and speech recognition in cochlear implant usersNeuroreport200213163516391235261710.1097/00001756-200209160-00013
CollettiVAuditory outcomes in tumor vs. nontumor patients fitted with auditory brainstem implantsAdv Oto-Rhino-Laryngol200664167185
PfingstBEColesaDJHembradorSKangSYMiddlebrooksJCRaphaelYSuGLDetection of pulse trains in the electrically stimulated cochlea: effects of cochlear healthJ Acoust Soc Am2011130395439682222505010.1121/1.3651820
PlackCJOxenhamAJBasilar-membrane nonlinearity and the growth of forward maskingJ Acoust Soc Am199810315981608951402410.1121/1.4212941:STN:280:DyaK1c7nsFaisA%3D%3D
PlackCJOxenhamAJDrgaVLinear and nonlinear processes in temporal maskingActa Acustica200288348358
LenarzMLimHHLenarzTReichUMarquardtNKlingbergMNPaascheGReuterGStanACAuditory midbrain implant: histomorphologic effects of long-term implantation and electric stimulation of a new deep brain stimulation arrayOtol Neurotol200728104510521804343110.1097/MAO.0b013e318159e74f
LenarzMLimHHPatrickJFAndersonDJLenarzTElectrophysiological validation of a human prototype auditory midbrain implant in a guinea pig modelJ Assoc Res Otolaryngol200673833981707570110.1007/s10162-006-0056-5
HughesMLCastioniEEGoehringJLBaudhuinJLTemporal response properties of the auditory nerve: data from human cochlear-implant recipientsHear Res201228546572232659010.1016/j.heares.2012.01.010
WangXLuTBendorDBartlettENeural coding of temporal information in auditory thalamus and cortexNeurosci200815429430310.1016/j.neuroscience.2008.03.0651:CAS:528:DC%2BD1cXnt1emu7s%3D
McKayCMForward masking as a method of measuring place specificity of neural excitation in cochlear implants: a review of methods and interpretationJ Acoust Soc Am2012131220922242242371710.1121/1.3683248
MckayCMHenshallKRFarrellRJMcDermottHJA practical method of predicting the loudness of complex electrical stimuliJ Acoust Soc Am2003113205420631270371610.1121/1.1558378
Van den HonertCStypulkowskiPHPhysiological properties of the electrically stimulated auditory nerve: II. Single fiber recordingsHear Res198414225243648051110.1016/0378-5955(84)90052-2
ViemeisterNFWakefieldGHTemporal inte
BC Moore (354_CR40) 1996; 99
AJ Oxenham (354_CR46) 1994; 80
JJ Galvin (354_CR16) 2005; 6
M Muller (354_CR41) 1991; 55
BE Pfingst (354_CR47) 2007; 121
X Wang (354_CR59) 2008; 154
M Wehr (354_CR60) 2005; 47
M Chatterjee (354_CR5) 2011; 130
P Geniec (354_CR18) 1971; 295
QJ Fu (354_CR15) 2002; 13
HH Lim (354_CR29) 2007; 27
354_CR1
PX Joris (354_CR22) 2004; 84
HJ Kretschmann (354_CR24) 1992
DA Nelson (354_CR43) 1996; 100
M Lenarz (354_CR26) 2006; 7
RV Shannon (354_CR54) 1990; 88
MS Schwartz (354_CR52) 2008; 5
T Lenarz (354_CR27) 2006; 27
BE Pfingst (354_CR48) 2011; 130
JC Middlebrooks (354_CR38) 2004; 116
ED Young (354_CR61) 2010
GM Gerken (354_CR19) 1991; 53
CM Mckay (354_CR37) 2003; 113
M Chatterjee (354_CR4) 1999; 105
E Lapid (354_CR25) 2008; 70
RV Shannon (354_CR53) 1989; 40
GS Donaldson (354_CR9) 2000; 108
M Fraser (354_CR13) 2012; 283
G Ehret (354_CR12) 2005
RV Shannon (354_CR55) 1992; 91
RP Carlyon (354_CR3) 2005; 205
ML Hughes (354_CR21) 2012; 285
V Colletti (354_CR7) 2005; 115
DB McCreery (354_CR33) 2008; 242
HH Lim (354_CR30) 2008; 242
CM McKay (354_CR35) 2010; 11
JJ Galvin (354_CR17) 2009; 250
GS Donaldson (354_CR10) 1997; 101
JJ Eggermont (354_CR11) 1995; 73
HH Lim (354_CR32) 2009; 13
RD Frisina (354_CR14) 2001; 158
FG Zeng (354_CR62) 1998; 9
HH Lim (354_CR31) 2008; 154
SY Kang (354_CR23) 2010; 11
V Colletti (354_CR8) 2009; 30
DA Nelson (354_CR42) 2002; 112
CM McKay (354_CR34) 2012; 131
CM McKay (354_CR36) 1998; 104
T Green (354_CR20) 2012; 33
M Lenarz (354_CR28) 2007; 28
CJ Plack (354_CR50) 2002; 88
V Colletti (354_CR6) 2006; 64
C Honert Van den (354_CR57) 1984; 14
DL Oliver (354_CR44) 2005
AJ Oxenham (354_CR45) 2001; 109
R Schaette (354_CR51) 2006; 23
NB Cant (354_CR2) 2003; 60
BC Moore (354_CR39) 1988; 83
NF Viemeister (354_CR58) 1991; 90
RV Shannon (354_CR56) 1995; 270
CJ Plack (354_CR49) 1998; 103
References_xml – reference: Calixto R, Lenarz M, Neuheiser A, Scheper V, Lenarz T, Lim HH (2012) Co-activation of different neurons within an isofrequency lamina of the inferior colliculus elicits enhanced auditory cortical activation. J Neurophysiol
– reference: ViemeisterNFWakefieldGHTemporal integration and multiple looksJ Acoust Soc Am199190858865193989010.1121/1.4019531:STN:280:DyaK38%2FktlSqsA%3D%3D
– reference: LapidEUlrichRRammsayerTOn estimating the difference limen in duration discrimination tasks: a comparison of the 2AFC and the reminder taskPercept Psychophys2008702913051837275010.3758/PP.70.2.291
– reference: LimHHLenarzTAndersonDJLenarzMThe auditory midbrain implant: effects of electrode locationHear Res200824274851834890210.1016/j.heares.2008.02.003
– reference: McKayCMMcDermottHJLoudness perception with pulsatile electrical stimulation: the effect of interpulse intervalsJ Acoust Soc Am199810410611074971492510.1121/1.4233161:STN:280:DyaK1czotVKmtQ%3D%3D
– reference: LenarzMLimHHLenarzTReichUMarquardtNKlingbergMNPaascheGReuterGStanACAuditory midbrain implant: histomorphologic effects of long-term implantation and electric stimulation of a new deep brain stimulation arrayOtol Neurotol200728104510521804343110.1097/MAO.0b013e318159e74f
– reference: GalvinJJFuQJEffects of stimulation rate, mode and level on modulation detection by cochlear implant usersJ Assoc Res Otolaryngol200562692791607519010.1007/s10162-005-0007-6
– reference: KretschmannHJWeinrichWCranial neuroimaging and clinical neuroanatomy: magnetic resonance imaging and computed tomography1992New YorkThieme Medical Publishers
– reference: KangSYColesaDJSwiderskiDLSuGLRaphaelYPfingstBEEffects of hearing preservation on psychophysical responses to cochlear implant stimulationJ Assoc Res Otolaryngol2010112452651990229710.1007/s10162-009-0194-7
– reference: PfingstBEXuLThompsonCSEffects of carrier pulse rate and stimulation site on modulation detection by subjects with cochlear implantsJ Acoust Soc Am2007121223622461747173710.1121/1.2537501
– reference: OliverDLWinerJASchreinerCRNeuronal organization in the inferior colliculusThe inferior colliculus2005New YorkSpringer Science + Business Media6911410.1007/0-387-27083-3_2
– reference: WangXLuTBendorDBartlettENeural coding of temporal information in auditory thalamus and cortexNeurosci200815429430310.1016/j.neuroscience.2008.03.0651:CAS:528:DC%2BD1cXnt1emu7s%3D
– reference: GreenTFaulknerARosenSVariations in carrier pulse rate and the perception of amplitude modulation in cochlear implant usersEar Hear2012332212302236709310.1097/AUD.0b013e318230fff8
– reference: MckayCMHenshallKRFarrellRJMcDermottHJA practical method of predicting the loudness of complex electrical stimuliJ Acoust Soc Am2003113205420631270371610.1121/1.1558378
– reference: LenarzMLimHHPatrickJFAndersonDJLenarzTElectrophysiological validation of a human prototype auditory midbrain implant in a guinea pig modelJ Assoc Res Otolaryngol200673833981707570110.1007/s10162-006-0056-5
– reference: PfingstBEColesaDJHembradorSKangSYMiddlebrooksJCRaphaelYSuGLDetection of pulse trains in the electrically stimulated cochlea: effects of cochlear healthJ Acoust Soc Am2011130395439682222505010.1121/1.3651820
– reference: GeniecPMorestDKThe neuronal architecture of the human posterior colliculus: a study with the golgi methodActa Otolaryngol Suppl197129513341170001:STN:280:DyaE3s%2FisFyisQ%3D%3D
– reference: DonaldsonGSViemeisterNFIntensity discrimination and detection of amplitude modulation in electric hearingJ Acoust Soc Am20001087607631095564310.1121/1.4296091:STN:280:DC%2BD3cvlvVOquw%3D%3D
– reference: McKayCMForward masking as a method of measuring place specificity of neural excitation in cochlear implants: a review of methods and interpretationJ Acoust Soc Am2012131220922242242371710.1121/1.3683248
– reference: ShannonRVTemporal modulation transfer functions in patients with cochlear implantsJ Acoust Soc Am19929121562164159760610.1121/1.4038071:STN:280:DyaK383osVSkug%3D%3D
– reference: CollettiVAuditory outcomes in tumor vs. nontumor patients fitted with auditory brainstem implantsAdv Oto-Rhino-Laryngol200664167185
– reference: CantNBBensonCGParallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nucleiBrain Res Bull2003604574741278786710.1016/S0361-9230(03)00050-9
– reference: LimHHLenarzMLenarzTAuditory midbrain implant: a reviewTrends Amplif2009131491801976242810.1177/1084713809348372
– reference: FraserMMcKayCMTemporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cuesHear Res201228359692214642510.1016/j.heares.2011.11.009
– reference: NelsonDADonaldsonGSPsychophysical recovery from pulse-train forward masking in electric hearingJ Acoust Soc Am2002112293229471250901410.1121/1.1514935
– reference: ChatterjeeMOberzutCDetection and rate discrimination of amplitude modulation in electrical hearingJ Acoust Soc Am2011130156715802189509510.1121/1.3621445
– reference: LenarzTLimHHReuterGPatrickJFLenarzMThe auditory midbrain implant: a new auditory prosthesis for neural deafness—concept and device descriptionOtol Neurotol2006278388431693657010.1097/01.mao.0000232010.01116.e9
– reference: MooreBCGlasbergBRPlackCJBiswasAKThe shape of the ear's temporal windowJ Acoust Soc Am19888311021116335681510.1121/1.3960551:STN:280:DyaL1c7oslWktA%3D%3D
– reference: OxenhamAJForward masking: adaptation or integration?J Acoust Soc Am20011097327411124897710.1121/1.13365011:STN:280:DC%2BD3M3lvVGhsw%3D%3D
– reference: ZengFGGalvinJJ3rdZhangCEncoding loudness by electric stimulation of the auditory nerveNeuroreport1998918451848966561310.1097/00001756-199806010-000331:STN:280:DyaK1czivVGmsg%3D%3D
– reference: McCreeryDBCochlear nucleus auditory prosthesesHear Res200824264731820767810.1016/j.heares.2007.11.0141:STN:280:DC%2BD1crgs1ChtQ%3D%3D
– reference: ShannonRVA model of threshold for pulsatile electrical stimulation of cochlear implantsHear Res198940197204279360210.1016/0378-5955(89)90160-31:STN:280:DyaK3c%2FgvVChsQ%3D%3D
– reference: ChatterjeeMTemporal mechanisms underlying recovery from forward masking in multielectrode-implant listenersJ Acoust Soc Am1999105185318631008960810.1121/1.4267221:STN:280:DyaK1M7ovFCkug%3D%3D
– reference: YoungEDPalmerARReesALevel and spectrumThe Oxford handbook of auditory science: the auditory brain2010New YorkOxford University Press93124
– reference: GerkenGMSoleckiJMBoettcherFATemporal integration of electrical stimulation of auditory nuclei in normal-hearing and hearing-impaired catHear Res199153101112206627810.1016/0378-5955(91)90217-W1:STN:280:DyaK3M3psVSrsw%3D%3D
– reference: EggermontJJSmithGMSynchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortexJ Neurophysiol19957322724577145681:STN:280:DyaK2M3jtVegsA%3D%3D
– reference: SchaetteRKempterRDevelopment of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational modelEur J Neurosci200623312431381682000310.1111/j.1460-9568.2006.04774.x
– reference: JorisPXSchreinerCEReesANeural processing of amplitude-modulated soundsPhysiol Rev2004845415771504468210.1152/physrev.00029.20031:STN:280:DC%2BD2c7lt1Wksw%3D%3D
– reference: HughesMLCastioniEEGoehringJLBaudhuinJLTemporal response properties of the auditory nerve: data from human cochlear-implant recipientsHear Res201228546572232659010.1016/j.heares.2012.01.010
– reference: ShannonRVZengFGKamathVWygonskiJEkelidMSpeech recognition with primarily temporal cuesScience1995270303304756998110.1126/science.270.5234.3031:CAS:528:DyaK2MXoslehsL8%3D
– reference: WehrMZadorAMSynaptic mechanisms of forward suppression in rat auditory cortexNeuron2005474374451605506610.1016/j.neuron.2005.06.0091:CAS:528:DC%2BD2MXovFSjsLY%3D
– reference: MooreBCPetersRWGlasbergBRDetection of decrements and increments in sinusoids at high overall levelsJ Acoust Soc Am19969936693677865579810.1121/1.4149641:STN:280:DyaK283ltVKqsg%3D%3D
– reference: PlackCJOxenhamAJDrgaVLinear and nonlinear processes in temporal maskingActa Acustica200288348358
– reference: McKayCMHenshallKRAmplitude modulation and loudness in cochlear implanteesJ Assoc Res Otolaryngol2010111011111979853310.1007/s10162-009-0188-5
– reference: ShannonRVForward masking in patients with cochlear implantsJ Acoust Soc Am199088741744221229810.1121/1.3997771:STN:280:DyaK3M%2FhtVahug%3D%3D
– reference: DonaldsonGSViemeisterNFNelsonDAPsychometric functions and temporal integration in electric hearingJ Acoust Soc Am199710137063721919305810.1121/1.4183301:STN:280:DyaK2szjs1arsA%3D%3D
– reference: NelsonDASchmitzJLDonaldsonGSViemeisterNFJavelEIntensity discrimination as a function of stimulus level with electric stimulationJ Acoust Soc Am199610023932414886564610.1121/1.4179491:STN:280:DyaK2s%2FhvFSgsg%3D%3D
– reference: CollettiVShannonRCarnerMVeroneseSCollettiLOutcomes in nontumor adults fitted with the auditory brainstem implant: 10 years' experienceOtol Neurotol2009306146181954683210.1097/MAO.0b013e3181a864f2
– reference: EhretGSchreinerCEWinerJASchreinerCRSpectral and intensity coding in the auditory midbrainThe inferior colliculus2005New YorkSpringer Science + Business Media31234510.1007/0-387-27083-3_11
– reference: SchwartzMSOttoSRShannonRVHitselbergerWEBrackmannDEAuditory brainstem implantsNeurotherapeutics200851281361816449210.1016/j.nurt.2007.10.068
– reference: GalvinJJFuQJInfluence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant usersHear Res200925046541945043210.1016/j.heares.2009.01.009
– reference: CarlyonRPVan WieringenADeeksJMLongCJLyzengaJWoutersJEffect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulationHear Res20052052102241595353010.1016/j.heares.2005.03.021
– reference: FrisinaRDSubcortical neural coding mechanisms for auditory temporal processingHear Res20011581271150693310.1016/S0378-5955(01)00296-91:STN:280:DC%2BD3Mvns1amug%3D%3D
– reference: MullerMRobertsonDYatesGKRate-versus-level functions of primary auditory nerve fibres: evidence for square law behaviour of all fibre categories in the guinea pigHear Res1991555056175279410.1016/0378-5955(91)90091-M1:STN:280:DyaK38%2FptFamsA%3D%3D
– reference: CollettiVShannonRVOpen set speech perception with auditory brainstem implant?Laryngoscope2005115197419781631960810.1097/01.mlg.0000178327.42926.ec
– reference: Van den HonertCStypulkowskiPHPhysiological properties of the electrically stimulated auditory nerve: II. Single fiber recordingsHear Res198414225243648051110.1016/0378-5955(84)90052-2
– reference: OxenhamAJMooreBCModeling the additivity of nonsimultaneous maskingHear Res199480105118785219610.1016/0378-5955(94)90014-01:STN:280:DyaK2M7lsFWluw%3D%3D
– reference: FuQJTemporal processing and speech recognition in cochlear implant usersNeuroreport200213163516391235261710.1097/00001756-200209160-00013
– reference: MiddlebrooksJCEffects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholdsJ Acoust Soc Am20041164524681529600510.1121/1.1760795
– reference: LimHHLenarzTJosephGBattmerRDSamiiASamiiMPatrickJFLenarzMElectrical stimulation of the midbrain for hearing restoration: insight into the functional organization of the human central auditory systemJ Neurosci20072713541135511805721210.1523/JNEUROSCI.3123-07.20071:CAS:528:DC%2BD1cXisVGksQ%3D%3D
– reference: LimHHLenarzTJosephGBattmerRDPatrickJFLenarzMEffects of phase duration and pulse rate on loudness and pitch percepts in the first auditory midbrain implant patients: comparison to cochlear implant and auditory brainstem implant resultsNeurosci200815437038010.1016/j.neuroscience.2008.02.0411:CAS:528:DC%2BD1cXnt1elsrw%3D
– reference: PlackCJOxenhamAJBasilar-membrane nonlinearity and the growth of forward maskingJ Acoust Soc Am199810315981608951402410.1121/1.4212941:STN:280:DyaK1c7nsFaisA%3D%3D
– volume: 23
  start-page: 3124
  year: 2006
  ident: 354_CR51
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2006.04774.x
– volume: 108
  start-page: 760
  year: 2000
  ident: 354_CR9
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.429609
– volume: 7
  start-page: 383
  year: 2006
  ident: 354_CR26
  publication-title: J Assoc Res Otolaryngol
  doi: 10.1007/s10162-006-0056-5
– volume: 47
  start-page: 437
  year: 2005
  ident: 354_CR60
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.06.009
– volume: 88
  start-page: 348
  year: 2002
  ident: 354_CR50
  publication-title: Acta Acustica
– volume: 270
  start-page: 303
  year: 1995
  ident: 354_CR56
  publication-title: Science
  doi: 10.1126/science.270.5234.303
– volume: 116
  start-page: 452
  year: 2004
  ident: 354_CR38
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1760795
– volume: 103
  start-page: 1598
  year: 1998
  ident: 354_CR49
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.421294
– volume: 9
  start-page: 1845
  year: 1998
  ident: 354_CR62
  publication-title: Neuroreport
  doi: 10.1097/00001756-199806010-00033
– volume: 70
  start-page: 291
  year: 2008
  ident: 354_CR25
  publication-title: Percept Psychophys
  doi: 10.3758/PP.70.2.291
– volume: 105
  start-page: 1853
  year: 1999
  ident: 354_CR4
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.426722
– volume: 27
  start-page: 838
  year: 2006
  ident: 354_CR27
  publication-title: Otol Neurotol
  doi: 10.1097/01.mao.0000232010.01116.e9
– volume: 83
  start-page: 1102
  year: 1988
  ident: 354_CR39
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.396055
– volume: 27
  start-page: 13541
  year: 2007
  ident: 354_CR29
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3123-07.2007
– volume: 242
  start-page: 64
  year: 2008
  ident: 354_CR33
  publication-title: Hear Res
  doi: 10.1016/j.heares.2007.11.014
– volume: 130
  start-page: 3954
  year: 2011
  ident: 354_CR48
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.3651820
– volume: 91
  start-page: 2156
  year: 1992
  ident: 354_CR55
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.403807
– volume: 60
  start-page: 457
  year: 2003
  ident: 354_CR2
  publication-title: Brain Res Bull
  doi: 10.1016/S0361-9230(03)00050-9
– volume: 99
  start-page: 3669
  year: 1996
  ident: 354_CR40
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.414964
– volume: 121
  start-page: 2236
  year: 2007
  ident: 354_CR47
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2537501
– volume: 154
  start-page: 294
  year: 2008
  ident: 354_CR59
  publication-title: Neurosci
  doi: 10.1016/j.neuroscience.2008.03.065
– volume: 100
  start-page: 2393
  year: 1996
  ident: 354_CR43
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.417949
– volume-title: Cranial neuroimaging and clinical neuroanatomy: magnetic resonance imaging and computed tomography
  year: 1992
  ident: 354_CR24
– volume: 283
  start-page: 59
  year: 2012
  ident: 354_CR13
  publication-title: Hear Res
  doi: 10.1016/j.heares.2011.11.009
– ident: 354_CR1
  doi: 10.1152/jn.00111.2012
– volume: 84
  start-page: 541
  year: 2004
  ident: 354_CR22
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00029.2003
– volume: 205
  start-page: 210
  year: 2005
  ident: 354_CR3
  publication-title: Hear Res
  doi: 10.1016/j.heares.2005.03.021
– volume: 64
  start-page: 167
  year: 2006
  ident: 354_CR6
  publication-title: Adv Oto-Rhino-Laryngol
  doi: 10.1159/000094651
– volume: 242
  start-page: 74
  year: 2008
  ident: 354_CR30
  publication-title: Hear Res
  doi: 10.1016/j.heares.2008.02.003
– start-page: 69
  volume-title: The inferior colliculus
  year: 2005
  ident: 354_CR44
  doi: 10.1007/0-387-27083-3_2
– volume: 53
  start-page: 101
  year: 1991
  ident: 354_CR19
  publication-title: Hear Res
  doi: 10.1016/0378-5955(91)90217-W
– volume: 109
  start-page: 732
  year: 2001
  ident: 354_CR45
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1336501
– volume: 112
  start-page: 2932
  year: 2002
  ident: 354_CR42
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1514935
– volume: 90
  start-page: 858
  year: 1991
  ident: 354_CR58
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.401953
– volume: 5
  start-page: 128
  year: 2008
  ident: 354_CR52
  publication-title: Neurotherapeutics
  doi: 10.1016/j.nurt.2007.10.068
– volume: 30
  start-page: 614
  year: 2009
  ident: 354_CR8
  publication-title: Otol Neurotol
  doi: 10.1097/MAO.0b013e3181a864f2
– volume: 33
  start-page: 221
  year: 2012
  ident: 354_CR20
  publication-title: Ear Hear
  doi: 10.1097/AUD.0b013e318230fff8
– volume: 11
  start-page: 245
  year: 2010
  ident: 354_CR23
  publication-title: J Assoc Res Otolaryngol
  doi: 10.1007/s10162-009-0194-7
– volume: 113
  start-page: 2054
  year: 2003
  ident: 354_CR37
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1558378
– volume: 73
  start-page: 227
  year: 1995
  ident: 354_CR11
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1995.73.1.227
– volume: 154
  start-page: 370
  year: 2008
  ident: 354_CR31
  publication-title: Neurosci
  doi: 10.1016/j.neuroscience.2008.02.041
– start-page: 93
  volume-title: The Oxford handbook of auditory science: the auditory brain
  year: 2010
  ident: 354_CR61
– volume: 13
  start-page: 1635
  year: 2002
  ident: 354_CR15
  publication-title: Neuroreport
  doi: 10.1097/00001756-200209160-00013
– volume: 28
  start-page: 1045
  year: 2007
  ident: 354_CR28
  publication-title: Otol Neurotol
  doi: 10.1097/MAO.0b013e318159e74f
– volume: 55
  start-page: 50
  year: 1991
  ident: 354_CR41
  publication-title: Hear Res
  doi: 10.1016/0378-5955(91)90091-M
– volume: 80
  start-page: 105
  year: 1994
  ident: 354_CR46
  publication-title: Hear Res
  doi: 10.1016/0378-5955(94)90014-0
– volume: 104
  start-page: 1061
  year: 1998
  ident: 354_CR36
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.423316
– volume: 101
  start-page: 3706
  year: 1997
  ident: 354_CR10
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.418330
– volume: 11
  start-page: 101
  year: 2010
  ident: 354_CR35
  publication-title: J Assoc Res Otolaryngol
  doi: 10.1007/s10162-009-0188-5
– volume: 88
  start-page: 741
  year: 1990
  ident: 354_CR54
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.399777
– start-page: 312
  volume-title: The inferior colliculus
  year: 2005
  ident: 354_CR12
  doi: 10.1007/0-387-27083-3_11
– volume: 131
  start-page: 2209
  year: 2012
  ident: 354_CR34
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.3683248
– volume: 285
  start-page: 46
  year: 2012
  ident: 354_CR21
  publication-title: Hear Res
  doi: 10.1016/j.heares.2012.01.010
– volume: 115
  start-page: 1974
  year: 2005
  ident: 354_CR7
  publication-title: Laryngoscope
  doi: 10.1097/01.mlg.0000178327.42926.ec
– volume: 250
  start-page: 46
  year: 2009
  ident: 354_CR17
  publication-title: Hear Res
  doi: 10.1016/j.heares.2009.01.009
– volume: 14
  start-page: 225
  year: 1984
  ident: 354_CR57
  publication-title: Hear Res
  doi: 10.1016/0378-5955(84)90052-2
– volume: 130
  start-page: 1567
  year: 2011
  ident: 354_CR5
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.3621445
– volume: 295
  start-page: 1
  year: 1971
  ident: 354_CR18
  publication-title: Acta Otolaryngol Suppl
– volume: 158
  start-page: 1
  year: 2001
  ident: 354_CR14
  publication-title: Hear Res
  doi: 10.1016/S0378-5955(01)00296-9
– volume: 13
  start-page: 149
  year: 2009
  ident: 354_CR32
  publication-title: Trends Amplif
  doi: 10.1177/1084713809348372
– volume: 6
  start-page: 269
  year: 2005
  ident: 354_CR16
  publication-title: J Assoc Res Otolaryngol
  doi: 10.1007/s10162-005-0007-6
– volume: 40
  start-page: 197
  year: 1989
  ident: 354_CR53
  publication-title: Hear Res
  doi: 10.1016/0378-5955(89)90160-3
SSID ssj0017569
Score 2.1817312
Snippet Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103
SubjectTerms Adaptations
Adult
Auditory Brain Stem Implants
Auditory Pathways - pathology
Auditory Perception - physiology
Auditory Threshold - physiology
Cochlear Implants
Cochlear Nerve - physiology
Electric Stimulation
Humans
Medicine
Medicine & Public Health
Models, Biological
Neurobiology
Neurofibromatosis 2 - physiopathology
Neurosciences
Otorhinolaryngology
Research Article
Subtitle Insights from Cochlear and Auditory Midbrain Implantees
Title Temporal Processing in the Auditory System
URI https://link.springer.com/article/10.1007/s10162-012-0354-z
https://www.ncbi.nlm.nih.gov/pubmed/23073669
https://www.proquest.com/docview/1273343191
https://www.proquest.com/docview/1419373334
https://pubmed.ncbi.nlm.nih.gov/PMC3540271
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBPHF-2VeRgWfJpWlSZPmcY5NURwiG8yn0qQpitKJ2x7cr_ekl-m8gQ9toT1NyDlJ852eG8CJ8RS1xaxcQpnnMqWVqyJcj1QqnxslhDE2dvimyy_77GrgD4o47lHp7V6aJLMv9adgN8KtGwEe1GfudBGWfBLIoAJLzYv76_bMeCD8rJKdreyDfXJSGjN_amR-O_qGMb-7Sn6xl2bbUGcNeuUAcu-Tp7PJWJ3p6Zfcjv8c4TqsFrDUaebzaAMWTLoJyzeF4X0L6r08hdWzU0QWYLvOY-ogfHSaNrBj-Prm5NnPt6Hfafdal25RZsHVlIkpSilWjGpGY4ZSYwIVvAi1mEaMSCkxJElikaBS0jBEah7HhGnElCyJAsmloDKmO1BJh6nZA8eXqC0GNGkEOmAqwn0A4YwvPM2iJKJUVKFRcjvURQ5yWwrjOfzInmx5ECIPQsuDcFqF-uyVlzwBx1_Ex6UIQ1wm1vYRpWY4GYUEYRpFsCTJHzQM0SySUVaF3Vzssy6tvzzlXFZBzE2IGYFN0z3_JH18yNJ12z9rnsB-T0uph8V3YvT7SPb_RX0AK15WpsPOnkOojF8n5gjB0ljVYFEMRK1YIng9b3dv7_Bui7fw3Pea76HNDgE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSMAF8aY8i8RpqNLapEl7nBDTgG2nTdotatJUIE0d2uPAfj1OXzAGkzj0VDdR7ST9XNufAe60J4lpZuW4hHoOlUo6MsL9SELpMy0519rUDnd7rD2gz0N_WNRxT8ts9zIkmZ3U34rdXGbSCPAiPnUWm7CFWCAwbQsGXrMKHXA_62Nn-vrgjMwtQ5m_DbH8MVpBmKuJkj-ipdlHqLUPewV6tJu5uQ9gQ6eHsN0t4uNHUO_nTFMjuygAwFHst9RGlGc3Tf3FePJh5yTlxzBoPfYf2k7RDcFRhPIFKjOWlChKYorKpRz9sAidjUaMgCbRbpLEPEHfoaHdULE4dqlC6EeTKAhZyEkYkxOopeNUn4Hth-jUBSRpBCqgMsLjGlGHzz1FoyQihFvQKNUiVEEVbjpWjMQXybHRpEBNCqNJsbCgXj3ynvNkrBO-LXUtcDWbEEWU6vF8KlxEUwQxTeiukaEIOlGMUAtOc_tUU5q0dsJYaAFfslwlYNi0l--kb68Zq7b5AeZxnPe-tLEotvP07zc5_5f0Dey0-92O6Dz1Xi5g18s6a5j1eAm12WSurxDfzOR1tp4_AbQQ744
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oJsSL8W191sQTpqHtbnfpkaAEHxAPkHDbdNttJCGF8DjIr3e2DxRREg89dbqbzux2v-nMfANwp1xJdDMryyHUtagMpSUD3I_Elx5TknOldO1wu8NaPfrc9_p5n9Npke1ehCSzmgbN0pTMquMorn4rfHOYTinAi3jUWmzDDtUnn47WssYyjMC9tKed7vGDszOnCGv-NsTqwbSGNteTJn9ETtMDqbkPezmSNOuZ6Q9gSyWHUG7nsfIjqHQz1qmhmRcD4CjmIDER8Zl1XYsxmnyYGWH5MfSaj91Gy8o7I1ghoXyBio0kJSElEUVFU44-WYCOhx0huImVE8cRj9GPsJXjhyyKHBoiDKRxUPOZz4kfkRMoJaNEnYHp-ejg1Uhs18IalQF-uhGBeNwNaRAHhHAD7EItIsxpw3X3iqH4IjzWmhSoSaE1KRYGVJaPjDPOjE3Ct4WuBa5sHa4IEjWaT4WDyIogvvGdDTIUASiKEWrAaWaf5ZQ6xZ0w5hvAVyy3FNDM2qt3ksF7yrCtf4a5HOe9L2ws8q09_ftNzv8lfQPlt4emeH3qvFzArps22dDL8RJKs8lcXSHUmcnrdDl_Am3m87Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+processing+in+the+auditory+system%3A+insights+from+cochlear+and+auditory+midbrain+implantees&rft.jtitle=Journal+of+the+Association+for+Research+in+Otolaryngology&rft.au=McKay%2C+Colette+M&rft.au=Lim%2C+Hubert+H&rft.au=Lenarz%2C+Thomas&rft.date=2013-02-01&rft.issn=1438-7573&rft.eissn=1438-7573&rft.volume=14&rft.issue=1&rft.spage=103&rft_id=info:doi/10.1007%2Fs10162-012-0354-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-3961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-3961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-3961&client=summon