Temporal Processing in the Auditory System Insights from Cochlear and Auditory Midbrain Implantees
Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on...
Saved in:
Published in | Journal of the Association for Research in Otolaryngology Vol. 14; no. 1; pp. 103 - 124 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer-Verlag
01.02.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1525-3961 1438-7573 1438-7573 |
DOI | 10.1007/s10162-012-0354-z |
Cover
Loading…
Abstract | Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding. |
---|---|
AbstractList | Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding.Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding. Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding. Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding. |
Author | McKay, Colette M. Lim, Hubert H. Lenarz, Thomas |
Author_xml | – sequence: 1 givenname: Colette M. surname: McKay fullname: McKay, Colette M. email: colette.mckay@manchester.ac.uk organization: Audiology & Deafness Research Group, School of Psychological Sciences, University of Manchester – sequence: 2 givenname: Hubert H. surname: Lim fullname: Lim, Hubert H. organization: Departments of Biomedical Engineering and Otorhinolaryngology, University of Minnesota – sequence: 3 givenname: Thomas surname: Lenarz fullname: Lenarz, Thomas organization: Department of Otorhinolaryngology, Hannover Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23073669$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhYMovn-AG-lShGpuk_ZONoKILxAU1HWoSTpG2mRMWmHm15syKupCF5dcyDkfh3u2yKrzzhCyB_QIKMXjCBSqIqeQhpU8X6yQTeBskmOJbDXtZVHmTFSwQbZifKEUsKzEOtkoGEVWVWKTHD6YbuZD3WZ3wSsTo3XTzLqsfzbZ6aBt78M8u5_H3nQ7ZK2p22h2P95t8nhx_nB2ld_cXl6fnd7kinFc5MD0E2eKM80FFhwRsJ5gSTXn0BhoGo0NVhNqQKhKa-BKCOBNPRGVQCY02yYnS-5seOqMVsb1KZ-cBdvVYS59beXPH2ef5dS_yXQCWiAkwMEHIPjXwcRedjYq07a1M36IEjgIhowx_r-0wFEGYqTuf4_1lefzlkmAS4EKPsZgGqlsX_fWjyltK4HKsTW5bE2m1uTYmlwkJ_xyfsL_8hRLT0xaNzVBvvghuFTMH6Z3wjGogA |
CitedBy_id | crossref_primary_10_1121_1_4874597 crossref_primary_10_1121_1_4819182 crossref_primary_10_1007_s10162_015_0530_z crossref_primary_10_1088_1741_2560_11_4_046021 crossref_primary_10_1121_1_5025048 crossref_primary_10_1007_s10162_020_00767_y crossref_primary_10_1016_j_heares_2014_09_009 crossref_primary_10_1152_jn_00022_2013 crossref_primary_10_1371_journal_pone_0082148 crossref_primary_10_1016_j_heares_2021_108176 crossref_primary_10_3389_fpsyg_2020_611517 crossref_primary_10_1007_s10162_016_0613_5 crossref_primary_10_1016_j_heares_2018_04_003 crossref_primary_10_1016_j_heares_2020_108163 crossref_primary_10_1007_s10162_018_0658_8 crossref_primary_10_1088_1741_2552_aa87ce crossref_primary_10_1007_s10162_022_00834_6 crossref_primary_10_1121_1_5055989 crossref_primary_10_1097_AUD_0000000000001244 crossref_primary_10_1177_23312165211061116 crossref_primary_10_1016_j_heares_2015_01_006 crossref_primary_10_1016_j_heares_2020_107969 crossref_primary_10_1007_s10162_018_0675_7 crossref_primary_10_1007_s10162_013_0417_9 crossref_primary_10_1007_s13534_023_00340_5 crossref_primary_10_1007_s10162_015_0521_0 crossref_primary_10_1016_j_heares_2017_02_009 crossref_primary_10_1016_j_nicl_2022_102982 crossref_primary_10_1121_10_0012351 crossref_primary_10_1121_1_4890640 crossref_primary_10_1016_j_heares_2020_108091 crossref_primary_10_1097_AUD_0000000000000146 crossref_primary_10_1002_hbm_23515 |
Cites_doi | 10.1111/j.1460-9568.2006.04774.x 10.1121/1.429609 10.1007/s10162-006-0056-5 10.1016/j.neuron.2005.06.009 10.1126/science.270.5234.303 10.1121/1.1760795 10.1121/1.421294 10.1097/00001756-199806010-00033 10.3758/PP.70.2.291 10.1121/1.426722 10.1097/01.mao.0000232010.01116.e9 10.1121/1.396055 10.1523/JNEUROSCI.3123-07.2007 10.1016/j.heares.2007.11.014 10.1121/1.3651820 10.1121/1.403807 10.1016/S0361-9230(03)00050-9 10.1121/1.414964 10.1121/1.2537501 10.1016/j.neuroscience.2008.03.065 10.1121/1.417949 10.1016/j.heares.2011.11.009 10.1152/jn.00111.2012 10.1152/physrev.00029.2003 10.1016/j.heares.2005.03.021 10.1159/000094651 10.1016/j.heares.2008.02.003 10.1007/0-387-27083-3_2 10.1016/0378-5955(91)90217-W 10.1121/1.1336501 10.1121/1.1514935 10.1121/1.401953 10.1016/j.nurt.2007.10.068 10.1097/MAO.0b013e3181a864f2 10.1097/AUD.0b013e318230fff8 10.1007/s10162-009-0194-7 10.1121/1.1558378 10.1152/jn.1995.73.1.227 10.1016/j.neuroscience.2008.02.041 10.1097/00001756-200209160-00013 10.1097/MAO.0b013e318159e74f 10.1016/0378-5955(91)90091-M 10.1016/0378-5955(94)90014-0 10.1121/1.423316 10.1121/1.418330 10.1007/s10162-009-0188-5 10.1121/1.399777 10.1007/0-387-27083-3_11 10.1121/1.3683248 10.1016/j.heares.2012.01.010 10.1097/01.mlg.0000178327.42926.ec 10.1016/j.heares.2009.01.009 10.1016/0378-5955(84)90052-2 10.1121/1.3621445 10.1016/S0378-5955(01)00296-9 10.1177/1084713809348372 10.1007/s10162-005-0007-6 10.1016/0378-5955(89)90160-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2012 |
Copyright_xml | – notice: The Author(s) 2012 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1007/s10162-012-0354-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1438-7573 |
EndPage | 124 |
ExternalDocumentID | PMC3540271 23073669 10_1007_s10162_012_0354_z |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0701461 |
GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAWUL BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DIK DL5 DNIVK DPUIP E3Z EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GX1 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HYE HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LLZTM M1P M4Y MA- N2Q NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OK1 P9S PF- PQQKQ PROAC PSQYO PT4 Q2X QOR QOS R89 R9I ROL RPM RPX RRX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TR2 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 ZMTXR ZOVNA AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7X8 PUEGO 7TK 5PM |
ID | FETCH-LOGICAL-c347z-13db43c43d497247717a8750d441fe1ffd7f7680e19c6dd14c9914fa8969739d3 |
IEDL.DBID | AGYKE |
ISSN | 1525-3961 1438-7573 |
IngestDate | Thu Aug 21 18:33:00 EDT 2025 Thu Sep 04 20:46:18 EDT 2025 Fri Sep 05 03:26:29 EDT 2025 Mon Jul 21 06:07:41 EDT 2025 Tue Jul 01 00:35:27 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Fri Feb 21 02:35:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | cochlear implant auditory midbrain implant temporal resolution loudness temporal integration |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347z-13db43c43d497247717a8750d441fe1ffd7f7680e19c6dd14c9914fa8969739d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10162-012-0354-z |
PMID | 23073669 |
PQID | 1273343191 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3540271 proquest_miscellaneous_1419373334 proquest_miscellaneous_1273343191 pubmed_primary_23073669 crossref_citationtrail_10_1007_s10162_012_0354_z crossref_primary_10_1007_s10162_012_0354_z springer_journals_10_1007_s10162_012_0354_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130200 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 2 year: 2013 text: 20130200 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of the Association for Research in Otolaryngology |
PublicationTitleAbbrev | JARO |
PublicationTitleAlternate | J Assoc Res Otolaryngol |
PublicationYear | 2013 |
Publisher | Springer-Verlag |
Publisher_xml | – name: Springer-Verlag |
References | GerkenGMSoleckiJMBoettcherFATemporal integration of electrical stimulation of auditory nuclei in normal-hearing and hearing-impaired catHear Res199153101112206627810.1016/0378-5955(91)90217-W1:STN:280:DyaK3M3psVSrsw%3D%3D JorisPXSchreinerCEReesANeural processing of amplitude-modulated soundsPhysiol Rev2004845415771504468210.1152/physrev.00029.20031:STN:280:DC%2BD2c7lt1Wksw%3D%3D OxenhamAJForward masking: adaptation or integration?J Acoust Soc Am20011097327411124897710.1121/1.13365011:STN:280:DC%2BD3M3lvVGhsw%3D%3D SchaetteRKempterRDevelopment of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational modelEur J Neurosci200623312431381682000310.1111/j.1460-9568.2006.04774.x CollettiVShannonRCarnerMVeroneseSCollettiLOutcomes in nontumor adults fitted with the auditory brainstem implant: 10 years' experienceOtol Neurotol2009306146181954683210.1097/MAO.0b013e3181a864f2 LapidEUlrichRRammsayerTOn estimating the difference limen in duration discrimination tasks: a comparison of the 2AFC and the reminder taskPercept Psychophys2008702913051837275010.3758/PP.70.2.291 FrisinaRDSubcortical neural coding mechanisms for auditory temporal processingHear Res20011581271150693310.1016/S0378-5955(01)00296-91:STN:280:DC%2BD3Mvns1amug%3D%3D LimHHLenarzTAndersonDJLenarzMThe auditory midbrain implant: effects of electrode locationHear Res200824274851834890210.1016/j.heares.2008.02.003 GalvinJJFuQJEffects of stimulation rate, mode and level on modulation detection by cochlear implant usersJ Assoc Res Otolaryngol200562692791607519010.1007/s10162-005-0007-6 LenarzTLimHHReuterGPatrickJFLenarzMThe auditory midbrain implant: a new auditory prosthesis for neural deafness—concept and device descriptionOtol Neurotol2006278388431693657010.1097/01.mao.0000232010.01116.e9 KretschmannHJWeinrichWCranial neuroimaging and clinical neuroanatomy: magnetic resonance imaging and computed tomography1992New YorkThieme Medical Publishers ZengFGGalvinJJ3rdZhangCEncoding loudness by electric stimulation of the auditory nerveNeuroreport1998918451848966561310.1097/00001756-199806010-000331:STN:280:DyaK1czivVGmsg%3D%3D MullerMRobertsonDYatesGKRate-versus-level functions of primary auditory nerve fibres: evidence for square law behaviour of all fibre categories in the guinea pigHear Res1991555056175279410.1016/0378-5955(91)90091-M1:STN:280:DyaK38%2FptFamsA%3D%3D SchwartzMSOttoSRShannonRVHitselbergerWEBrackmannDEAuditory brainstem implantsNeurotherapeutics200851281361816449210.1016/j.nurt.2007.10.068 OxenhamAJMooreBCModeling the additivity of nonsimultaneous maskingHear Res199480105118785219610.1016/0378-5955(94)90014-01:STN:280:DyaK2M7lsFWluw%3D%3D GalvinJJFuQJInfluence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant usersHear Res200925046541945043210.1016/j.heares.2009.01.009 LimHHLenarzTJosephGBattmerRDSamiiASamiiMPatrickJFLenarzMElectrical stimulation of the midbrain for hearing restoration: insight into the functional organization of the human central auditory systemJ Neurosci20072713541135511805721210.1523/JNEUROSCI.3123-07.20071:CAS:528:DC%2BD1cXisVGksQ%3D%3D MiddlebrooksJCEffects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholdsJ Acoust Soc Am20041164524681529600510.1121/1.1760795 ChatterjeeMOberzutCDetection and rate discrimination of amplitude modulation in electrical hearingJ Acoust Soc Am2011130156715802189509510.1121/1.3621445 Calixto R, Lenarz M, Neuheiser A, Scheper V, Lenarz T, Lim HH (2012) Co-activation of different neurons within an isofrequency lamina of the inferior colliculus elicits enhanced auditory cortical activation. J Neurophysiol KangSYColesaDJSwiderskiDLSuGLRaphaelYPfingstBEEffects of hearing preservation on psychophysical responses to cochlear implant stimulationJ Assoc Res Otolaryngol2010112452651990229710.1007/s10162-009-0194-7 CarlyonRPVan WieringenADeeksJMLongCJLyzengaJWoutersJEffect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulationHear Res20052052102241595353010.1016/j.heares.2005.03.021 MooreBCPetersRWGlasbergBRDetection of decrements and increments in sinusoids at high overall levelsJ Acoust Soc Am19969936693677865579810.1121/1.4149641:STN:280:DyaK283ltVKqsg%3D%3D ShannonRVTemporal modulation transfer functions in patients with cochlear implantsJ Acoust Soc Am19929121562164159760610.1121/1.4038071:STN:280:DyaK383osVSkug%3D%3D OliverDLWinerJASchreinerCRNeuronal organization in the inferior colliculusThe inferior colliculus2005New YorkSpringer Science + Business Media6911410.1007/0-387-27083-3_2 McCreeryDBCochlear nucleus auditory prosthesesHear Res200824264731820767810.1016/j.heares.2007.11.0141:STN:280:DC%2BD1crgs1ChtQ%3D%3D MooreBCGlasbergBRPlackCJBiswasAKThe shape of the ear's temporal windowJ Acoust Soc Am19888311021116335681510.1121/1.3960551:STN:280:DyaL1c7oslWktA%3D%3D NelsonDADonaldsonGSPsychophysical recovery from pulse-train forward masking in electric hearingJ Acoust Soc Am2002112293229471250901410.1121/1.1514935 CantNBBensonCGParallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nucleiBrain Res Bull2003604574741278786710.1016/S0361-9230(03)00050-9 NelsonDASchmitzJLDonaldsonGSViemeisterNFJavelEIntensity discrimination as a function of stimulus level with electric stimulationJ Acoust Soc Am199610023932414886564610.1121/1.4179491:STN:280:DyaK2s%2FhvFSgsg%3D%3D EggermontJJSmithGMSynchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortexJ Neurophysiol19957322724577145681:STN:280:DyaK2M3jtVegsA%3D%3D ShannonRVForward masking in patients with cochlear implantsJ Acoust Soc Am199088741744221229810.1121/1.3997771:STN:280:DyaK3M%2FhtVahug%3D%3D YoungEDPalmerARReesALevel and spectrumThe Oxford handbook of auditory science: the auditory brain2010New YorkOxford University Press93124 GreenTFaulknerARosenSVariations in carrier pulse rate and the perception of amplitude modulation in cochlear implant usersEar Hear2012332212302236709310.1097/AUD.0b013e318230fff8 LimHHLenarzMLenarzTAuditory midbrain implant: a reviewTrends Amplif2009131491801976242810.1177/1084713809348372 PfingstBEXuLThompsonCSEffects of carrier pulse rate and stimulation site on modulation detection by subjects with cochlear implantsJ Acoust Soc Am2007121223622461747173710.1121/1.2537501 DonaldsonGSViemeisterNFNelsonDAPsychometric functions and temporal integration in electric hearingJ Acoust Soc Am199710137063721919305810.1121/1.4183301:STN:280:DyaK2szjs1arsA%3D%3D GeniecPMorestDKThe neuronal architecture of the human posterior colliculus: a study with the golgi methodActa Otolaryngol Suppl197129513341170001:STN:280:DyaE3s%2FisFyisQ%3D%3D ShannonRVZengFGKamathVWygonskiJEkelidMSpeech recognition with primarily temporal cuesScience1995270303304756998110.1126/science.270.5234.3031:CAS:528:DyaK2MXoslehsL8%3D FraserMMcKayCMTemporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cuesHear Res201228359692214642510.1016/j.heares.2011.11.009 McKayCMMcDermottHJLoudness perception with pulsatile electrical stimulation: the effect of interpulse intervalsJ Acoust Soc Am199810410611074971492510.1121/1.4233161:STN:280:DyaK1czotVKmtQ%3D%3D DonaldsonGSViemeisterNFIntensity discrimination and detection of amplitude modulation in electric hearingJ Acoust Soc Am20001087607631095564310.1121/1.4296091:STN:280:DC%2BD3cvlvVOquw%3D%3D McKayCMHenshallKRAmplitude modulation and loudness in cochlear implanteesJ Assoc Res Otolaryngol2010111011111979853310.1007/s10162-009-0188-5 WehrMZadorAMSynaptic mechanisms of forward suppression in rat auditory cortexNeuron2005474374451605506610.1016/j.neuron.2005.06.0091:CAS:528:DC%2BD2MXovFSjsLY%3D FuQJTemporal processing and speech recognition in cochlear implant usersNeuroreport200213163516391235261710.1097/00001756-200209160-00013 CollettiVAuditory outcomes in tumor vs. nontumor patients fitted with auditory brainstem implantsAdv Oto-Rhino-Laryngol200664167185 PfingstBEColesaDJHembradorSKangSYMiddlebrooksJCRaphaelYSuGLDetection of pulse trains in the electrically stimulated cochlea: effects of cochlear healthJ Acoust Soc Am2011130395439682222505010.1121/1.3651820 PlackCJOxenhamAJBasilar-membrane nonlinearity and the growth of forward maskingJ Acoust Soc Am199810315981608951402410.1121/1.4212941:STN:280:DyaK1c7nsFaisA%3D%3D PlackCJOxenhamAJDrgaVLinear and nonlinear processes in temporal maskingActa Acustica200288348358 LenarzMLimHHLenarzTReichUMarquardtNKlingbergMNPaascheGReuterGStanACAuditory midbrain implant: histomorphologic effects of long-term implantation and electric stimulation of a new deep brain stimulation arrayOtol Neurotol200728104510521804343110.1097/MAO.0b013e318159e74f LenarzMLimHHPatrickJFAndersonDJLenarzTElectrophysiological validation of a human prototype auditory midbrain implant in a guinea pig modelJ Assoc Res Otolaryngol200673833981707570110.1007/s10162-006-0056-5 HughesMLCastioniEEGoehringJLBaudhuinJLTemporal response properties of the auditory nerve: data from human cochlear-implant recipientsHear Res201228546572232659010.1016/j.heares.2012.01.010 WangXLuTBendorDBartlettENeural coding of temporal information in auditory thalamus and cortexNeurosci200815429430310.1016/j.neuroscience.2008.03.0651:CAS:528:DC%2BD1cXnt1emu7s%3D McKayCMForward masking as a method of measuring place specificity of neural excitation in cochlear implants: a review of methods and interpretationJ Acoust Soc Am2012131220922242242371710.1121/1.3683248 MckayCMHenshallKRFarrellRJMcDermottHJA practical method of predicting the loudness of complex electrical stimuliJ Acoust Soc Am2003113205420631270371610.1121/1.1558378 Van den HonertCStypulkowskiPHPhysiological properties of the electrically stimulated auditory nerve: II. Single fiber recordingsHear Res198414225243648051110.1016/0378-5955(84)90052-2 ViemeisterNFWakefieldGHTemporal inte BC Moore (354_CR40) 1996; 99 AJ Oxenham (354_CR46) 1994; 80 JJ Galvin (354_CR16) 2005; 6 M Muller (354_CR41) 1991; 55 BE Pfingst (354_CR47) 2007; 121 X Wang (354_CR59) 2008; 154 M Wehr (354_CR60) 2005; 47 M Chatterjee (354_CR5) 2011; 130 P Geniec (354_CR18) 1971; 295 QJ Fu (354_CR15) 2002; 13 HH Lim (354_CR29) 2007; 27 354_CR1 PX Joris (354_CR22) 2004; 84 HJ Kretschmann (354_CR24) 1992 DA Nelson (354_CR43) 1996; 100 M Lenarz (354_CR26) 2006; 7 RV Shannon (354_CR54) 1990; 88 MS Schwartz (354_CR52) 2008; 5 T Lenarz (354_CR27) 2006; 27 BE Pfingst (354_CR48) 2011; 130 JC Middlebrooks (354_CR38) 2004; 116 ED Young (354_CR61) 2010 GM Gerken (354_CR19) 1991; 53 CM Mckay (354_CR37) 2003; 113 M Chatterjee (354_CR4) 1999; 105 E Lapid (354_CR25) 2008; 70 RV Shannon (354_CR53) 1989; 40 GS Donaldson (354_CR9) 2000; 108 M Fraser (354_CR13) 2012; 283 G Ehret (354_CR12) 2005 RV Shannon (354_CR55) 1992; 91 RP Carlyon (354_CR3) 2005; 205 ML Hughes (354_CR21) 2012; 285 V Colletti (354_CR7) 2005; 115 DB McCreery (354_CR33) 2008; 242 HH Lim (354_CR30) 2008; 242 CM McKay (354_CR35) 2010; 11 JJ Galvin (354_CR17) 2009; 250 GS Donaldson (354_CR10) 1997; 101 JJ Eggermont (354_CR11) 1995; 73 HH Lim (354_CR32) 2009; 13 RD Frisina (354_CR14) 2001; 158 FG Zeng (354_CR62) 1998; 9 HH Lim (354_CR31) 2008; 154 SY Kang (354_CR23) 2010; 11 V Colletti (354_CR8) 2009; 30 DA Nelson (354_CR42) 2002; 112 CM McKay (354_CR34) 2012; 131 CM McKay (354_CR36) 1998; 104 T Green (354_CR20) 2012; 33 M Lenarz (354_CR28) 2007; 28 CJ Plack (354_CR50) 2002; 88 V Colletti (354_CR6) 2006; 64 C Honert Van den (354_CR57) 1984; 14 DL Oliver (354_CR44) 2005 AJ Oxenham (354_CR45) 2001; 109 R Schaette (354_CR51) 2006; 23 NB Cant (354_CR2) 2003; 60 BC Moore (354_CR39) 1988; 83 NF Viemeister (354_CR58) 1991; 90 RV Shannon (354_CR56) 1995; 270 CJ Plack (354_CR49) 1998; 103 |
References_xml | – reference: Calixto R, Lenarz M, Neuheiser A, Scheper V, Lenarz T, Lim HH (2012) Co-activation of different neurons within an isofrequency lamina of the inferior colliculus elicits enhanced auditory cortical activation. J Neurophysiol – reference: ViemeisterNFWakefieldGHTemporal integration and multiple looksJ Acoust Soc Am199190858865193989010.1121/1.4019531:STN:280:DyaK38%2FktlSqsA%3D%3D – reference: LapidEUlrichRRammsayerTOn estimating the difference limen in duration discrimination tasks: a comparison of the 2AFC and the reminder taskPercept Psychophys2008702913051837275010.3758/PP.70.2.291 – reference: LimHHLenarzTAndersonDJLenarzMThe auditory midbrain implant: effects of electrode locationHear Res200824274851834890210.1016/j.heares.2008.02.003 – reference: McKayCMMcDermottHJLoudness perception with pulsatile electrical stimulation: the effect of interpulse intervalsJ Acoust Soc Am199810410611074971492510.1121/1.4233161:STN:280:DyaK1czotVKmtQ%3D%3D – reference: LenarzMLimHHLenarzTReichUMarquardtNKlingbergMNPaascheGReuterGStanACAuditory midbrain implant: histomorphologic effects of long-term implantation and electric stimulation of a new deep brain stimulation arrayOtol Neurotol200728104510521804343110.1097/MAO.0b013e318159e74f – reference: GalvinJJFuQJEffects of stimulation rate, mode and level on modulation detection by cochlear implant usersJ Assoc Res Otolaryngol200562692791607519010.1007/s10162-005-0007-6 – reference: KretschmannHJWeinrichWCranial neuroimaging and clinical neuroanatomy: magnetic resonance imaging and computed tomography1992New YorkThieme Medical Publishers – reference: KangSYColesaDJSwiderskiDLSuGLRaphaelYPfingstBEEffects of hearing preservation on psychophysical responses to cochlear implant stimulationJ Assoc Res Otolaryngol2010112452651990229710.1007/s10162-009-0194-7 – reference: PfingstBEXuLThompsonCSEffects of carrier pulse rate and stimulation site on modulation detection by subjects with cochlear implantsJ Acoust Soc Am2007121223622461747173710.1121/1.2537501 – reference: OliverDLWinerJASchreinerCRNeuronal organization in the inferior colliculusThe inferior colliculus2005New YorkSpringer Science + Business Media6911410.1007/0-387-27083-3_2 – reference: WangXLuTBendorDBartlettENeural coding of temporal information in auditory thalamus and cortexNeurosci200815429430310.1016/j.neuroscience.2008.03.0651:CAS:528:DC%2BD1cXnt1emu7s%3D – reference: GreenTFaulknerARosenSVariations in carrier pulse rate and the perception of amplitude modulation in cochlear implant usersEar Hear2012332212302236709310.1097/AUD.0b013e318230fff8 – reference: MckayCMHenshallKRFarrellRJMcDermottHJA practical method of predicting the loudness of complex electrical stimuliJ Acoust Soc Am2003113205420631270371610.1121/1.1558378 – reference: LenarzMLimHHPatrickJFAndersonDJLenarzTElectrophysiological validation of a human prototype auditory midbrain implant in a guinea pig modelJ Assoc Res Otolaryngol200673833981707570110.1007/s10162-006-0056-5 – reference: PfingstBEColesaDJHembradorSKangSYMiddlebrooksJCRaphaelYSuGLDetection of pulse trains in the electrically stimulated cochlea: effects of cochlear healthJ Acoust Soc Am2011130395439682222505010.1121/1.3651820 – reference: GeniecPMorestDKThe neuronal architecture of the human posterior colliculus: a study with the golgi methodActa Otolaryngol Suppl197129513341170001:STN:280:DyaE3s%2FisFyisQ%3D%3D – reference: DonaldsonGSViemeisterNFIntensity discrimination and detection of amplitude modulation in electric hearingJ Acoust Soc Am20001087607631095564310.1121/1.4296091:STN:280:DC%2BD3cvlvVOquw%3D%3D – reference: McKayCMForward masking as a method of measuring place specificity of neural excitation in cochlear implants: a review of methods and interpretationJ Acoust Soc Am2012131220922242242371710.1121/1.3683248 – reference: ShannonRVTemporal modulation transfer functions in patients with cochlear implantsJ Acoust Soc Am19929121562164159760610.1121/1.4038071:STN:280:DyaK383osVSkug%3D%3D – reference: CollettiVAuditory outcomes in tumor vs. nontumor patients fitted with auditory brainstem implantsAdv Oto-Rhino-Laryngol200664167185 – reference: CantNBBensonCGParallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nucleiBrain Res Bull2003604574741278786710.1016/S0361-9230(03)00050-9 – reference: LimHHLenarzMLenarzTAuditory midbrain implant: a reviewTrends Amplif2009131491801976242810.1177/1084713809348372 – reference: FraserMMcKayCMTemporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cuesHear Res201228359692214642510.1016/j.heares.2011.11.009 – reference: NelsonDADonaldsonGSPsychophysical recovery from pulse-train forward masking in electric hearingJ Acoust Soc Am2002112293229471250901410.1121/1.1514935 – reference: ChatterjeeMOberzutCDetection and rate discrimination of amplitude modulation in electrical hearingJ Acoust Soc Am2011130156715802189509510.1121/1.3621445 – reference: LenarzTLimHHReuterGPatrickJFLenarzMThe auditory midbrain implant: a new auditory prosthesis for neural deafness—concept and device descriptionOtol Neurotol2006278388431693657010.1097/01.mao.0000232010.01116.e9 – reference: MooreBCGlasbergBRPlackCJBiswasAKThe shape of the ear's temporal windowJ Acoust Soc Am19888311021116335681510.1121/1.3960551:STN:280:DyaL1c7oslWktA%3D%3D – reference: OxenhamAJForward masking: adaptation or integration?J Acoust Soc Am20011097327411124897710.1121/1.13365011:STN:280:DC%2BD3M3lvVGhsw%3D%3D – reference: ZengFGGalvinJJ3rdZhangCEncoding loudness by electric stimulation of the auditory nerveNeuroreport1998918451848966561310.1097/00001756-199806010-000331:STN:280:DyaK1czivVGmsg%3D%3D – reference: McCreeryDBCochlear nucleus auditory prosthesesHear Res200824264731820767810.1016/j.heares.2007.11.0141:STN:280:DC%2BD1crgs1ChtQ%3D%3D – reference: ShannonRVA model of threshold for pulsatile electrical stimulation of cochlear implantsHear Res198940197204279360210.1016/0378-5955(89)90160-31:STN:280:DyaK3c%2FgvVChsQ%3D%3D – reference: ChatterjeeMTemporal mechanisms underlying recovery from forward masking in multielectrode-implant listenersJ Acoust Soc Am1999105185318631008960810.1121/1.4267221:STN:280:DyaK1M7ovFCkug%3D%3D – reference: YoungEDPalmerARReesALevel and spectrumThe Oxford handbook of auditory science: the auditory brain2010New YorkOxford University Press93124 – reference: GerkenGMSoleckiJMBoettcherFATemporal integration of electrical stimulation of auditory nuclei in normal-hearing and hearing-impaired catHear Res199153101112206627810.1016/0378-5955(91)90217-W1:STN:280:DyaK3M3psVSrsw%3D%3D – reference: EggermontJJSmithGMSynchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortexJ Neurophysiol19957322724577145681:STN:280:DyaK2M3jtVegsA%3D%3D – reference: SchaetteRKempterRDevelopment of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational modelEur J Neurosci200623312431381682000310.1111/j.1460-9568.2006.04774.x – reference: JorisPXSchreinerCEReesANeural processing of amplitude-modulated soundsPhysiol Rev2004845415771504468210.1152/physrev.00029.20031:STN:280:DC%2BD2c7lt1Wksw%3D%3D – reference: HughesMLCastioniEEGoehringJLBaudhuinJLTemporal response properties of the auditory nerve: data from human cochlear-implant recipientsHear Res201228546572232659010.1016/j.heares.2012.01.010 – reference: ShannonRVZengFGKamathVWygonskiJEkelidMSpeech recognition with primarily temporal cuesScience1995270303304756998110.1126/science.270.5234.3031:CAS:528:DyaK2MXoslehsL8%3D – reference: WehrMZadorAMSynaptic mechanisms of forward suppression in rat auditory cortexNeuron2005474374451605506610.1016/j.neuron.2005.06.0091:CAS:528:DC%2BD2MXovFSjsLY%3D – reference: MooreBCPetersRWGlasbergBRDetection of decrements and increments in sinusoids at high overall levelsJ Acoust Soc Am19969936693677865579810.1121/1.4149641:STN:280:DyaK283ltVKqsg%3D%3D – reference: PlackCJOxenhamAJDrgaVLinear and nonlinear processes in temporal maskingActa Acustica200288348358 – reference: McKayCMHenshallKRAmplitude modulation and loudness in cochlear implanteesJ Assoc Res Otolaryngol2010111011111979853310.1007/s10162-009-0188-5 – reference: ShannonRVForward masking in patients with cochlear implantsJ Acoust Soc Am199088741744221229810.1121/1.3997771:STN:280:DyaK3M%2FhtVahug%3D%3D – reference: DonaldsonGSViemeisterNFNelsonDAPsychometric functions and temporal integration in electric hearingJ Acoust Soc Am199710137063721919305810.1121/1.4183301:STN:280:DyaK2szjs1arsA%3D%3D – reference: NelsonDASchmitzJLDonaldsonGSViemeisterNFJavelEIntensity discrimination as a function of stimulus level with electric stimulationJ Acoust Soc Am199610023932414886564610.1121/1.4179491:STN:280:DyaK2s%2FhvFSgsg%3D%3D – reference: CollettiVShannonRCarnerMVeroneseSCollettiLOutcomes in nontumor adults fitted with the auditory brainstem implant: 10 years' experienceOtol Neurotol2009306146181954683210.1097/MAO.0b013e3181a864f2 – reference: EhretGSchreinerCEWinerJASchreinerCRSpectral and intensity coding in the auditory midbrainThe inferior colliculus2005New YorkSpringer Science + Business Media31234510.1007/0-387-27083-3_11 – reference: SchwartzMSOttoSRShannonRVHitselbergerWEBrackmannDEAuditory brainstem implantsNeurotherapeutics200851281361816449210.1016/j.nurt.2007.10.068 – reference: GalvinJJFuQJInfluence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant usersHear Res200925046541945043210.1016/j.heares.2009.01.009 – reference: CarlyonRPVan WieringenADeeksJMLongCJLyzengaJWoutersJEffect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulationHear Res20052052102241595353010.1016/j.heares.2005.03.021 – reference: FrisinaRDSubcortical neural coding mechanisms for auditory temporal processingHear Res20011581271150693310.1016/S0378-5955(01)00296-91:STN:280:DC%2BD3Mvns1amug%3D%3D – reference: MullerMRobertsonDYatesGKRate-versus-level functions of primary auditory nerve fibres: evidence for square law behaviour of all fibre categories in the guinea pigHear Res1991555056175279410.1016/0378-5955(91)90091-M1:STN:280:DyaK38%2FptFamsA%3D%3D – reference: CollettiVShannonRVOpen set speech perception with auditory brainstem implant?Laryngoscope2005115197419781631960810.1097/01.mlg.0000178327.42926.ec – reference: Van den HonertCStypulkowskiPHPhysiological properties of the electrically stimulated auditory nerve: II. Single fiber recordingsHear Res198414225243648051110.1016/0378-5955(84)90052-2 – reference: OxenhamAJMooreBCModeling the additivity of nonsimultaneous maskingHear Res199480105118785219610.1016/0378-5955(94)90014-01:STN:280:DyaK2M7lsFWluw%3D%3D – reference: FuQJTemporal processing and speech recognition in cochlear implant usersNeuroreport200213163516391235261710.1097/00001756-200209160-00013 – reference: MiddlebrooksJCEffects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholdsJ Acoust Soc Am20041164524681529600510.1121/1.1760795 – reference: LimHHLenarzTJosephGBattmerRDSamiiASamiiMPatrickJFLenarzMElectrical stimulation of the midbrain for hearing restoration: insight into the functional organization of the human central auditory systemJ Neurosci20072713541135511805721210.1523/JNEUROSCI.3123-07.20071:CAS:528:DC%2BD1cXisVGksQ%3D%3D – reference: LimHHLenarzTJosephGBattmerRDPatrickJFLenarzMEffects of phase duration and pulse rate on loudness and pitch percepts in the first auditory midbrain implant patients: comparison to cochlear implant and auditory brainstem implant resultsNeurosci200815437038010.1016/j.neuroscience.2008.02.0411:CAS:528:DC%2BD1cXnt1elsrw%3D – reference: PlackCJOxenhamAJBasilar-membrane nonlinearity and the growth of forward maskingJ Acoust Soc Am199810315981608951402410.1121/1.4212941:STN:280:DyaK1c7nsFaisA%3D%3D – volume: 23 start-page: 3124 year: 2006 ident: 354_CR51 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2006.04774.x – volume: 108 start-page: 760 year: 2000 ident: 354_CR9 publication-title: J Acoust Soc Am doi: 10.1121/1.429609 – volume: 7 start-page: 383 year: 2006 ident: 354_CR26 publication-title: J Assoc Res Otolaryngol doi: 10.1007/s10162-006-0056-5 – volume: 47 start-page: 437 year: 2005 ident: 354_CR60 publication-title: Neuron doi: 10.1016/j.neuron.2005.06.009 – volume: 88 start-page: 348 year: 2002 ident: 354_CR50 publication-title: Acta Acustica – volume: 270 start-page: 303 year: 1995 ident: 354_CR56 publication-title: Science doi: 10.1126/science.270.5234.303 – volume: 116 start-page: 452 year: 2004 ident: 354_CR38 publication-title: J Acoust Soc Am doi: 10.1121/1.1760795 – volume: 103 start-page: 1598 year: 1998 ident: 354_CR49 publication-title: J Acoust Soc Am doi: 10.1121/1.421294 – volume: 9 start-page: 1845 year: 1998 ident: 354_CR62 publication-title: Neuroreport doi: 10.1097/00001756-199806010-00033 – volume: 70 start-page: 291 year: 2008 ident: 354_CR25 publication-title: Percept Psychophys doi: 10.3758/PP.70.2.291 – volume: 105 start-page: 1853 year: 1999 ident: 354_CR4 publication-title: J Acoust Soc Am doi: 10.1121/1.426722 – volume: 27 start-page: 838 year: 2006 ident: 354_CR27 publication-title: Otol Neurotol doi: 10.1097/01.mao.0000232010.01116.e9 – volume: 83 start-page: 1102 year: 1988 ident: 354_CR39 publication-title: J Acoust Soc Am doi: 10.1121/1.396055 – volume: 27 start-page: 13541 year: 2007 ident: 354_CR29 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3123-07.2007 – volume: 242 start-page: 64 year: 2008 ident: 354_CR33 publication-title: Hear Res doi: 10.1016/j.heares.2007.11.014 – volume: 130 start-page: 3954 year: 2011 ident: 354_CR48 publication-title: J Acoust Soc Am doi: 10.1121/1.3651820 – volume: 91 start-page: 2156 year: 1992 ident: 354_CR55 publication-title: J Acoust Soc Am doi: 10.1121/1.403807 – volume: 60 start-page: 457 year: 2003 ident: 354_CR2 publication-title: Brain Res Bull doi: 10.1016/S0361-9230(03)00050-9 – volume: 99 start-page: 3669 year: 1996 ident: 354_CR40 publication-title: J Acoust Soc Am doi: 10.1121/1.414964 – volume: 121 start-page: 2236 year: 2007 ident: 354_CR47 publication-title: J Acoust Soc Am doi: 10.1121/1.2537501 – volume: 154 start-page: 294 year: 2008 ident: 354_CR59 publication-title: Neurosci doi: 10.1016/j.neuroscience.2008.03.065 – volume: 100 start-page: 2393 year: 1996 ident: 354_CR43 publication-title: J Acoust Soc Am doi: 10.1121/1.417949 – volume-title: Cranial neuroimaging and clinical neuroanatomy: magnetic resonance imaging and computed tomography year: 1992 ident: 354_CR24 – volume: 283 start-page: 59 year: 2012 ident: 354_CR13 publication-title: Hear Res doi: 10.1016/j.heares.2011.11.009 – ident: 354_CR1 doi: 10.1152/jn.00111.2012 – volume: 84 start-page: 541 year: 2004 ident: 354_CR22 publication-title: Physiol Rev doi: 10.1152/physrev.00029.2003 – volume: 205 start-page: 210 year: 2005 ident: 354_CR3 publication-title: Hear Res doi: 10.1016/j.heares.2005.03.021 – volume: 64 start-page: 167 year: 2006 ident: 354_CR6 publication-title: Adv Oto-Rhino-Laryngol doi: 10.1159/000094651 – volume: 242 start-page: 74 year: 2008 ident: 354_CR30 publication-title: Hear Res doi: 10.1016/j.heares.2008.02.003 – start-page: 69 volume-title: The inferior colliculus year: 2005 ident: 354_CR44 doi: 10.1007/0-387-27083-3_2 – volume: 53 start-page: 101 year: 1991 ident: 354_CR19 publication-title: Hear Res doi: 10.1016/0378-5955(91)90217-W – volume: 109 start-page: 732 year: 2001 ident: 354_CR45 publication-title: J Acoust Soc Am doi: 10.1121/1.1336501 – volume: 112 start-page: 2932 year: 2002 ident: 354_CR42 publication-title: J Acoust Soc Am doi: 10.1121/1.1514935 – volume: 90 start-page: 858 year: 1991 ident: 354_CR58 publication-title: J Acoust Soc Am doi: 10.1121/1.401953 – volume: 5 start-page: 128 year: 2008 ident: 354_CR52 publication-title: Neurotherapeutics doi: 10.1016/j.nurt.2007.10.068 – volume: 30 start-page: 614 year: 2009 ident: 354_CR8 publication-title: Otol Neurotol doi: 10.1097/MAO.0b013e3181a864f2 – volume: 33 start-page: 221 year: 2012 ident: 354_CR20 publication-title: Ear Hear doi: 10.1097/AUD.0b013e318230fff8 – volume: 11 start-page: 245 year: 2010 ident: 354_CR23 publication-title: J Assoc Res Otolaryngol doi: 10.1007/s10162-009-0194-7 – volume: 113 start-page: 2054 year: 2003 ident: 354_CR37 publication-title: J Acoust Soc Am doi: 10.1121/1.1558378 – volume: 73 start-page: 227 year: 1995 ident: 354_CR11 publication-title: J Neurophysiol doi: 10.1152/jn.1995.73.1.227 – volume: 154 start-page: 370 year: 2008 ident: 354_CR31 publication-title: Neurosci doi: 10.1016/j.neuroscience.2008.02.041 – start-page: 93 volume-title: The Oxford handbook of auditory science: the auditory brain year: 2010 ident: 354_CR61 – volume: 13 start-page: 1635 year: 2002 ident: 354_CR15 publication-title: Neuroreport doi: 10.1097/00001756-200209160-00013 – volume: 28 start-page: 1045 year: 2007 ident: 354_CR28 publication-title: Otol Neurotol doi: 10.1097/MAO.0b013e318159e74f – volume: 55 start-page: 50 year: 1991 ident: 354_CR41 publication-title: Hear Res doi: 10.1016/0378-5955(91)90091-M – volume: 80 start-page: 105 year: 1994 ident: 354_CR46 publication-title: Hear Res doi: 10.1016/0378-5955(94)90014-0 – volume: 104 start-page: 1061 year: 1998 ident: 354_CR36 publication-title: J Acoust Soc Am doi: 10.1121/1.423316 – volume: 101 start-page: 3706 year: 1997 ident: 354_CR10 publication-title: J Acoust Soc Am doi: 10.1121/1.418330 – volume: 11 start-page: 101 year: 2010 ident: 354_CR35 publication-title: J Assoc Res Otolaryngol doi: 10.1007/s10162-009-0188-5 – volume: 88 start-page: 741 year: 1990 ident: 354_CR54 publication-title: J Acoust Soc Am doi: 10.1121/1.399777 – start-page: 312 volume-title: The inferior colliculus year: 2005 ident: 354_CR12 doi: 10.1007/0-387-27083-3_11 – volume: 131 start-page: 2209 year: 2012 ident: 354_CR34 publication-title: J Acoust Soc Am doi: 10.1121/1.3683248 – volume: 285 start-page: 46 year: 2012 ident: 354_CR21 publication-title: Hear Res doi: 10.1016/j.heares.2012.01.010 – volume: 115 start-page: 1974 year: 2005 ident: 354_CR7 publication-title: Laryngoscope doi: 10.1097/01.mlg.0000178327.42926.ec – volume: 250 start-page: 46 year: 2009 ident: 354_CR17 publication-title: Hear Res doi: 10.1016/j.heares.2009.01.009 – volume: 14 start-page: 225 year: 1984 ident: 354_CR57 publication-title: Hear Res doi: 10.1016/0378-5955(84)90052-2 – volume: 130 start-page: 1567 year: 2011 ident: 354_CR5 publication-title: J Acoust Soc Am doi: 10.1121/1.3621445 – volume: 295 start-page: 1 year: 1971 ident: 354_CR18 publication-title: Acta Otolaryngol Suppl – volume: 158 start-page: 1 year: 2001 ident: 354_CR14 publication-title: Hear Res doi: 10.1016/S0378-5955(01)00296-9 – volume: 13 start-page: 149 year: 2009 ident: 354_CR32 publication-title: Trends Amplif doi: 10.1177/1084713809348372 – volume: 6 start-page: 269 year: 2005 ident: 354_CR16 publication-title: J Assoc Res Otolaryngol doi: 10.1007/s10162-005-0007-6 – volume: 40 start-page: 197 year: 1989 ident: 354_CR53 publication-title: Hear Res doi: 10.1016/0378-5955(89)90160-3 |
SSID | ssj0017569 |
Score | 2.1817312 |
Snippet | Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103 |
SubjectTerms | Adaptations Adult Auditory Brain Stem Implants Auditory Pathways - pathology Auditory Perception - physiology Auditory Threshold - physiology Cochlear Implants Cochlear Nerve - physiology Electric Stimulation Humans Medicine Medicine & Public Health Models, Biological Neurobiology Neurofibromatosis 2 - physiopathology Neurosciences Otorhinolaryngology Research Article |
Subtitle | Insights from Cochlear and Auditory Midbrain Implantees |
Title | Temporal Processing in the Auditory System |
URI | https://link.springer.com/article/10.1007/s10162-012-0354-z https://www.ncbi.nlm.nih.gov/pubmed/23073669 https://www.proquest.com/docview/1273343191 https://www.proquest.com/docview/1419373334 https://pubmed.ncbi.nlm.nih.gov/PMC3540271 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBPHF-2VeRgWfJpWlSZPmcY5NURwiG8yn0qQpitKJ2x7cr_ekl-m8gQ9toT1NyDlJ852eG8CJ8RS1xaxcQpnnMqWVqyJcj1QqnxslhDE2dvimyy_77GrgD4o47lHp7V6aJLMv9adgN8KtGwEe1GfudBGWfBLIoAJLzYv76_bMeCD8rJKdreyDfXJSGjN_amR-O_qGMb-7Sn6xl2bbUGcNeuUAcu-Tp7PJWJ3p6Zfcjv8c4TqsFrDUaebzaAMWTLoJyzeF4X0L6r08hdWzU0QWYLvOY-ogfHSaNrBj-Prm5NnPt6Hfafdal25RZsHVlIkpSilWjGpGY4ZSYwIVvAi1mEaMSCkxJElikaBS0jBEah7HhGnElCyJAsmloDKmO1BJh6nZA8eXqC0GNGkEOmAqwn0A4YwvPM2iJKJUVKFRcjvURQ5yWwrjOfzInmx5ECIPQsuDcFqF-uyVlzwBx1_Ex6UIQ1wm1vYRpWY4GYUEYRpFsCTJHzQM0SySUVaF3Vzssy6tvzzlXFZBzE2IGYFN0z3_JH18yNJ12z9rnsB-T0uph8V3YvT7SPb_RX0AK15WpsPOnkOojF8n5gjB0ljVYFEMRK1YIng9b3dv7_Bui7fw3Pea76HNDgE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSMAF8aY8i8RpqNLapEl7nBDTgG2nTdotatJUIE0d2uPAfj1OXzAGkzj0VDdR7ST9XNufAe60J4lpZuW4hHoOlUo6MsL9SELpMy0519rUDnd7rD2gz0N_WNRxT8ts9zIkmZ3U34rdXGbSCPAiPnUWm7CFWCAwbQsGXrMKHXA_62Nn-vrgjMwtQ5m_DbH8MVpBmKuJkj-ipdlHqLUPewV6tJu5uQ9gQ6eHsN0t4uNHUO_nTFMjuygAwFHst9RGlGc3Tf3FePJh5yTlxzBoPfYf2k7RDcFRhPIFKjOWlChKYorKpRz9sAidjUaMgCbRbpLEPEHfoaHdULE4dqlC6EeTKAhZyEkYkxOopeNUn4Hth-jUBSRpBCqgMsLjGlGHzz1FoyQihFvQKNUiVEEVbjpWjMQXybHRpEBNCqNJsbCgXj3ynvNkrBO-LXUtcDWbEEWU6vF8KlxEUwQxTeiukaEIOlGMUAtOc_tUU5q0dsJYaAFfslwlYNi0l--kb68Zq7b5AeZxnPe-tLEotvP07zc5_5f0Dey0-92O6Dz1Xi5g18s6a5j1eAm12WSurxDfzOR1tp4_AbQQ744 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oJsSL8W191sQTpqHtbnfpkaAEHxAPkHDbdNttJCGF8DjIr3e2DxRREg89dbqbzux2v-nMfANwp1xJdDMryyHUtagMpSUD3I_Elx5TknOldO1wu8NaPfrc9_p5n9Npke1ehCSzmgbN0pTMquMorn4rfHOYTinAi3jUWmzDDtUnn47WssYyjMC9tKed7vGDszOnCGv-NsTqwbSGNteTJn9ETtMDqbkPezmSNOuZ6Q9gSyWHUG7nsfIjqHQz1qmhmRcD4CjmIDER8Zl1XYsxmnyYGWH5MfSaj91Gy8o7I1ghoXyBio0kJSElEUVFU44-WYCOhx0huImVE8cRj9GPsJXjhyyKHBoiDKRxUPOZz4kfkRMoJaNEnYHp-ejg1Uhs18IalQF-uhGBeNwNaRAHhHAD7EItIsxpw3X3iqH4IjzWmhSoSaE1KRYGVJaPjDPOjE3Ct4WuBa5sHa4IEjWaT4WDyIogvvGdDTIUASiKEWrAaWaf5ZQ6xZ0w5hvAVyy3FNDM2qt3ksF7yrCtf4a5HOe9L2ws8q09_ftNzv8lfQPlt4emeH3qvFzArps22dDL8RJKs8lcXSHUmcnrdDl_Am3m87Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+processing+in+the+auditory+system%3A+insights+from+cochlear+and+auditory+midbrain+implantees&rft.jtitle=Journal+of+the+Association+for+Research+in+Otolaryngology&rft.au=McKay%2C+Colette+M&rft.au=Lim%2C+Hubert+H&rft.au=Lenarz%2C+Thomas&rft.date=2013-02-01&rft.issn=1438-7573&rft.eissn=1438-7573&rft.volume=14&rft.issue=1&rft.spage=103&rft_id=info:doi/10.1007%2Fs10162-012-0354-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-3961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-3961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-3961&client=summon |