Celestial conformal blocks of massless scalars and analytic continuation of the Appell function F1
A bstract In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = h ¯ = (1 + iλ )/2. The Mellin transform of 4d massless scalar amplitudes gives the conformal correlators of CCFT. We study the conformal block decompo...
Saved in:
Published in | The journal of high energy physics Vol. 2024; no. 1; p. 145 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
24.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1029-8479 1029-8479 |
DOI | 10.1007/JHEP01(2024)145 |
Cover
Loading…
Abstract | A
bstract
In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions
h
=
h
¯
= (1 +
iλ
)/2. The Mellin transform of 4d massless scalar amplitudes gives the conformal correlators of CCFT. We study the conformal block decomposition of these celestial correlators in CCFT and obtain the explicit blocks. This conformal block decomposition is highly nontrivial, even for the simplest 4d massless scalar amplitude. We use the analytic continuation of the Appell hypergeometric function
F
1
and the method of monodromy projection of conformal blocks, to achieve this block decomposition. This procedure is consistent with the crossing symmetry, in both the correlator-level and each explicit block-level. We also investigate its behavior in the conformal soft limit and find that the Appell hypergeometric function
F
1
does not reduce to the Gauss hypergeometric function. This is different from the block decomposition of celestial gluons we studied before, where the Appell hypergeometric function
F
1
reduces to the Gauss hypergeometric function. This difference comes from the shift of conformal dimensions and is the reason why we adopt the new method here for the block decomposition of celestial massless scalars. |
---|---|
AbstractList | In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = $$ \overline{h} $$ h ¯ = (1 + iλ )/2. The Mellin transform of 4d massless scalar amplitudes gives the conformal correlators of CCFT. We study the conformal block decomposition of these celestial correlators in CCFT and obtain the explicit blocks. This conformal block decomposition is highly nontrivial, even for the simplest 4d massless scalar amplitude. We use the analytic continuation of the Appell hypergeometric function F 1 and the method of monodromy projection of conformal blocks, to achieve this block decomposition. This procedure is consistent with the crossing symmetry, in both the correlator-level and each explicit block-level. We also investigate its behavior in the conformal soft limit and find that the Appell hypergeometric function F 1 does not reduce to the Gauss hypergeometric function. This is different from the block decomposition of celestial gluons we studied before, where the Appell hypergeometric function F 1 reduces to the Gauss hypergeometric function. This difference comes from the shift of conformal dimensions and is the reason why we adopt the new method here for the block decomposition of celestial massless scalars. In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = h¯ = (1 + iλ)/2. The Mellin transform of 4d massless scalar amplitudes gives the conformal correlators of CCFT. We study the conformal block decomposition of these celestial correlators in CCFT and obtain the explicit blocks. This conformal block decomposition is highly nontrivial, even for the simplest 4d massless scalar amplitude. We use the analytic continuation of the Appell hypergeometric function F1 and the method of monodromy projection of conformal blocks, to achieve this block decomposition. This procedure is consistent with the crossing symmetry, in both the correlator-level and each explicit block-level. We also investigate its behavior in the conformal soft limit and find that the Appell hypergeometric function F1 does not reduce to the Gauss hypergeometric function. This is different from the block decomposition of celestial gluons we studied before, where the Appell hypergeometric function F1 reduces to the Gauss hypergeometric function. This difference comes from the shift of conformal dimensions and is the reason why we adopt the new method here for the block decomposition of celestial massless scalars. A bstract In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = h ¯ = (1 + iλ )/2. The Mellin transform of 4d massless scalar amplitudes gives the conformal correlators of CCFT. We study the conformal block decomposition of these celestial correlators in CCFT and obtain the explicit blocks. This conformal block decomposition is highly nontrivial, even for the simplest 4d massless scalar amplitude. We use the analytic continuation of the Appell hypergeometric function F 1 and the method of monodromy projection of conformal blocks, to achieve this block decomposition. This procedure is consistent with the crossing symmetry, in both the correlator-level and each explicit block-level. We also investigate its behavior in the conformal soft limit and find that the Appell hypergeometric function F 1 does not reduce to the Gauss hypergeometric function. This is different from the block decomposition of celestial gluons we studied before, where the Appell hypergeometric function F 1 reduces to the Gauss hypergeometric function. This difference comes from the shift of conformal dimensions and is the reason why we adopt the new method here for the block decomposition of celestial massless scalars. |
ArticleNumber | 145 |
Author | Fan, Wei |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0003-1657-2284 surname: Fan fullname: Fan, Wei email: fanwei@just.edu.cn organization: Department of Physics, School of Science, Jiangsu University of Science and Technology |
BookMark | eNp9kM9PwyAcxYmZidv07LWJFz3U8e3PcVyWzWmW6EHPBChoJ4MK7WH_vXQ10ZjogfAC7wPf9yZoZKyRCF0CvgWMy9nDZvWE4TrBSXYDWX6CxoATEs-zkox-6DM08X6HMeRA8BjxpdTStzXTkbBGWbcPimsr3n1kVbRn3od7H3nBNHM-YqYKi-lDW4ueaGvTsba2pne3bzJaNI3UOlKdEcfjNZyjU8W0lxdf-xS9rFfPy028fby7Xy62sUizso3VnGCRQTUXBYiCZxkpJBcK55VijHNc8byCVOQlLwhJkpBTKUaqKq0EhqDTKboa3m2c_ehCKLqznQuzepoQmEOWQAnBNRtcwlnvnVS0cfWeuQMFTPsi6VAk7YukochA5L8IUbfHzK1jtf6HwwPnww_mVbrvef5CPgE9b4mi |
CitedBy_id | crossref_primary_10_1103_PhysRevD_111_025017 crossref_primary_10_1134_S0965542524701604 crossref_primary_10_1007_JHEP02_2024_063 crossref_primary_10_1007_JHEP01_2025_180 |
Cites_doi | 10.1007/BF02907130 10.1007/JHEP12(2021)171 10.1007/JHEP10(2019)018 10.1093/qmath/os-12.1.112 10.1016/j.physletb.2012.09.045 10.1007/JHEP11(2020)149 10.1103/PhysRevD.96.085006 10.1103/PhysRevD.104.126033 10.1134/S0965542517040042 10.1007/JHEP06(2023)210 10.1007/978-1-4612-2256-9 10.1007/BF02815915 10.1016/S0550-3213(85)80004-3 10.1093/qmath/os-11.1.249 10.1016/j.physletb.2022.137588 10.1007/JHEP10(2022)170 10.1007/JHEP02(2023)017 10.1016/j.physrep.2017.05.002 10.1007/JHEP11(2021)179 10.5802/afst.93 10.1016/0550-3213(72)90587-1 10.1016/j.physletb.2023.138229 10.1007/JHEP07(2022)104 10.1063/1.1704134 10.1007/JHEP10(2021)111 10.1016/0550-3213(84)90269-4 10.1103/PhysRevD.98.025020 10.1007/BF02392635 10.1140/epjc/s10052-021-09846-7 10.1007/JHEP04(2014)146 10.1007/JHEP08(2022)213 10.1007/JHEP02(2023)155 10.1103/PhysRevD.96.065022 10.1007/JHEP05(2021)170 10.1007/JHEP09(2022)245 10.1016/0550-3213(72)90480-4 10.1007/978-1-4615-8909-9_7 10.1007/JHEP09(2022)182 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/JHEP01(2024)145 |
DatabaseName | Springer Nature Link CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
ExternalDocumentID | 10_1007_JHEP01_2024_145 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c347t-f890c41d8c61c6b4496ebcf05dfaabb0db5d13c57b69922202ffa9dd3dc012ff3 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Fri Jul 25 22:58:02 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Tue Aug 05 12:05:25 EDT 2025 Fri Feb 21 02:40:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Scale and Conformal Symmetries Scattering Amplitudes Conformal and W Symmetry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-f890c41d8c61c6b4496ebcf05dfaabb0db5d13c57b69922202ffa9dd3dc012ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1657-2284 |
OpenAccessLink | https://www.proquest.com/docview/2918142171?pq-origsite=%requestingapplication% |
PQID | 2918142171 |
PQPubID | 2034718 |
ParticipantIDs | proquest_journals_2918142171 crossref_primary_10_1007_JHEP01_2024_145 crossref_citationtrail_10_1007_JHEP01_2024_145 springer_journals_10_1007_JHEP01_2024_145 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-24 |
PublicationDateYYYYMMDD | 2024-01-24 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | PasterskiSLectures on celestial amplitudesEur. Phys. J. C20218110622021EPJC...81.1062P10.1140/epjc/s10052-021-09846-7[arXiv:2108.04801] [INSPIRE] J.L. Burchnall and T.W. Chaundy, Expansions of Appell’s double hypergeometric functions, Quart. J. Math.os-11 (1940) 249. S. Pasterski, M. Pate and A.-M. Raclariu, Celestial holography, in the proceedings of the Snowmass 2021, (2021) [arXiv:2111.11392] [INSPIRE]. S. Ferrara and G. Parisi, Conformal covariant correlation functions, Nucl. Phys. B42 (1972) 281 [INSPIRE]. V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B240 (1984) 312 [INSPIRE]. OsbornHConformal blocks for arbitrary spins in two dimensionsPhys. Lett. B20127181692012PhLB..718..169O299276310.1016/j.physletb.2012.09.045[arXiv:1205.1941] [INSPIRE] NIST digital library of mathematical functions, release 1.1.11, https://dlmf.nist.gov/, 15 September 2023. LamHTShaoS-HConformal basis, optical theorem, and the bulk point singularityPhys. Rev. D2018982018PhRvD..98b5020L392408910.1103/PhysRevD.98.025020[arXiv:1711.06138] [INSPIRE] FanWElements of celestial conformal field theoryJHEP2022082132022JHEP...08..213F447308110.1007/JHEP08(2022)213[arXiv:2202.08288] [INSPIRE] StiebergerSTaylorTRZhuBYang-Mills as a Liouville theoryPhys. Lett. B2023846465403810.1016/j.physletb.2023.138229[arXiv:2308.09741] [INSPIRE] D. Simmons-Duffin, Phys 229ab advanced mathematical methods: conformal field theory, (2017). PasterskiSShaoS-HConformal basis for flat space amplitudesPhys. Rev. D2017962017PhRvD..96f5022P385717210.1103/PhysRevD.96.065022[arXiv:1705.01027] [INSPIRE] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer-Verlag, New York, NY, U.S.A. (1997) [https://doi.org/10.1007/978-1-4612-2256-9] [INSPIRE]. S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim.4S2 (1972) 115 [INSPIRE]. TaylorTRA course in amplitudesPhys. Rept.201769112017PhR...691....1T368391210.1016/j.physrep.2017.05.002[arXiv:1703.05670] [INSPIRE] Simmons-DuffinDProjectors, shadows, and conformal blocksJHEP2014041462014JHEP...04..146S321404210.1007/JHEP04(2014)146[arXiv:1204.3894] [INSPIRE] F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE]. AtanasovAMeltonWRaclariuA-MStromingerAConformal block expansion in celestial CFTPhys. Rev. D20211042021PhRvD.104l6033A436452110.1103/PhysRevD.104.126033[arXiv:2104.13432] [INSPIRE] Y. Hu, L. Ren, A.Y. Srikant and A. Volovich, Celestial dual superconformal symmetry, MHV amplitudes and differential equations, JHEP12 (2021) 171 [arXiv:2106.16111] [INSPIRE]. TaylorTRZhuBCelestial supersymmetryJHEP2023062102023JHEP...06..210T461170710.1007/JHEP06(2023)210[arXiv:2302.12830] [INSPIRE] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B49 (1972) 77 [INSPIRE]. S.I. Bezrodnykh, Analytic continuation of the Appell function F1and integration of the associated system of equations in the logarithmic case, Comput. Math. Math. Phys.57 (2017) 559. S. Ferrara, A.F. Grillo and G. Parisi, Nonequivalence between conformal covariant Wilson expansion in Euclidean and Minkowski space, Lett. Nuovo Cim.5S2 (1972) 147 [INSPIRE]. StiebergerSTaylorTRZhuBCelestial Liouville theory for Yang-Mills amplitudesPhys. Lett. B2023836451750010.1016/j.physletb.2022.137588[arXiv:2209.02724] [INSPIRE] V.S. Dotsenko, Série de cours sur la théorie conforme (in French), cel-00092929, September 2006. G. Mack, Group theoretical approach to conformal invariant quantum field theory, NATO Sci. Ser. B5 (1974) 123 [INSPIRE]. LawYTAZlotnikovMRelativistic partial waves for celestial amplitudesJHEP2020111492020JHEP...11..149L420412910.1007/JHEP11(2020)149[arXiv:2008.02331] [INSPIRE] V.S. Dotsenko and V.A. Fateev, Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1, Nucl. Phys. B251 (1985) 691 [INSPIRE]. Jorge-DiazCPasterskiSSharmaACelestial amplitudes in an ambidextrous basisJHEP2023021552023JHEP...02..155J454967810.1007/JHEP02(2023)155[arXiv:2212.00962] [INSPIRE] García-SepúlvedaDGuevaraAKulpJWuJNotes on resonances and unitarity from celestial amplitudesJHEP2022092452022JHEP...09..245G449386810.1007/JHEP09(2022)245[arXiv:2205.14633] [INSPIRE] BanerjeeSGhoshSMHV gluon scattering amplitudes from celestial current algebrasJHEP2021101112021JHEP...10..111B433981510.1007/JHEP10(2021)111[arXiv:2011.00017] [INSPIRE] A. Erdélyi, Hypergeometric functions of two variables, Acta Math.83 (1950) 131. HuYFour-point correlators of light-ray operators in CCFTJHEP2022071042022JHEP...07..104H445829510.1007/JHEP07(2022)104[arXiv:2203.04255] [INSPIRE] P.O.M. Olsson, Integration of the partial differential equations for the hypergeometric functions F1and FDof two and more variables, J. Math. Phys.5 (1964) 420. A.-M. Raclariu, Lectures on celestial holography, arXiv:2107.02075 [INSPIRE]. FanWConformal blocks from celestial gluon amplitudesJHEP2021051702021JHEP...05..170F430163410.1007/JHEP05(2021)170[arXiv:2103.04420] [INSPIRE] R. Le Vavasseur, Sur le système d’équations aux dérivées partielles simultanées auxquelles satisfait la série hypergéométrique à deux variables F1 (α, β, β′, γ; x, y) (in French), Ann. Facult. Sci. Toulouse Sci. Math. Sci. Phys.7 (1893) F1. A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE]. PasterskiSShaoS-HStromingerAGluon amplitudes as 2d conformal correlatorsPhys. Rev. D2017962017PhRvD..96h5006P386320110.1103/PhysRevD.96.085006[arXiv:1706.03917] [INSPIRE] W. Fan et al., Conformal blocks from celestial gluon amplitudes. Part II. Single-valued correlators, JHEP11 (2021) 179 [arXiv:2108.10337] [INSPIRE]. J.L. Burchnall and T.W. Chaundy, Expansions of Appell’s double hyper-geometric functions (II), Quart. J. Math.os-12 (1941) 112. DeSHuYYelleshpur SrikantAVolovichACorrelators of four light-ray operators in CCFTJHEP2022101702022JHEP...10..170D450565510.1007/JHEP10(2022)170[arXiv:2206.08875] [INSPIRE] FanWCelestial Yang-Mills amplitudes and D = 4 conformal blocksJHEP2022091822022JHEP...09..182F449051810.1007/JHEP09(2022)182[arXiv:2206.08979] [INSPIRE] NandanDSchreiberAVolovichAZlotnikovMCelestial amplitudes: conformal partial waves and soft limitsJHEP2019100182019JHEP...10..018N405967610.1007/JHEP10(2019)018[arXiv:1904.10940] [INSPIRE] ChangC-MShadow celestial amplitudesJHEP2023020172023JHEP...02..017C454674610.1007/JHEP02(2023)017[arXiv:2210.04725] [INSPIRE] D García-Sepúlveda (22654_CR20) 2022; 09 S Stieberger (22654_CR29) 2023; 836 W Fan (22654_CR15) 2022; 09 C Jorge-Diaz (22654_CR17) 2023; 02 22654_CR37 22654_CR36 YTA Law (22654_CR11) 2020; 11 22654_CR39 22654_CR38 D Simmons-Duffin (22654_CR28) 2014; 04 22654_CR33 22654_CR32 22654_CR13 S Stieberger (22654_CR31) 2023; 846 22654_CR34 S Pasterski (22654_CR3) 2021; 81 W Fan (22654_CR12) 2021; 05 D Nandan (22654_CR10) 2019; 10 S Pasterski (22654_CR5) 2017; 96 TR Taylor (22654_CR30) 2023; 06 22654_CR4 22654_CR1 22654_CR2 S Pasterski (22654_CR40) 2017; 96 22654_CR7 22654_CR8 C-M Chang (22654_CR21) 2023; 02 22654_CR6 Y Hu (22654_CR18) 2022; 07 S De (22654_CR19) 2022; 10 H Osborn (22654_CR27) 2012; 718 22654_CR42 22654_CR26 22654_CR25 22654_CR22 22654_CR44 22654_CR43 22654_CR24 22654_CR23 22654_CR45 TR Taylor (22654_CR41) 2017; 691 S Banerjee (22654_CR35) 2021; 10 A Atanasov (22654_CR16) 2021; 104 HT Lam (22654_CR9) 2018; 98 W Fan (22654_CR14) 2022; 08 |
References_xml | – reference: S. Pasterski, M. Pate and A.-M. Raclariu, Celestial holography, in the proceedings of the Snowmass 2021, (2021) [arXiv:2111.11392] [INSPIRE]. – reference: R. Le Vavasseur, Sur le système d’équations aux dérivées partielles simultanées auxquelles satisfait la série hypergéométrique à deux variables F1 (α, β, β′, γ; x, y) (in French), Ann. Facult. Sci. Toulouse Sci. Math. Sci. Phys.7 (1893) F1. – reference: A.-M. Raclariu, Lectures on celestial holography, arXiv:2107.02075 [INSPIRE]. – reference: Jorge-DiazCPasterskiSSharmaACelestial amplitudes in an ambidextrous basisJHEP2023021552023JHEP...02..155J454967810.1007/JHEP02(2023)155[arXiv:2212.00962] [INSPIRE] – reference: P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer-Verlag, New York, NY, U.S.A. (1997) [https://doi.org/10.1007/978-1-4612-2256-9] [INSPIRE]. – reference: StiebergerSTaylorTRZhuBYang-Mills as a Liouville theoryPhys. Lett. B2023846465403810.1016/j.physletb.2023.138229[arXiv:2308.09741] [INSPIRE] – reference: HuYFour-point correlators of light-ray operators in CCFTJHEP2022071042022JHEP...07..104H445829510.1007/JHEP07(2022)104[arXiv:2203.04255] [INSPIRE] – reference: NIST digital library of mathematical functions, release 1.1.11, https://dlmf.nist.gov/, 15 September 2023. – reference: J.L. Burchnall and T.W. Chaundy, Expansions of Appell’s double hyper-geometric functions (II), Quart. J. Math.os-12 (1941) 112. – reference: OsbornHConformal blocks for arbitrary spins in two dimensionsPhys. Lett. B20127181692012PhLB..718..169O299276310.1016/j.physletb.2012.09.045[arXiv:1205.1941] [INSPIRE] – reference: S. Ferrara and G. Parisi, Conformal covariant correlation functions, Nucl. Phys. B42 (1972) 281 [INSPIRE]. – reference: S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim.4S2 (1972) 115 [INSPIRE]. – reference: G. Mack, Group theoretical approach to conformal invariant quantum field theory, NATO Sci. Ser. B5 (1974) 123 [INSPIRE]. – reference: García-SepúlvedaDGuevaraAKulpJWuJNotes on resonances and unitarity from celestial amplitudesJHEP2022092452022JHEP...09..245G449386810.1007/JHEP09(2022)245[arXiv:2205.14633] [INSPIRE] – reference: PasterskiSShaoS-HConformal basis for flat space amplitudesPhys. Rev. D2017962017PhRvD..96f5022P385717210.1103/PhysRevD.96.065022[arXiv:1705.01027] [INSPIRE] – reference: FanWElements of celestial conformal field theoryJHEP2022082132022JHEP...08..213F447308110.1007/JHEP08(2022)213[arXiv:2202.08288] [INSPIRE] – reference: BanerjeeSGhoshSMHV gluon scattering amplitudes from celestial current algebrasJHEP2021101112021JHEP...10..111B433981510.1007/JHEP10(2021)111[arXiv:2011.00017] [INSPIRE] – reference: P.O.M. Olsson, Integration of the partial differential equations for the hypergeometric functions F1and FDof two and more variables, J. Math. Phys.5 (1964) 420. – reference: StiebergerSTaylorTRZhuBCelestial Liouville theory for Yang-Mills amplitudesPhys. Lett. B2023836451750010.1016/j.physletb.2022.137588[arXiv:2209.02724] [INSPIRE] – reference: A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE]. – reference: V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B240 (1984) 312 [INSPIRE]. – reference: PasterskiSShaoS-HStromingerAGluon amplitudes as 2d conformal correlatorsPhys. Rev. D2017962017PhRvD..96h5006P386320110.1103/PhysRevD.96.085006[arXiv:1706.03917] [INSPIRE] – reference: NandanDSchreiberAVolovichAZlotnikovMCelestial amplitudes: conformal partial waves and soft limitsJHEP2019100182019JHEP...10..018N405967610.1007/JHEP10(2019)018[arXiv:1904.10940] [INSPIRE] – reference: S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B49 (1972) 77 [INSPIRE]. – reference: FanWCelestial Yang-Mills amplitudes and D = 4 conformal blocksJHEP2022091822022JHEP...09..182F449051810.1007/JHEP09(2022)182[arXiv:2206.08979] [INSPIRE] – reference: ChangC-MShadow celestial amplitudesJHEP2023020172023JHEP...02..017C454674610.1007/JHEP02(2023)017[arXiv:2210.04725] [INSPIRE] – reference: W. Fan et al., Conformal blocks from celestial gluon amplitudes. Part II. Single-valued correlators, JHEP11 (2021) 179 [arXiv:2108.10337] [INSPIRE]. – reference: V.S. Dotsenko and V.A. Fateev, Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1, Nucl. Phys. B251 (1985) 691 [INSPIRE]. – reference: Simmons-DuffinDProjectors, shadows, and conformal blocksJHEP2014041462014JHEP...04..146S321404210.1007/JHEP04(2014)146[arXiv:1204.3894] [INSPIRE] – reference: TaylorTRA course in amplitudesPhys. Rept.201769112017PhR...691....1T368391210.1016/j.physrep.2017.05.002[arXiv:1703.05670] [INSPIRE] – reference: TaylorTRZhuBCelestial supersymmetryJHEP2023062102023JHEP...06..210T461170710.1007/JHEP06(2023)210[arXiv:2302.12830] [INSPIRE] – reference: AtanasovAMeltonWRaclariuA-MStromingerAConformal block expansion in celestial CFTPhys. Rev. D20211042021PhRvD.104l6033A436452110.1103/PhysRevD.104.126033[arXiv:2104.13432] [INSPIRE] – reference: J.L. Burchnall and T.W. Chaundy, Expansions of Appell’s double hypergeometric functions, Quart. J. Math.os-11 (1940) 249. – reference: F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE]. – reference: S. Ferrara, A.F. Grillo and G. Parisi, Nonequivalence between conformal covariant Wilson expansion in Euclidean and Minkowski space, Lett. Nuovo Cim.5S2 (1972) 147 [INSPIRE]. – reference: PasterskiSLectures on celestial amplitudesEur. Phys. J. C20218110622021EPJC...81.1062P10.1140/epjc/s10052-021-09846-7[arXiv:2108.04801] [INSPIRE] – reference: DeSHuYYelleshpur SrikantAVolovichACorrelators of four light-ray operators in CCFTJHEP2022101702022JHEP...10..170D450565510.1007/JHEP10(2022)170[arXiv:2206.08875] [INSPIRE] – reference: A. Erdélyi, Hypergeometric functions of two variables, Acta Math.83 (1950) 131. – reference: Y. Hu, L. Ren, A.Y. Srikant and A. Volovich, Celestial dual superconformal symmetry, MHV amplitudes and differential equations, JHEP12 (2021) 171 [arXiv:2106.16111] [INSPIRE]. – reference: D. Simmons-Duffin, Phys 229ab advanced mathematical methods: conformal field theory, (2017). – reference: LawYTAZlotnikovMRelativistic partial waves for celestial amplitudesJHEP2020111492020JHEP...11..149L420412910.1007/JHEP11(2020)149[arXiv:2008.02331] [INSPIRE] – reference: V.S. Dotsenko, Série de cours sur la théorie conforme (in French), cel-00092929, September 2006. – reference: FanWConformal blocks from celestial gluon amplitudesJHEP2021051702021JHEP...05..170F430163410.1007/JHEP05(2021)170[arXiv:2103.04420] [INSPIRE] – reference: S.I. Bezrodnykh, Analytic continuation of the Appell function F1and integration of the associated system of equations in the logarithmic case, Comput. Math. Math. Phys.57 (2017) 559. – reference: LamHTShaoS-HConformal basis, optical theorem, and the bulk point singularityPhys. Rev. D2018982018PhRvD..98b5020L392408910.1103/PhysRevD.98.025020[arXiv:1711.06138] [INSPIRE] – ident: 22654_CR24 doi: 10.1007/BF02907130 – ident: 22654_CR36 doi: 10.1007/JHEP12(2021)171 – volume: 10 start-page: 018 year: 2019 ident: 22654_CR10 publication-title: JHEP doi: 10.1007/JHEP10(2019)018 – ident: 22654_CR42 – ident: 22654_CR44 doi: 10.1093/qmath/os-12.1.112 – volume: 718 start-page: 169 year: 2012 ident: 22654_CR27 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.09.045 – volume: 11 start-page: 149 year: 2020 ident: 22654_CR11 publication-title: JHEP doi: 10.1007/JHEP11(2020)149 – volume: 96 year: 2017 ident: 22654_CR40 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.085006 – volume: 104 year: 2021 ident: 22654_CR16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.126033 – ident: 22654_CR32 – ident: 22654_CR38 doi: 10.1134/S0965542517040042 – ident: 22654_CR1 – volume: 06 start-page: 210 year: 2023 ident: 22654_CR30 publication-title: JHEP doi: 10.1007/JHEP06(2023)210 – ident: 22654_CR7 doi: 10.1007/978-1-4612-2256-9 – ident: 22654_CR23 doi: 10.1007/BF02815915 – ident: 22654_CR33 doi: 10.1016/S0550-3213(85)80004-3 – ident: 22654_CR43 doi: 10.1093/qmath/os-11.1.249 – volume: 836 year: 2023 ident: 22654_CR29 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137588 – volume: 10 start-page: 170 year: 2022 ident: 22654_CR19 publication-title: JHEP doi: 10.1007/JHEP10(2022)170 – volume: 02 start-page: 017 year: 2023 ident: 22654_CR21 publication-title: JHEP doi: 10.1007/JHEP02(2023)017 – ident: 22654_CR26 – volume: 691 start-page: 1 year: 2017 ident: 22654_CR41 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2017.05.002 – ident: 22654_CR13 doi: 10.1007/JHEP11(2021)179 – ident: 22654_CR45 doi: 10.5802/afst.93 – ident: 22654_CR25 doi: 10.1016/0550-3213(72)90587-1 – volume: 846 year: 2023 ident: 22654_CR31 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2023.138229 – volume: 07 start-page: 104 year: 2022 ident: 22654_CR18 publication-title: JHEP doi: 10.1007/JHEP07(2022)104 – ident: 22654_CR37 doi: 10.1063/1.1704134 – volume: 10 start-page: 111 year: 2021 ident: 22654_CR35 publication-title: JHEP doi: 10.1007/JHEP10(2021)111 – ident: 22654_CR4 – ident: 22654_CR34 doi: 10.1016/0550-3213(84)90269-4 – volume: 98 year: 2018 ident: 22654_CR9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.025020 – ident: 22654_CR39 doi: 10.1007/BF02392635 – volume: 81 start-page: 1062 year: 2021 ident: 22654_CR3 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09846-7 – volume: 04 start-page: 146 year: 2014 ident: 22654_CR28 publication-title: JHEP doi: 10.1007/JHEP04(2014)146 – ident: 22654_CR2 – ident: 22654_CR8 – volume: 08 start-page: 213 year: 2022 ident: 22654_CR14 publication-title: JHEP doi: 10.1007/JHEP08(2022)213 – volume: 02 start-page: 155 year: 2023 ident: 22654_CR17 publication-title: JHEP doi: 10.1007/JHEP02(2023)155 – volume: 96 year: 2017 ident: 22654_CR5 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.065022 – volume: 05 start-page: 170 year: 2021 ident: 22654_CR12 publication-title: JHEP doi: 10.1007/JHEP05(2021)170 – volume: 09 start-page: 245 year: 2022 ident: 22654_CR20 publication-title: JHEP doi: 10.1007/JHEP09(2022)245 – ident: 22654_CR22 doi: 10.1016/0550-3213(72)90480-4 – ident: 22654_CR6 doi: 10.1007/978-1-4615-8909-9_7 – volume: 09 start-page: 182 year: 2022 ident: 22654_CR15 publication-title: JHEP doi: 10.1007/JHEP09(2022)182 |
SSID | ssj0015190 |
Score | 2.465582 |
Snippet | A
bstract
In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions
h
=
h
¯
= (1... In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = $$ \overline{h} $$... In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = h¯ = (1 + iλ)/2.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 145 |
SubjectTerms | Amplitudes Classical and Quantum Gravitation Correlation Decomposition Elementary Particles Field theory Hypergeometric functions Mellin transforms Operators (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Scalars String Theory |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qRfAiPrFaZQ8e2kMkyT7aHKW0lILiwUJvYR9ZEGMqJh78984mWYtKDx4CS3ZmD7PZfN_s7MwC3HCNy48mIkAsSAKmhAyQtaKXwhPKHB6zzG0N3D-I-ZItVnzVgcjnwtSn3X1Isv5T-2S3xXz6GEYDdNbZMGJ8B3a5a7v4rEtwaAMHSEhCX8Hnr9JP8Nkwyl9B0BpbZodw0JJCctfM4hF0suIY9urDmbo8ATVBbHBLMSfovdYsMycKUeilJGtLXpH_Yn9JSrQ3-qlEFgYfmX_icE6jei6agt5OGgkfQeqZ5TlxmFa_nkWnsJxNnybzoL0bIdCUjarAjpNQs8iMtYi0UIwlIlPahtxYKZUKjeImopqPlHCVZ9EA1srEGGo0QpK19Ay6xbrIzoHYcRabRAudUYrjaBVKGatQm5Gh1tCwB7feaKluC4e7-yvy1Jc8bqycOiujK8F7MPhWeGtqZmwX7ftZSNvFU6ZxgrSDoa8U9WDoZ2bTvWWoi3_IXsK-a7qtlJj1oVu9f2RXSC4qdV1_Tl_L7siD priority: 102 providerName: Springer Nature |
Title | Celestial conformal blocks of massless scalars and analytic continuation of the Appell function F1 |
URI | https://link.springer.com/article/10.1007/JHEP01(2024)145 https://www.proquest.com/docview/2918142171 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_oRPAifuL8GDl40EM1bdK0PYmW1TFwDHHgrTRJA2Ltpp0H_3tfutaJMA8NtEnf4b0mv997Sd8DOPcVTj8WCQexIHK4FJmDrBW9FD9i3OIxz21o4GEkBhM-fPafm4Bb1RyrbNfEeqHWU2Vj5NdehFjEkUC7N7N3x1aNsrurTQmNddjAJTj0O7Bx1x-NH3_2EZCf0DahDw2uh4P-mLoX6PDzS9f-wfQbi5YE88-eaA01yQ5sNxyR3C6MugtrebkHm_VZTVXtg4wRKuzMLAg6szXpLIhEUHqtyNSQN6TD2F-RCtWPbivJSo1XVnyhOPvG_KVc5Pe2o5H_EWSieVEQC3H148Q9gEnSf4oHTlMqwVGMB3PHhBFV3NWhEq4SkvNI5FIZ6muTZVJSLX3tMuUHUthEtKgAY7JIa6YVIpQx7BA65bTMj4CYMPd0pITKGUM5StIs8yRVOtDMaEa7cNUqLVVNHnFbzqJI2wzICy2nVsvoWfhduPh5YbZIobF66GlrhbSZS1W6tHwXLlvLLLtXiDr-X9QJbNmRNpji8VPozD8-8zOkF3PZg_Uwue81XxLexR63rYh7tcOO7cS7_QaM0tLj |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xUAUX1BYqAoHuoUjkYFh71072gFBJE4VXhKpEys31vqSqxgk4CPGn-I3M-kGqSvTGwRfv7hx2Zuf7Zh8zAN9ChcuPichDLBAel1HiIWvFKCUUjDs85sZtDVwPo8GYX0zCyRI8129h3LXK2icWjlpPldsjPw4EYhFHAu2fzu48VzXKna7WJTRKs7g0T48YsuUn5z9QvwdB0O-NugOvqirgKcbbc892BFXc1x0V-SqSnIvISGVpqG2SSEm1DLXPVNiWkcvZGtDA2kRozbRCZ24tQ7nLsIo0Q-AqWj3rDW9-vp5bIB-idQIh2j6-GPRuqH-IMnjLdy-m_sa-BaH95wy2gLb-R9ioOCn5XhrRJ1gy2Wf4UNwNVfkmyC5Ck_MEKcHguSC5KZEIgn9yMrXkFuk3tuckR3VjmEySTOOXpE8ozo2Y_87KfOKuN_JNgszXpClxkFr87vtbMH6XSfwCK9k0M9tAbMcEWqhIGcZQjpI0SQJJlW5rZjWjDTiqJy1WVd5yVz4jjeuMy-Usx26WMZIJG3D4OmBWpux4u2uz1kJcrd08XlhaA1q1ZhbNb4ja-b-or7A2GF1fxVfnw8tdWHej3EZOwJuwMr9_MHtIbeZyv7InAr_e24RfALb-DWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BIhCXquUhwqPdQ5HgYLL2rjfxoUItJAoJRBECiZvxviSEcQCnqvhr_XWd9SOpKtEbB1_s3ZE8M7vfN_uYAfgaKhx-LBIeYkHkcSkSD1krRilhxLjDY27c0sDlWAxu-PA2vF2C3_VdGHessp4Ti4laT5VbI28HEWIRRwLtt211LGJy1j95evZcBSm301qX0yhdZGRef2H4ln87P0NbHwRBv3d9OvCqCgOeYrwz82w3oor7uquEr4TkPBJGKktDbZNESqplqH2mwo4ULn9rQANrk0hrphVO7NYylLsMTfw50W1A80dvPLma72EgN6J1MiHaaQ8HvQn1D1EGP_Ld7am_cXBBbv_Zjy1grv8RPlT8lHwvHeoTLJlsHVaKc6Iq3wB5ijDlZoWUYCBdEN6USATEh5xMLXlEKo7fc5Kj6TFkJkmm8UnSVxTneszuszK3uGuN3JMgCzZpShy8Fq_7_ibcvIsSt6CRTTOzDcR2TaAjJZRhDOUoSZMkkFTpjmZWM9qC41ppsapymLtSGmlcZ18utRw7LWNUE7bgcN7hqUzf8XbTvdoKcTWO83jhdS04qi2z-PyGqJ3_i_oCq-i68cX5eLQLa66TW9MJ-B40Zi8_zT6ynJn8XLkTgbv39uA_zI4RkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Celestial+conformal+blocks+of+massless+scalars+and+analytic+continuation+of+the+Appell+function+F1&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fan%2C+Wei&rft.date=2024-01-24&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282024%29145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP01_2024_145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |