Celestial conformal blocks of massless scalars and analytic continuation of the Appell function F1

A bstract In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = h ¯ = (1 + iλ )/2. The Mellin transform of 4d massless scalar amplitudes gives the conformal correlators of CCFT. We study the conformal block decompo...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2024; no. 1; p. 145
Main Author Fan, Wei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 24.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1029-8479
1029-8479
DOI10.1007/JHEP01(2024)145

Cover

Loading…
Abstract A bstract In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = h ¯ = (1 + iλ )/2. The Mellin transform of 4d massless scalar amplitudes gives the conformal correlators of CCFT. We study the conformal block decomposition of these celestial correlators in CCFT and obtain the explicit blocks. This conformal block decomposition is highly nontrivial, even for the simplest 4d massless scalar amplitude. We use the analytic continuation of the Appell hypergeometric function F 1 and the method of monodromy projection of conformal blocks, to achieve this block decomposition. This procedure is consistent with the crossing symmetry, in both the correlator-level and each explicit block-level. We also investigate its behavior in the conformal soft limit and find that the Appell hypergeometric function F 1 does not reduce to the Gauss hypergeometric function. This is different from the block decomposition of celestial gluons we studied before, where the Appell hypergeometric function F 1 reduces to the Gauss hypergeometric function. This difference comes from the shift of conformal dimensions and is the reason why we adopt the new method here for the block decomposition of celestial massless scalars.
AbstractList In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = $$ \overline{h} $$ h ¯ = (1 + iλ )/2. The Mellin transform of 4d massless scalar amplitudes gives the conformal correlators of CCFT. We study the conformal block decomposition of these celestial correlators in CCFT and obtain the explicit blocks. This conformal block decomposition is highly nontrivial, even for the simplest 4d massless scalar amplitude. We use the analytic continuation of the Appell hypergeometric function F 1 and the method of monodromy projection of conformal blocks, to achieve this block decomposition. This procedure is consistent with the crossing symmetry, in both the correlator-level and each explicit block-level. We also investigate its behavior in the conformal soft limit and find that the Appell hypergeometric function F 1 does not reduce to the Gauss hypergeometric function. This is different from the block decomposition of celestial gluons we studied before, where the Appell hypergeometric function F 1 reduces to the Gauss hypergeometric function. This difference comes from the shift of conformal dimensions and is the reason why we adopt the new method here for the block decomposition of celestial massless scalars.
In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = h¯ = (1 + iλ)/2. The Mellin transform of 4d massless scalar amplitudes gives the conformal correlators of CCFT. We study the conformal block decomposition of these celestial correlators in CCFT and obtain the explicit blocks. This conformal block decomposition is highly nontrivial, even for the simplest 4d massless scalar amplitude. We use the analytic continuation of the Appell hypergeometric function F1 and the method of monodromy projection of conformal blocks, to achieve this block decomposition. This procedure is consistent with the crossing symmetry, in both the correlator-level and each explicit block-level. We also investigate its behavior in the conformal soft limit and find that the Appell hypergeometric function F1 does not reduce to the Gauss hypergeometric function. This is different from the block decomposition of celestial gluons we studied before, where the Appell hypergeometric function F1 reduces to the Gauss hypergeometric function. This difference comes from the shift of conformal dimensions and is the reason why we adopt the new method here for the block decomposition of celestial massless scalars.
A bstract In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = h ¯ = (1 + iλ )/2. The Mellin transform of 4d massless scalar amplitudes gives the conformal correlators of CCFT. We study the conformal block decomposition of these celestial correlators in CCFT and obtain the explicit blocks. This conformal block decomposition is highly nontrivial, even for the simplest 4d massless scalar amplitude. We use the analytic continuation of the Appell hypergeometric function F 1 and the method of monodromy projection of conformal blocks, to achieve this block decomposition. This procedure is consistent with the crossing symmetry, in both the correlator-level and each explicit block-level. We also investigate its behavior in the conformal soft limit and find that the Appell hypergeometric function F 1 does not reduce to the Gauss hypergeometric function. This is different from the block decomposition of celestial gluons we studied before, where the Appell hypergeometric function F 1 reduces to the Gauss hypergeometric function. This difference comes from the shift of conformal dimensions and is the reason why we adopt the new method here for the block decomposition of celestial massless scalars.
ArticleNumber 145
Author Fan, Wei
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-1657-2284
  surname: Fan
  fullname: Fan, Wei
  email: fanwei@just.edu.cn
  organization: Department of Physics, School of Science, Jiangsu University of Science and Technology
BookMark eNp9kM9PwyAcxYmZidv07LWJFz3U8e3PcVyWzWmW6EHPBChoJ4MK7WH_vXQ10ZjogfAC7wPf9yZoZKyRCF0CvgWMy9nDZvWE4TrBSXYDWX6CxoATEs-zkox-6DM08X6HMeRA8BjxpdTStzXTkbBGWbcPimsr3n1kVbRn3od7H3nBNHM-YqYKi-lDW4ueaGvTsba2pne3bzJaNI3UOlKdEcfjNZyjU8W0lxdf-xS9rFfPy028fby7Xy62sUizso3VnGCRQTUXBYiCZxkpJBcK55VijHNc8byCVOQlLwhJkpBTKUaqKq0EhqDTKboa3m2c_ehCKLqznQuzepoQmEOWQAnBNRtcwlnvnVS0cfWeuQMFTPsi6VAk7YukochA5L8IUbfHzK1jtf6HwwPnww_mVbrvef5CPgE9b4mi
CitedBy_id crossref_primary_10_1103_PhysRevD_111_025017
crossref_primary_10_1134_S0965542524701604
crossref_primary_10_1007_JHEP02_2024_063
crossref_primary_10_1007_JHEP01_2025_180
Cites_doi 10.1007/BF02907130
10.1007/JHEP12(2021)171
10.1007/JHEP10(2019)018
10.1093/qmath/os-12.1.112
10.1016/j.physletb.2012.09.045
10.1007/JHEP11(2020)149
10.1103/PhysRevD.96.085006
10.1103/PhysRevD.104.126033
10.1134/S0965542517040042
10.1007/JHEP06(2023)210
10.1007/978-1-4612-2256-9
10.1007/BF02815915
10.1016/S0550-3213(85)80004-3
10.1093/qmath/os-11.1.249
10.1016/j.physletb.2022.137588
10.1007/JHEP10(2022)170
10.1007/JHEP02(2023)017
10.1016/j.physrep.2017.05.002
10.1007/JHEP11(2021)179
10.5802/afst.93
10.1016/0550-3213(72)90587-1
10.1016/j.physletb.2023.138229
10.1007/JHEP07(2022)104
10.1063/1.1704134
10.1007/JHEP10(2021)111
10.1016/0550-3213(84)90269-4
10.1103/PhysRevD.98.025020
10.1007/BF02392635
10.1140/epjc/s10052-021-09846-7
10.1007/JHEP04(2014)146
10.1007/JHEP08(2022)213
10.1007/JHEP02(2023)155
10.1103/PhysRevD.96.065022
10.1007/JHEP05(2021)170
10.1007/JHEP09(2022)245
10.1016/0550-3213(72)90480-4
10.1007/978-1-4615-8909-9_7
10.1007/JHEP09(2022)182
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/JHEP01(2024)145
DatabaseName Springer Nature Link
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
ExternalDocumentID 10_1007_JHEP01_2024_145
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c347t-f890c41d8c61c6b4496ebcf05dfaabb0db5d13c57b69922202ffa9dd3dc012ff3
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Fri Jul 25 22:58:02 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Tue Aug 05 12:05:25 EDT 2025
Fri Feb 21 02:40:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Scale and Conformal Symmetries
Scattering Amplitudes
Conformal and W Symmetry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-f890c41d8c61c6b4496ebcf05dfaabb0db5d13c57b69922202ffa9dd3dc012ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1657-2284
OpenAccessLink https://www.proquest.com/docview/2918142171?pq-origsite=%requestingapplication%
PQID 2918142171
PQPubID 2034718
ParticipantIDs proquest_journals_2918142171
crossref_primary_10_1007_JHEP01_2024_145
crossref_citationtrail_10_1007_JHEP01_2024_145
springer_journals_10_1007_JHEP01_2024_145
PublicationCentury 2000
PublicationDate 2024-01-24
PublicationDateYYYYMMDD 2024-01-24
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-24
  day: 24
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References PasterskiSLectures on celestial amplitudesEur. Phys. J. C20218110622021EPJC...81.1062P10.1140/epjc/s10052-021-09846-7[arXiv:2108.04801] [INSPIRE]
J.L. Burchnall and T.W. Chaundy, Expansions of Appell’s double hypergeometric functions, Quart. J. Math.os-11 (1940) 249.
S. Pasterski, M. Pate and A.-M. Raclariu, Celestial holography, in the proceedings of the Snowmass 2021, (2021) [arXiv:2111.11392] [INSPIRE].
S. Ferrara and G. Parisi, Conformal covariant correlation functions, Nucl. Phys. B42 (1972) 281 [INSPIRE].
V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B240 (1984) 312 [INSPIRE].
OsbornHConformal blocks for arbitrary spins in two dimensionsPhys. Lett. B20127181692012PhLB..718..169O299276310.1016/j.physletb.2012.09.045[arXiv:1205.1941] [INSPIRE]
NIST digital library of mathematical functions, release 1.1.11, https://dlmf.nist.gov/, 15 September 2023.
LamHTShaoS-HConformal basis, optical theorem, and the bulk point singularityPhys. Rev. D2018982018PhRvD..98b5020L392408910.1103/PhysRevD.98.025020[arXiv:1711.06138] [INSPIRE]
FanWElements of celestial conformal field theoryJHEP2022082132022JHEP...08..213F447308110.1007/JHEP08(2022)213[arXiv:2202.08288] [INSPIRE]
StiebergerSTaylorTRZhuBYang-Mills as a Liouville theoryPhys. Lett. B2023846465403810.1016/j.physletb.2023.138229[arXiv:2308.09741] [INSPIRE]
D. Simmons-Duffin, Phys 229ab advanced mathematical methods: conformal field theory, (2017).
PasterskiSShaoS-HConformal basis for flat space amplitudesPhys. Rev. D2017962017PhRvD..96f5022P385717210.1103/PhysRevD.96.065022[arXiv:1705.01027] [INSPIRE]
P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer-Verlag, New York, NY, U.S.A. (1997) [https://doi.org/10.1007/978-1-4612-2256-9] [INSPIRE].
S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim.4S2 (1972) 115 [INSPIRE].
TaylorTRA course in amplitudesPhys. Rept.201769112017PhR...691....1T368391210.1016/j.physrep.2017.05.002[arXiv:1703.05670] [INSPIRE]
Simmons-DuffinDProjectors, shadows, and conformal blocksJHEP2014041462014JHEP...04..146S321404210.1007/JHEP04(2014)146[arXiv:1204.3894] [INSPIRE]
F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
AtanasovAMeltonWRaclariuA-MStromingerAConformal block expansion in celestial CFTPhys. Rev. D20211042021PhRvD.104l6033A436452110.1103/PhysRevD.104.126033[arXiv:2104.13432] [INSPIRE]
Y. Hu, L. Ren, A.Y. Srikant and A. Volovich, Celestial dual superconformal symmetry, MHV amplitudes and differential equations, JHEP12 (2021) 171 [arXiv:2106.16111] [INSPIRE].
TaylorTRZhuBCelestial supersymmetryJHEP2023062102023JHEP...06..210T461170710.1007/JHEP06(2023)210[arXiv:2302.12830] [INSPIRE]
S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B49 (1972) 77 [INSPIRE].
S.I. Bezrodnykh, Analytic continuation of the Appell function F1and integration of the associated system of equations in the logarithmic case, Comput. Math. Math. Phys.57 (2017) 559.
S. Ferrara, A.F. Grillo and G. Parisi, Nonequivalence between conformal covariant Wilson expansion in Euclidean and Minkowski space, Lett. Nuovo Cim.5S2 (1972) 147 [INSPIRE].
StiebergerSTaylorTRZhuBCelestial Liouville theory for Yang-Mills amplitudesPhys. Lett. B2023836451750010.1016/j.physletb.2022.137588[arXiv:2209.02724] [INSPIRE]
V.S. Dotsenko, Série de cours sur la théorie conforme (in French), cel-00092929, September 2006.
G. Mack, Group theoretical approach to conformal invariant quantum field theory, NATO Sci. Ser. B5 (1974) 123 [INSPIRE].
LawYTAZlotnikovMRelativistic partial waves for celestial amplitudesJHEP2020111492020JHEP...11..149L420412910.1007/JHEP11(2020)149[arXiv:2008.02331] [INSPIRE]
V.S. Dotsenko and V.A. Fateev, Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1, Nucl. Phys. B251 (1985) 691 [INSPIRE].
Jorge-DiazCPasterskiSSharmaACelestial amplitudes in an ambidextrous basisJHEP2023021552023JHEP...02..155J454967810.1007/JHEP02(2023)155[arXiv:2212.00962] [INSPIRE]
García-SepúlvedaDGuevaraAKulpJWuJNotes on resonances and unitarity from celestial amplitudesJHEP2022092452022JHEP...09..245G449386810.1007/JHEP09(2022)245[arXiv:2205.14633] [INSPIRE]
BanerjeeSGhoshSMHV gluon scattering amplitudes from celestial current algebrasJHEP2021101112021JHEP...10..111B433981510.1007/JHEP10(2021)111[arXiv:2011.00017] [INSPIRE]
A. Erdélyi, Hypergeometric functions of two variables, Acta Math.83 (1950) 131.
HuYFour-point correlators of light-ray operators in CCFTJHEP2022071042022JHEP...07..104H445829510.1007/JHEP07(2022)104[arXiv:2203.04255] [INSPIRE]
P.O.M. Olsson, Integration of the partial differential equations for the hypergeometric functions F1and FDof two and more variables, J. Math. Phys.5 (1964) 420.
A.-M. Raclariu, Lectures on celestial holography, arXiv:2107.02075 [INSPIRE].
FanWConformal blocks from celestial gluon amplitudesJHEP2021051702021JHEP...05..170F430163410.1007/JHEP05(2021)170[arXiv:2103.04420] [INSPIRE]
R. Le Vavasseur, Sur le système d’équations aux dérivées partielles simultanées auxquelles satisfait la série hypergéométrique à deux variables F1 (α, β, β′, γ; x, y) (in French), Ann. Facult. Sci. Toulouse Sci. Math. Sci. Phys.7 (1893) F1.
A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].
PasterskiSShaoS-HStromingerAGluon amplitudes as 2d conformal correlatorsPhys. Rev. D2017962017PhRvD..96h5006P386320110.1103/PhysRevD.96.085006[arXiv:1706.03917] [INSPIRE]
W. Fan et al., Conformal blocks from celestial gluon amplitudes. Part II. Single-valued correlators, JHEP11 (2021) 179 [arXiv:2108.10337] [INSPIRE].
J.L. Burchnall and T.W. Chaundy, Expansions of Appell’s double hyper-geometric functions (II), Quart. J. Math.os-12 (1941) 112.
DeSHuYYelleshpur SrikantAVolovichACorrelators of four light-ray operators in CCFTJHEP2022101702022JHEP...10..170D450565510.1007/JHEP10(2022)170[arXiv:2206.08875] [INSPIRE]
FanWCelestial Yang-Mills amplitudes and D = 4 conformal blocksJHEP2022091822022JHEP...09..182F449051810.1007/JHEP09(2022)182[arXiv:2206.08979] [INSPIRE]
NandanDSchreiberAVolovichAZlotnikovMCelestial amplitudes: conformal partial waves and soft limitsJHEP2019100182019JHEP...10..018N405967610.1007/JHEP10(2019)018[arXiv:1904.10940] [INSPIRE]
ChangC-MShadow celestial amplitudesJHEP2023020172023JHEP...02..017C454674610.1007/JHEP02(2023)017[arXiv:2210.04725] [INSPIRE]
D García-Sepúlveda (22654_CR20) 2022; 09
S Stieberger (22654_CR29) 2023; 836
W Fan (22654_CR15) 2022; 09
C Jorge-Diaz (22654_CR17) 2023; 02
22654_CR37
22654_CR36
YTA Law (22654_CR11) 2020; 11
22654_CR39
22654_CR38
D Simmons-Duffin (22654_CR28) 2014; 04
22654_CR33
22654_CR32
22654_CR13
S Stieberger (22654_CR31) 2023; 846
22654_CR34
S Pasterski (22654_CR3) 2021; 81
W Fan (22654_CR12) 2021; 05
D Nandan (22654_CR10) 2019; 10
S Pasterski (22654_CR5) 2017; 96
TR Taylor (22654_CR30) 2023; 06
22654_CR4
22654_CR1
22654_CR2
S Pasterski (22654_CR40) 2017; 96
22654_CR7
22654_CR8
C-M Chang (22654_CR21) 2023; 02
22654_CR6
Y Hu (22654_CR18) 2022; 07
S De (22654_CR19) 2022; 10
H Osborn (22654_CR27) 2012; 718
22654_CR42
22654_CR26
22654_CR25
22654_CR22
22654_CR44
22654_CR43
22654_CR24
22654_CR23
22654_CR45
TR Taylor (22654_CR41) 2017; 691
S Banerjee (22654_CR35) 2021; 10
A Atanasov (22654_CR16) 2021; 104
HT Lam (22654_CR9) 2018; 98
W Fan (22654_CR14) 2022; 08
References_xml – reference: S. Pasterski, M. Pate and A.-M. Raclariu, Celestial holography, in the proceedings of the Snowmass 2021, (2021) [arXiv:2111.11392] [INSPIRE].
– reference: R. Le Vavasseur, Sur le système d’équations aux dérivées partielles simultanées auxquelles satisfait la série hypergéométrique à deux variables F1 (α, β, β′, γ; x, y) (in French), Ann. Facult. Sci. Toulouse Sci. Math. Sci. Phys.7 (1893) F1.
– reference: A.-M. Raclariu, Lectures on celestial holography, arXiv:2107.02075 [INSPIRE].
– reference: Jorge-DiazCPasterskiSSharmaACelestial amplitudes in an ambidextrous basisJHEP2023021552023JHEP...02..155J454967810.1007/JHEP02(2023)155[arXiv:2212.00962] [INSPIRE]
– reference: P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer-Verlag, New York, NY, U.S.A. (1997) [https://doi.org/10.1007/978-1-4612-2256-9] [INSPIRE].
– reference: StiebergerSTaylorTRZhuBYang-Mills as a Liouville theoryPhys. Lett. B2023846465403810.1016/j.physletb.2023.138229[arXiv:2308.09741] [INSPIRE]
– reference: HuYFour-point correlators of light-ray operators in CCFTJHEP2022071042022JHEP...07..104H445829510.1007/JHEP07(2022)104[arXiv:2203.04255] [INSPIRE]
– reference: NIST digital library of mathematical functions, release 1.1.11, https://dlmf.nist.gov/, 15 September 2023.
– reference: J.L. Burchnall and T.W. Chaundy, Expansions of Appell’s double hyper-geometric functions (II), Quart. J. Math.os-12 (1941) 112.
– reference: OsbornHConformal blocks for arbitrary spins in two dimensionsPhys. Lett. B20127181692012PhLB..718..169O299276310.1016/j.physletb.2012.09.045[arXiv:1205.1941] [INSPIRE]
– reference: S. Ferrara and G. Parisi, Conformal covariant correlation functions, Nucl. Phys. B42 (1972) 281 [INSPIRE].
– reference: S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim.4S2 (1972) 115 [INSPIRE].
– reference: G. Mack, Group theoretical approach to conformal invariant quantum field theory, NATO Sci. Ser. B5 (1974) 123 [INSPIRE].
– reference: García-SepúlvedaDGuevaraAKulpJWuJNotes on resonances and unitarity from celestial amplitudesJHEP2022092452022JHEP...09..245G449386810.1007/JHEP09(2022)245[arXiv:2205.14633] [INSPIRE]
– reference: PasterskiSShaoS-HConformal basis for flat space amplitudesPhys. Rev. D2017962017PhRvD..96f5022P385717210.1103/PhysRevD.96.065022[arXiv:1705.01027] [INSPIRE]
– reference: FanWElements of celestial conformal field theoryJHEP2022082132022JHEP...08..213F447308110.1007/JHEP08(2022)213[arXiv:2202.08288] [INSPIRE]
– reference: BanerjeeSGhoshSMHV gluon scattering amplitudes from celestial current algebrasJHEP2021101112021JHEP...10..111B433981510.1007/JHEP10(2021)111[arXiv:2011.00017] [INSPIRE]
– reference: P.O.M. Olsson, Integration of the partial differential equations for the hypergeometric functions F1and FDof two and more variables, J. Math. Phys.5 (1964) 420.
– reference: StiebergerSTaylorTRZhuBCelestial Liouville theory for Yang-Mills amplitudesPhys. Lett. B2023836451750010.1016/j.physletb.2022.137588[arXiv:2209.02724] [INSPIRE]
– reference: A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].
– reference: V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B240 (1984) 312 [INSPIRE].
– reference: PasterskiSShaoS-HStromingerAGluon amplitudes as 2d conformal correlatorsPhys. Rev. D2017962017PhRvD..96h5006P386320110.1103/PhysRevD.96.085006[arXiv:1706.03917] [INSPIRE]
– reference: NandanDSchreiberAVolovichAZlotnikovMCelestial amplitudes: conformal partial waves and soft limitsJHEP2019100182019JHEP...10..018N405967610.1007/JHEP10(2019)018[arXiv:1904.10940] [INSPIRE]
– reference: S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B49 (1972) 77 [INSPIRE].
– reference: FanWCelestial Yang-Mills amplitudes and D = 4 conformal blocksJHEP2022091822022JHEP...09..182F449051810.1007/JHEP09(2022)182[arXiv:2206.08979] [INSPIRE]
– reference: ChangC-MShadow celestial amplitudesJHEP2023020172023JHEP...02..017C454674610.1007/JHEP02(2023)017[arXiv:2210.04725] [INSPIRE]
– reference: W. Fan et al., Conformal blocks from celestial gluon amplitudes. Part II. Single-valued correlators, JHEP11 (2021) 179 [arXiv:2108.10337] [INSPIRE].
– reference: V.S. Dotsenko and V.A. Fateev, Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1, Nucl. Phys. B251 (1985) 691 [INSPIRE].
– reference: Simmons-DuffinDProjectors, shadows, and conformal blocksJHEP2014041462014JHEP...04..146S321404210.1007/JHEP04(2014)146[arXiv:1204.3894] [INSPIRE]
– reference: TaylorTRA course in amplitudesPhys. Rept.201769112017PhR...691....1T368391210.1016/j.physrep.2017.05.002[arXiv:1703.05670] [INSPIRE]
– reference: TaylorTRZhuBCelestial supersymmetryJHEP2023062102023JHEP...06..210T461170710.1007/JHEP06(2023)210[arXiv:2302.12830] [INSPIRE]
– reference: AtanasovAMeltonWRaclariuA-MStromingerAConformal block expansion in celestial CFTPhys. Rev. D20211042021PhRvD.104l6033A436452110.1103/PhysRevD.104.126033[arXiv:2104.13432] [INSPIRE]
– reference: J.L. Burchnall and T.W. Chaundy, Expansions of Appell’s double hypergeometric functions, Quart. J. Math.os-11 (1940) 249.
– reference: F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
– reference: S. Ferrara, A.F. Grillo and G. Parisi, Nonequivalence between conformal covariant Wilson expansion in Euclidean and Minkowski space, Lett. Nuovo Cim.5S2 (1972) 147 [INSPIRE].
– reference: PasterskiSLectures on celestial amplitudesEur. Phys. J. C20218110622021EPJC...81.1062P10.1140/epjc/s10052-021-09846-7[arXiv:2108.04801] [INSPIRE]
– reference: DeSHuYYelleshpur SrikantAVolovichACorrelators of four light-ray operators in CCFTJHEP2022101702022JHEP...10..170D450565510.1007/JHEP10(2022)170[arXiv:2206.08875] [INSPIRE]
– reference: A. Erdélyi, Hypergeometric functions of two variables, Acta Math.83 (1950) 131.
– reference: Y. Hu, L. Ren, A.Y. Srikant and A. Volovich, Celestial dual superconformal symmetry, MHV amplitudes and differential equations, JHEP12 (2021) 171 [arXiv:2106.16111] [INSPIRE].
– reference: D. Simmons-Duffin, Phys 229ab advanced mathematical methods: conformal field theory, (2017).
– reference: LawYTAZlotnikovMRelativistic partial waves for celestial amplitudesJHEP2020111492020JHEP...11..149L420412910.1007/JHEP11(2020)149[arXiv:2008.02331] [INSPIRE]
– reference: V.S. Dotsenko, Série de cours sur la théorie conforme (in French), cel-00092929, September 2006.
– reference: FanWConformal blocks from celestial gluon amplitudesJHEP2021051702021JHEP...05..170F430163410.1007/JHEP05(2021)170[arXiv:2103.04420] [INSPIRE]
– reference: S.I. Bezrodnykh, Analytic continuation of the Appell function F1and integration of the associated system of equations in the logarithmic case, Comput. Math. Math. Phys.57 (2017) 559.
– reference: LamHTShaoS-HConformal basis, optical theorem, and the bulk point singularityPhys. Rev. D2018982018PhRvD..98b5020L392408910.1103/PhysRevD.98.025020[arXiv:1711.06138] [INSPIRE]
– ident: 22654_CR24
  doi: 10.1007/BF02907130
– ident: 22654_CR36
  doi: 10.1007/JHEP12(2021)171
– volume: 10
  start-page: 018
  year: 2019
  ident: 22654_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)018
– ident: 22654_CR42
– ident: 22654_CR44
  doi: 10.1093/qmath/os-12.1.112
– volume: 718
  start-page: 169
  year: 2012
  ident: 22654_CR27
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.09.045
– volume: 11
  start-page: 149
  year: 2020
  ident: 22654_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)149
– volume: 96
  year: 2017
  ident: 22654_CR40
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.085006
– volume: 104
  year: 2021
  ident: 22654_CR16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.126033
– ident: 22654_CR32
– ident: 22654_CR38
  doi: 10.1134/S0965542517040042
– ident: 22654_CR1
– volume: 06
  start-page: 210
  year: 2023
  ident: 22654_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP06(2023)210
– ident: 22654_CR7
  doi: 10.1007/978-1-4612-2256-9
– ident: 22654_CR23
  doi: 10.1007/BF02815915
– ident: 22654_CR33
  doi: 10.1016/S0550-3213(85)80004-3
– ident: 22654_CR43
  doi: 10.1093/qmath/os-11.1.249
– volume: 836
  year: 2023
  ident: 22654_CR29
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137588
– volume: 10
  start-page: 170
  year: 2022
  ident: 22654_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP10(2022)170
– volume: 02
  start-page: 017
  year: 2023
  ident: 22654_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP02(2023)017
– ident: 22654_CR26
– volume: 691
  start-page: 1
  year: 2017
  ident: 22654_CR41
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2017.05.002
– ident: 22654_CR13
  doi: 10.1007/JHEP11(2021)179
– ident: 22654_CR45
  doi: 10.5802/afst.93
– ident: 22654_CR25
  doi: 10.1016/0550-3213(72)90587-1
– volume: 846
  year: 2023
  ident: 22654_CR31
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2023.138229
– volume: 07
  start-page: 104
  year: 2022
  ident: 22654_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP07(2022)104
– ident: 22654_CR37
  doi: 10.1063/1.1704134
– volume: 10
  start-page: 111
  year: 2021
  ident: 22654_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP10(2021)111
– ident: 22654_CR4
– ident: 22654_CR34
  doi: 10.1016/0550-3213(84)90269-4
– volume: 98
  year: 2018
  ident: 22654_CR9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.025020
– ident: 22654_CR39
  doi: 10.1007/BF02392635
– volume: 81
  start-page: 1062
  year: 2021
  ident: 22654_CR3
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09846-7
– volume: 04
  start-page: 146
  year: 2014
  ident: 22654_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP04(2014)146
– ident: 22654_CR2
– ident: 22654_CR8
– volume: 08
  start-page: 213
  year: 2022
  ident: 22654_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)213
– volume: 02
  start-page: 155
  year: 2023
  ident: 22654_CR17
  publication-title: JHEP
  doi: 10.1007/JHEP02(2023)155
– volume: 96
  year: 2017
  ident: 22654_CR5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.065022
– volume: 05
  start-page: 170
  year: 2021
  ident: 22654_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)170
– volume: 09
  start-page: 245
  year: 2022
  ident: 22654_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP09(2022)245
– ident: 22654_CR22
  doi: 10.1016/0550-3213(72)90480-4
– ident: 22654_CR6
  doi: 10.1007/978-1-4615-8909-9_7
– volume: 09
  start-page: 182
  year: 2022
  ident: 22654_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP09(2022)182
SSID ssj0015190
Score 2.465582
Snippet A bstract In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = h ¯ = (1...
In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = $$ \overline{h} $$...
In celestial conformal field theory (CCFT), the 4d massless scalars are represented by 2d conformal operators with conformal dimensions h = h¯ = (1 + iλ)/2....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 145
SubjectTerms Amplitudes
Classical and Quantum Gravitation
Correlation
Decomposition
Elementary Particles
Field theory
Hypergeometric functions
Mellin transforms
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Scalars
String Theory
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qRfAiPrFaZQ8e2kMkyT7aHKW0lILiwUJvYR9ZEGMqJh78984mWYtKDx4CS3ZmD7PZfN_s7MwC3HCNy48mIkAsSAKmhAyQtaKXwhPKHB6zzG0N3D-I-ZItVnzVgcjnwtSn3X1Isv5T-2S3xXz6GEYDdNbZMGJ8B3a5a7v4rEtwaAMHSEhCX8Hnr9JP8Nkwyl9B0BpbZodw0JJCctfM4hF0suIY9urDmbo8ATVBbHBLMSfovdYsMycKUeilJGtLXpH_Yn9JSrQ3-qlEFgYfmX_icE6jei6agt5OGgkfQeqZ5TlxmFa_nkWnsJxNnybzoL0bIdCUjarAjpNQs8iMtYi0UIwlIlPahtxYKZUKjeImopqPlHCVZ9EA1srEGGo0QpK19Ay6xbrIzoHYcRabRAudUYrjaBVKGatQm5Gh1tCwB7feaKluC4e7-yvy1Jc8bqycOiujK8F7MPhWeGtqZmwX7ftZSNvFU6ZxgrSDoa8U9WDoZ2bTvWWoi3_IXsK-a7qtlJj1oVu9f2RXSC4qdV1_Tl_L7siD
  priority: 102
  providerName: Springer Nature
Title Celestial conformal blocks of massless scalars and analytic continuation of the Appell function F1
URI https://link.springer.com/article/10.1007/JHEP01(2024)145
https://www.proquest.com/docview/2918142171
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_oRPAifuL8GDl40EM1bdK0PYmW1TFwDHHgrTRJA2Ltpp0H_3tfutaJMA8NtEnf4b0mv997Sd8DOPcVTj8WCQexIHK4FJmDrBW9FD9i3OIxz21o4GEkBhM-fPafm4Bb1RyrbNfEeqHWU2Vj5NdehFjEkUC7N7N3x1aNsrurTQmNddjAJTj0O7Bx1x-NH3_2EZCf0DahDw2uh4P-mLoX6PDzS9f-wfQbi5YE88-eaA01yQ5sNxyR3C6MugtrebkHm_VZTVXtg4wRKuzMLAg6szXpLIhEUHqtyNSQN6TD2F-RCtWPbivJSo1XVnyhOPvG_KVc5Pe2o5H_EWSieVEQC3H148Q9gEnSf4oHTlMqwVGMB3PHhBFV3NWhEq4SkvNI5FIZ6muTZVJSLX3tMuUHUthEtKgAY7JIa6YVIpQx7BA65bTMj4CYMPd0pITKGUM5StIs8yRVOtDMaEa7cNUqLVVNHnFbzqJI2wzICy2nVsvoWfhduPh5YbZIobF66GlrhbSZS1W6tHwXLlvLLLtXiDr-X9QJbNmRNpji8VPozD8-8zOkF3PZg_Uwue81XxLexR63rYh7tcOO7cS7_QaM0tLj
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xUAUX1BYqAoHuoUjkYFh71072gFBJE4VXhKpEys31vqSqxgk4CPGn-I3M-kGqSvTGwRfv7hx2Zuf7Zh8zAN9ChcuPichDLBAel1HiIWvFKCUUjDs85sZtDVwPo8GYX0zCyRI8129h3LXK2icWjlpPldsjPw4EYhFHAu2fzu48VzXKna7WJTRKs7g0T48YsuUn5z9QvwdB0O-NugOvqirgKcbbc892BFXc1x0V-SqSnIvISGVpqG2SSEm1DLXPVNiWkcvZGtDA2kRozbRCZ24tQ7nLsIo0Q-AqWj3rDW9-vp5bIB-idQIh2j6-GPRuqH-IMnjLdy-m_sa-BaH95wy2gLb-R9ioOCn5XhrRJ1gy2Wf4UNwNVfkmyC5Ck_MEKcHguSC5KZEIgn9yMrXkFuk3tuckR3VjmEySTOOXpE8ozo2Y_87KfOKuN_JNgszXpClxkFr87vtbMH6XSfwCK9k0M9tAbMcEWqhIGcZQjpI0SQJJlW5rZjWjDTiqJy1WVd5yVz4jjeuMy-Usx26WMZIJG3D4OmBWpux4u2uz1kJcrd08XlhaA1q1ZhbNb4ja-b-or7A2GF1fxVfnw8tdWHej3EZOwJuwMr9_MHtIbeZyv7InAr_e24RfALb-DWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BIhCXquUhwqPdQ5HgYLL2rjfxoUItJAoJRBECiZvxviSEcQCnqvhr_XWd9SOpKtEbB1_s3ZE8M7vfN_uYAfgaKhx-LBIeYkHkcSkSD1krRilhxLjDY27c0sDlWAxu-PA2vF2C3_VdGHessp4Ti4laT5VbI28HEWIRRwLtt211LGJy1j95evZcBSm301qX0yhdZGRef2H4ln87P0NbHwRBv3d9OvCqCgOeYrwz82w3oor7uquEr4TkPBJGKktDbZNESqplqH2mwo4ULn9rQANrk0hrphVO7NYylLsMTfw50W1A80dvPLma72EgN6J1MiHaaQ8HvQn1D1EGP_Ld7am_cXBBbv_Zjy1grv8RPlT8lHwvHeoTLJlsHVaKc6Iq3wB5ijDlZoWUYCBdEN6USATEh5xMLXlEKo7fc5Kj6TFkJkmm8UnSVxTneszuszK3uGuN3JMgCzZpShy8Fq_7_ibcvIsSt6CRTTOzDcR2TaAjJZRhDOUoSZMkkFTpjmZWM9qC41ppsapymLtSGmlcZ18utRw7LWNUE7bgcN7hqUzf8XbTvdoKcTWO83jhdS04qi2z-PyGqJ3_i_oCq-i68cX5eLQLa66TW9MJ-B40Zi8_zT6ynJn8XLkTgbv39uA_zI4RkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Celestial+conformal+blocks+of+massless+scalars+and+analytic+continuation+of+the+Appell+function+F1&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fan%2C+Wei&rft.date=2024-01-24&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282024%29145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP01_2024_145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon