Electric field quenching of graphene oxide photoluminescence

With the advent of graphene, there has been an interest in utilizing this material and its derivative, graphene oxide (GO) for novel applications in nanodevices such as bio and gas sensors, solid-state supercapacitors and solar cells. Although GO exhibits lower conductivity and structural stability,...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 31; no. 46; pp. 465203 - 465211
Main Authors Lee, Bong Han, Valimukhametova, Alina, Ryan, Conor, Paz, Thomas, Grote, Fabian, Naumov, Anton V
Format Journal Article
LanguageEnglish
Published IOP Publishing 13.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the advent of graphene, there has been an interest in utilizing this material and its derivative, graphene oxide (GO) for novel applications in nanodevices such as bio and gas sensors, solid-state supercapacitors and solar cells. Although GO exhibits lower conductivity and structural stability, it possesses an energy band gap that enables fluorescence emission in the visible/near infrared leading to a plethora of optoelectronic applications. In order to allow fine-tuning of its optical properties in the device geometry, new physical techniques are required that, unlike existing chemical approaches, yield substantial alteration of GO structure. Such a desired new technique is one that is electronically controlled and leads to reversible changes in GO optoelectronic properties. In this work, we for the first time investigate the methods to controllably alter the optical response of GO with the electric field and provide theoretical modeling of the electric field-induced changes. Field-dependent GO emission is studied in bulk GO/polyvinylpyrrolidone films with up to 6% reversible decrease under 1.6 V µm−1 electric fields. On an individual flake level, a more substantial over 50% quenching is achieved for select GO flakes in a polymeric matrix between interdigitated microelectrodes subject to two orders of magnitude higher fields. This effect is modeled on a single exciton level by utilizing Wentzel, Kremer, and Brillouin approximation for electron escape from the exciton potential well. In an aqueous suspension at low fields, GO flakes exhibit electrophoretic migration, indicating a degree of charge separation and a possibility of manipulating GO materials on a single-flake level to assemble electric field-controlled microelectronics. As a result of this work, we suggest the potential of varying the optical and electronic properties of GO via the electric field for the advancement and control over its optoelectronic device applications.
AbstractList With the advent of graphene, there has been an interest in utilizing this material and its derivative, graphene oxide (GO) for novel applications in nanodevices such as bio and gas sensors, solid-state supercapacitors and solar cells. Although GO exhibits lower conductivity and structural stability, it possesses an energy band gap that enables fluorescence emission in the visible/near infrared leading to a plethora of optoelectronic applications. In order to allow fine-tuning of its optical properties in the device geometry, new physical techniques are required that, unlike existing chemical approaches, yield substantial alteration of GO structure. Such a desired new technique is one that is electronically controlled and leads to reversible changes in GO optoelectronic properties. In this work, we for the first time investigate the methods to controllably alter the optical response of GO with the electric field and provide theoretical modeling of the electric field-induced changes. Field-dependent GO emission is studied in bulk GO/polyvinylpyrrolidone films with up to 6% reversible decrease under 1.6 V µm−1 electric fields. On an individual flake level, a more substantial over 50% quenching is achieved for select GO flakes in a polymeric matrix between interdigitated microelectrodes subject to two orders of magnitude higher fields. This effect is modeled on a single exciton level by utilizing Wentzel, Kremer, and Brillouin approximation for electron escape from the exciton potential well. In an aqueous suspension at low fields, GO flakes exhibit electrophoretic migration, indicating a degree of charge separation and a possibility of manipulating GO materials on a single-flake level to assemble electric field-controlled microelectronics. As a result of this work, we suggest the potential of varying the optical and electronic properties of GO via the electric field for the advancement and control over its optoelectronic device applications.
With the advent of graphene, there has been an interest in utilizing this material and its derivative, graphene oxide (GO) for novel applications in nanodevices such as bio and gas sensors, solid-state supercapacitors and solar cells. Although GO exhibits lower conductivity and structural stability, it possesses an energy band gap that enables fluorescence emission in the visible/near infrared leading to a plethora of optoelectronic applications. In order to allow fine-tuning of its optical properties in the device geometry, new physical techniques are required that, unlike existing chemical approaches, yield substantial alteration of GO structure. Such a desired new technique is one that is electronically controlled and leads to reversible changes in GO optoelectronic properties. In this work, we for the first time investigate the methods to controllably alter the optical response of GO with the electric field and provide theoretical modeling of the electric field-induced changes. Field-dependent GO emission is studied in bulk GO/polyvinylpyrrolidone films with up to 6% reversible decrease under 1.6 V µm-1 electric fields. On an individual flake level, a more substantial over 50% quenching is achieved for select GO flakes in a polymeric matrix between interdigitated microelectrodes subject to two orders of magnitude higher fields. This effect is modeled on a single exciton level by utilizing Wentzel, Kremer, and Brillouin approximation for electron escape from the exciton potential well. In an aqueous suspension at low fields, GO flakes exhibit electrophoretic migration, indicating a degree of charge separation and a possibility of manipulating GO materials on a single-flake level to assemble electric field-controlled microelectronics. As a result of this work, we suggest the potential of varying the optical and electronic properties of GO via the electric field for the advancement and control over its optoelectronic device applications.With the advent of graphene, there has been an interest in utilizing this material and its derivative, graphene oxide (GO) for novel applications in nanodevices such as bio and gas sensors, solid-state supercapacitors and solar cells. Although GO exhibits lower conductivity and structural stability, it possesses an energy band gap that enables fluorescence emission in the visible/near infrared leading to a plethora of optoelectronic applications. In order to allow fine-tuning of its optical properties in the device geometry, new physical techniques are required that, unlike existing chemical approaches, yield substantial alteration of GO structure. Such a desired new technique is one that is electronically controlled and leads to reversible changes in GO optoelectronic properties. In this work, we for the first time investigate the methods to controllably alter the optical response of GO with the electric field and provide theoretical modeling of the electric field-induced changes. Field-dependent GO emission is studied in bulk GO/polyvinylpyrrolidone films with up to 6% reversible decrease under 1.6 V µm-1 electric fields. On an individual flake level, a more substantial over 50% quenching is achieved for select GO flakes in a polymeric matrix between interdigitated microelectrodes subject to two orders of magnitude higher fields. This effect is modeled on a single exciton level by utilizing Wentzel, Kremer, and Brillouin approximation for electron escape from the exciton potential well. In an aqueous suspension at low fields, GO flakes exhibit electrophoretic migration, indicating a degree of charge separation and a possibility of manipulating GO materials on a single-flake level to assemble electric field-controlled microelectronics. As a result of this work, we suggest the potential of varying the optical and electronic properties of GO via the electric field for the advancement and control over its optoelectronic device applications.
Author Naumov, Anton V
Paz, Thomas
Valimukhametova, Alina
Ryan, Conor
Lee, Bong Han
Grote, Fabian
Author_xml – sequence: 1
  givenname: Bong Han
  surname: Lee
  fullname: Lee, Bong Han
  organization: Texas Christian University Department of Physics and Astronomy, Fort Worth, Texas, United States of America
– sequence: 2
  givenname: Alina
  surname: Valimukhametova
  fullname: Valimukhametova, Alina
  organization: Texas Christian University Department of Physics and Astronomy, Fort Worth, Texas, United States of America
– sequence: 3
  givenname: Conor
  surname: Ryan
  fullname: Ryan, Conor
  organization: Texas Christian University Department of Physics and Astronomy, Fort Worth, Texas, United States of America
– sequence: 4
  givenname: Thomas
  surname: Paz
  fullname: Paz, Thomas
  organization: 36th Infantry Division Headquarters, Texas Army National Guard , Austin, Texas, United States of America
– sequence: 5
  givenname: Fabian
  orcidid: 0000-0002-7419-4480
  surname: Grote
  fullname: Grote, Fabian
  organization: Institute of Chemistry and Biochemistry, Free University of Berlin , Berlin, Germany
– sequence: 6
  givenname: Anton V
  orcidid: 0000-0001-6427-7277
  surname: Naumov
  fullname: Naumov, Anton V
  email: a.naumov@tcu.edu
  organization: Texas Christian University Department of Physics and Astronomy, Fort Worth, Texas, United States of America
BookMark eNp9kM9LwzAUx4NMcJvePfaoYF3SpEkDXmTMHzDwoueQJi9bRpfUtAP97-2oeBARHjx4fL6PL58ZmoQYAKFLgm8JrqoFoZzkvCyqha61Ee4ETX9OEzTFshQ5YxU7Q7Ou22FMSFWQKbpbNWD65E3mPDQ2ez9AMFsfNll02SbpdgsBsvjhLWTtNvaxOex9gM4MGJyjU6ebDi6-9xy9Paxel0_5-uXxeXm_zg1los9dWQN2VhDpHBeylMxWzkjOgZYOG0ksxU5ojSkIIpxltjClhNpazkRNCZ2jq_Fvm-JQsOvV3g8NmkYHiIdOFYxiWRHCigHlI2pS7LoEThnf697H0CftG0WwOupSRzfq6EaNuoYg_hVsk9_r9Plf5GaM-NiqXTykMEj4D7_-Aw86REWJYnyYssBUtdbRLyPyjN0
CODEN NNOTER
CitedBy_id crossref_primary_10_3390_nano12142444
Cites_doi 10.1021/nn900962f
10.1016/j.apsusc.2011.12.015
10.1021/ja01539a017
10.1088/0957-4484/17/2/035
10.1038/nchem.907
10.1016/j.jmat.2018.02.004
10.1186/s11671-017-2150-5
10.1002/adma.201001068
10.1021/acs.jpcc.5b04529
10.1021/nn404563k
10.1038/s41598-017-06107-0
10.1016/j.ceramint.2019.04.165
10.1063/1.3098358
10.1038/srep01868
10.1063/1.4893787
10.1038/srep02250
10.1126/science.1102896
10.1021/jp060936f
10.1039/C2CP43443A
10.1039/C7CP02303K
10.1103/PhysRevB.84.085408
10.1016/j.trac.2018.11.027
10.1016/j.mattod.2013.09.004
10.1016/j.pmatsci.2017.07.004
10.1021/ja040082h
10.1021/nn1015506
10.1021/jz500516u
10.1038/s41598-018-36617-4
10.1088/0953-8984/27/1/013002
10.1021/jacs.6b05928
10.1021/cm901247t
10.1002/adma.200903689
10.1039/c0cc02374d
10.1016/j.carbon.2014.09.082
10.1002/adma.201002312
10.1021/nl051828s
10.1016/j.tsf.2013.12.019
10.1038/nature06016
10.1016/j.jmat.2016.01.001
10.1063/1.4906593
10.1038/srep36143
10.1021/nn1006368
10.1021/nl8019938
10.1021/nn404889b
10.1002/anie.201200474
10.1016/j.ssc.2010.07.017
10.1039/C7RA12024A
10.1016/j.synthmet.2012.05.026
10.1016/j.matlet.2013.04.034
10.1017/9781316995433
10.1021/nl302624p
10.1021/acs.jpcc.5b10187
10.1103/RevModPhys.81.109
10.1039/c3tc00707c
ContentType Journal Article
Copyright 2020 IOP Publishing Ltd
Copyright_xml – notice: 2020 IOP Publishing Ltd
DBID AAYXX
CITATION
7X8
DOI 10.1088/1361-6528/abac7f
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Electric field quenching of graphene oxide photoluminescence
EISSN 1361-6528
ExternalDocumentID 10_1088_1361_6528_abac7f
nanoabac7f
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
7X8
ID FETCH-LOGICAL-c347t-f5be0fd719ff679594d8fc966e35f0c91d30f7aa03e717fd4d2c59ebdd647b313
IEDL.DBID IOP
ISSN 0957-4484
1361-6528
IngestDate Fri Jul 11 02:42:48 EDT 2025
Tue Jul 01 01:27:08 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Wed Aug 21 03:33:34 EDT 2024
Thu Jan 07 14:56:39 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-f5be0fd719ff679594d8fc966e35f0c91d30f7aa03e717fd4d2c59ebdd647b313
Notes NANO-126261.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6427-7277
0000-0002-7419-4480
PQID 2430981142
PQPubID 23479
PageCount 9
ParticipantIDs crossref_primary_10_1088_1361_6528_abac7f
iop_journals_10_1088_1361_6528_abac7f
proquest_miscellaneous_2430981142
crossref_citationtrail_10_1088_1361_6528_abac7f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201113
2020-11-13
PublicationDateYYYYMMDD 2020-11-13
PublicationDate_xml – month: 11
  year: 2020
  text: 20201113
  day: 13
PublicationDecade 2020
PublicationTitle Nanotechnology
PublicationTitleAbbrev Nano
PublicationTitleAlternate Nanotechnology
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
47
49
Perrozzi F (10) 2015; 27
Ohno Y (42) 2006; 17
50
51
52
53
54
11
55
12
56
13
57
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
Rawat A (48) 2014; 52
Naumov A V (34) 2016
30
31
32
33
35
36
37
38
39
Md Tanvir H (14) 2017; 28
40
41
43
References_xml – ident: 43
  doi: 10.1021/nn900962f
– year: 2016
  ident: 34
  publication-title: Graphene Oxide: Fundamentals and Applications
– ident: 4
  doi: 10.1016/j.apsusc.2011.12.015
– ident: 11
  doi: 10.1021/ja01539a017
– volume: 17
  start-page: 549
  issn: 0957-4484
  year: 2006
  ident: 42
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/2/035
– ident: 20
  doi: 10.1038/nchem.907
– ident: 53
  doi: 10.1016/j.jmat.2018.02.004
– ident: 51
  doi: 10.1186/s11671-017-2150-5
– ident: 7
  doi: 10.1002/adma.201001068
– ident: 35
  doi: 10.1021/acs.jpcc.5b04529
– ident: 28
  doi: 10.1021/nn404563k
– ident: 31
  doi: 10.1038/s41598-017-06107-0
– ident: 47
  doi: 10.1016/j.ceramint.2019.04.165
– ident: 17
  doi: 10.1063/1.3098358
– ident: 54
  doi: 10.1038/srep01868
– ident: 23
  doi: 10.1063/1.4893787
– ident: 27
  doi: 10.1038/srep02250
– ident: 1
  doi: 10.1126/science.1102896
– ident: 39
  doi: 10.1021/jp060936f
– ident: 57
  doi: 10.1039/C2CP43443A
– ident: 9
  doi: 10.1039/C7CP02303K
– ident: 49
  doi: 10.1103/PhysRevB.84.085408
– ident: 55
  doi: 10.1016/j.trac.2018.11.027
– ident: 21
  doi: 10.1016/j.mattod.2013.09.004
– ident: 8
  doi: 10.1016/j.pmatsci.2017.07.004
– ident: 45
  doi: 10.1021/ja040082h
– volume: 52
  start-page: 632
  issn: 0019-5596
  year: 2014
  ident: 48
  publication-title: Indian J. Pure Appl. Phys.
– ident: 3
  doi: 10.1021/nn1015506
– volume: 28
  issn: 0957-4484
  year: 2017
  ident: 14
  publication-title: Nanotechnology
– ident: 30
  doi: 10.1021/jz500516u
– ident: 19
  doi: 10.1038/s41598-018-36617-4
– volume: 27
  issn: 0953-8984
  year: 2015
  ident: 10
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/27/1/013002
– ident: 16
  doi: 10.1021/jacs.6b05928
– ident: 13
  doi: 10.1021/cm901247t
– ident: 26
  doi: 10.1002/adma.200903689
– ident: 38
  doi: 10.1039/c0cc02374d
– ident: 5
  doi: 10.1016/j.carbon.2014.09.082
– ident: 40
  doi: 10.1002/adma.201002312
– ident: 41
  doi: 10.1021/nl051828s
– ident: 56
  doi: 10.1016/j.tsf.2013.12.019
– ident: 6
  doi: 10.1038/nature06016
– ident: 52
  doi: 10.1016/j.jmat.2016.01.001
– ident: 25
  doi: 10.1063/1.4906593
– ident: 12
  doi: 10.1038/srep36143
– ident: 15
  doi: 10.1021/nn1006368
– ident: 32
  doi: 10.1021/nl8019938
– ident: 24
  doi: 10.1021/nn404889b
– ident: 37
  doi: 10.1002/anie.201200474
– ident: 29
  doi: 10.1016/j.ssc.2010.07.017
– ident: 36
  doi: 10.1039/C7RA12024A
– ident: 2
  doi: 10.1016/j.synthmet.2012.05.026
– ident: 33
  doi: 10.1016/j.matlet.2013.04.034
– ident: 44
  doi: 10.1017/9781316995433
– ident: 46
  doi: 10.1021/nl302624p
– ident: 50
  doi: 10.1021/acs.jpcc.5b10187
– ident: 18
  doi: 10.1103/RevModPhys.81.109
– ident: 22
  doi: 10.1039/c3tc00707c
SSID ssj0011821
Score 2.3439307
Snippet With the advent of graphene, there has been an interest in utilizing this material and its derivative, graphene oxide (GO) for novel applications in...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 465203
SubjectTerms electric field
fluorescence quenching
graphene oxide
Title Electric field quenching of graphene oxide photoluminescence
URI https://iopscience.iop.org/article/10.1088/1361-6528/abac7f
https://www.proquest.com/docview/2430981142
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SLYXk0DaP0vSFU5pDDt6VrZEs0V5KyZIW2uSQQA4BoScJLfaS9ULpr69ke5emDaEUfPBhbMljaTSj-fQNwNuAkjChizywGKuikCEXksjcojTRP0AqMB0U_vKVH5_j5wt2sQbvVmdhmtlg-sfxticK7lU4AOLEpKC8yDkrxUQbbauwDg-o4DyVL_h0crpKIUTHueiJ9qo8xiA45CjvesOtNWk9tvuXYe5Wm-ljuFz2sweZfBsvWjO2P_-gcPzPD3kCjwYvNPvQi27Bmq-3YfM3bsJteNhhQ-18B94fdaVyrm3Wwd2yDnudNq6yJmQd4XW0l1nz49r5bHbVtMneJTC9Td3ahfPp0dnH43woupBbilUb_5nxJLiqkCHwVIgcnQg2BkWeskCsLBwlodKaUB8jweDQlZZJb5zjWBla0KcwqpvaP4OMoXFCJx_BUEQjNK9KXhqClqWVU-7BZKl2ZQdG8lQY47vqMuNCqKQhlTSkeg3tweHqiVnPxnGP7EFUvBqm5PweuTe35GpdN4oWCnm8WEmomrkotL8cECrOv5RU0bVvFnNVIiVSpBPJz_-xwRewUaagPWEJ6UsYtTcL_yp6Nq153Y3gXz8G8Go
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAceBQQyzMgOHDIrhOPHVvigqCrlkfpgUq9uX6KqlWyYrMS4tdjO9mKAqqQkHLIYRI7Y3s8k_n8DcCLgJIwoasysBiropChFJLI0qI00T9AKjAdFP60x3cO8P0hOxzrnOazMN1iNP3TeDsQBQ8qHAFxYlZRXpWc1WKmjbZNmC1c2IDLjHKayPN3P--fpRGi81wNZHtNGeMQHPOUf3vLuX1pI7b9h3HOO878Jhyt-zoATU6mq95M7Y_faBz_42NuwY3RGy3eDOK34ZJvt-D6LxyFW3AlY0Tt8g683s4lc45tkWFvRcZgpx9YRReKTHwd7WbRfT92vlh87fpk9xKo3qau3YWD-faXtzvlWHyhtBSbPo6d8SS4ppIh8FSQHJ0INgZHnrJArKwcJaHRmlAfI8Lg0NWWSW-c49gYWtF7sNl2rb8PBUPjhE6-gqGIRmje1Lw2BC1LO6icwGytemVHZvJUIONU5Qy5ECppSSUtqUFLE3h19sRiYOW4QPZlVL4al-byArnn5-Ra3XaKVgp5vFhNqIpDM4Fn60mh4jpMyRXd-m61VDVSIkU6mfzgHxt8Clf3383Vx929Dw_hWp3i-AQvpI9gs_-28o-js9ObJ3lC_wR_l_XO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric+field+quenching+of+graphene+oxide+photoluminescence&rft.jtitle=Nanotechnology&rft.au=Lee%2C+Bong+Han&rft.au=Valimukhametova%2C+Alina&rft.au=Ryan%2C+Conor&rft.au=Paz%2C+Thomas&rft.date=2020-11-13&rft.pub=IOP+Publishing&rft.issn=0957-4484&rft.eissn=1361-6528&rft.volume=31&rft.issue=46&rft_id=info:doi/10.1088%2F1361-6528%2Fabac7f&rft.externalDocID=nanoabac7f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon