A unique NH-spacer for N-benzamidothiourea based anion sensors. Substituent effect on anion sensing of the ICT dual fluorescent N-(p-dimethylaminobenzamido)-N '-arylthioureas

A series of N-(p-dimethylaminobenzamido)-N'-(substituted-phenyl)thioureas (substituent = p-CH3, H, p-Cl, p-Br, m-Br, m-NO2, and p-NO2) were designed as anion sensors in order to better understand the -NH-spacer via a substituent effect investigation. In these molecules the dual fluorescent intr...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 4; no. 4; pp. 624 - 630
Main Authors Wu, FY, Li, Z, Guo, L, Wang, Lin, MH, Zhao, YF, Jiang, YB
Format Journal Article
LanguageEnglish
Published CAMBRIDGE Royal Soc Chemistry 21.02.2006
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:A series of N-(p-dimethylaminobenzamido)-N'-(substituted-phenyl)thioureas (substituent = p-CH3, H, p-Cl, p-Br, m-Br, m-NO2, and p-NO2) were designed as anion sensors in order to better understand the -NH-spacer via a substituent effect investigation. In these molecules the dual fluorescent intramolecular charge transfer (ICT) fluorophore p-dimethylaminobenzamide as the signal reporter was linked to the anion-binding site, the thiourea moiety, via an N-N single bond. Correlation of the NMR signals of the aromatic and -NH protons with substituents in these molecules indicated that the N-N single bond stopped the ground-state electronic communication between the signal reporter and the anion-binding site. Dual fluorescence was observed in highly polar solvents such as acetonitrile with the former five derivatives. The fact that the CT emission wavelength and the CT to LE emission intensity ratio of the sensors were independent of the substituent existing in the anion-binding moiety suggested that the substituent electronic effect could not be communicated to the CT fluorophore in the excited-state either. Yet in acetonitrile both the CT dual fluorescence and the absorption of the sensors were found to be highly sensitive toward anions. A conformation change around the N-N bond in the sensor molecules was suggested to occur upon anion binding that established the electronic communication between the signal reporter and the anion-binding site. The anion binding constants of the N-(p-dimethylaminobenzamido)thiourea sensors were found higher than those of the corresponding traditional N-phenylthiourea counterparts and the substituent effect on the anion binding constant was much higher than that in the latter. "-NH-" was shown to be a unique spacer that affords N-benzamidothiourea allosteric anion sensors.
ISSN:1477-0520
1477-0539
DOI:10.1039/b513969d