A multifaceted application of designed coulomb explosion occurring on oxidized topological crystalline insulator SnTe
Coulomb explosion, characterized by Coulomb repulsion between particles with the same charge on the surface of a material, has been used to realize exquisite nano-manipulation, however, researchers usually found only one aspect of the application of Coulomb explosion when they utilized it. Herein, w...
Saved in:
Published in | CrystEngComm Vol. 24; no. 3; pp. 571 - 578 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
18.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coulomb explosion, characterized by Coulomb repulsion between particles with the same charge on the surface of a material, has been used to realize exquisite nano-manipulation, however, researchers usually found only one aspect of the application of Coulomb explosion when they utilized it. Herein, we successfully design a "metal@insulator" based Coulomb explosion process by irradiating oxidized topological crystalline insulator SnTe under an electron beam. The occurrence of Coulomb explosion mainly due to the oxide-encapsulated SnTe retained the metallic surface state, which not only can be positively charged but also can realize charge accumulation through the shielding effect of the insulating oxide layer. By changing experimental conditions and carefully studying various experimental phenomena, we conclude six aspects of the application, namely, speculating the metallic surface state of the oxide-encapsulated SnTe, controllable fabricating nanoplates, observing the PVD (physical vapor deposition) process under low temperature, rapid coating film, unraveling the oriented attachment and self-recrystallization of larger nanocrystals and fabricating hollow structure. Our findings are important for utilizing Coulomb explosion as well as other EBI techniques to conduct nano-manipulation.
Multifaceted application of designed coulomb explosion process occurred on the SnTe@oxide experimental model. |
---|---|
AbstractList | Coulomb explosion, characterized by Coulomb repulsion between particles with the same charge on the surface of a material, has been used to realize exquisite nano-manipulation, however, researchers usually found only one aspect of the application of Coulomb explosion when they utilized it. Herein, we successfully design a “metal@insulator” based Coulomb explosion process by irradiating oxidized topological crystalline insulator SnTe under an electron beam. The occurrence of Coulomb explosion mainly due to the oxide-encapsulated SnTe retained the metallic surface state, which not only can be positively charged but also can realize charge accumulation through the shielding effect of the insulating oxide layer. By changing experimental conditions and carefully studying various experimental phenomena, we conclude six aspects of the application, namely, speculating the metallic surface state of the oxide-encapsulated SnTe, controllable fabricating nanoplates, observing the PVD (physical vapor deposition) process under low temperature, rapid coating film, unraveling the oriented attachment and self-recrystallization of larger nanocrystals and fabricating hollow structure. Our findings are important for utilizing Coulomb explosion as well as other EBI techniques to conduct nano-manipulation. Coulomb explosion, characterized by Coulomb repulsion between particles with the same charge on the surface of a material, has been used to realize exquisite nano-manipulation, however, researchers usually found only one aspect of the application of Coulomb explosion when they utilized it. Herein, we successfully design a "metal@insulator" based Coulomb explosion process by irradiating oxidized topological crystalline insulator SnTe under an electron beam. The occurrence of Coulomb explosion mainly due to the oxide-encapsulated SnTe retained the metallic surface state, which not only can be positively charged but also can realize charge accumulation through the shielding effect of the insulating oxide layer. By changing experimental conditions and carefully studying various experimental phenomena, we conclude six aspects of the application, namely, speculating the metallic surface state of the oxide-encapsulated SnTe, controllable fabricating nanoplates, observing the PVD (physical vapor deposition) process under low temperature, rapid coating film, unraveling the oriented attachment and self-recrystallization of larger nanocrystals and fabricating hollow structure. Our findings are important for utilizing Coulomb explosion as well as other EBI techniques to conduct nano-manipulation. Multifaceted application of designed coulomb explosion process occurred on the SnTe@oxide experimental model. |
Author | Chen, Jianbin Zhang, Guofeng |
AuthorAffiliation | Shandong Provincial Key Laboratory of Molecular Engineering Qilu University of Technology (Shandong Academy of Sciences) State Key Laboratory of Biobased Material and Green Papermaking School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: Shandong Provincial Key Laboratory of Molecular Engineering – name: School of Chemistry and Chemical Engineering – name: State Key Laboratory of Biobased Material and Green Papermaking – name: Qilu University of Technology (Shandong Academy of Sciences) |
Author_xml | – sequence: 1 givenname: Guofeng surname: Zhang fullname: Zhang, Guofeng – sequence: 2 givenname: Jianbin surname: Chen fullname: Chen, Jianbin |
BookMark | eNptkctLAzEQxoNUsK1evAsBb8Jqssm-jrXWBxQ82PuS5lFS0mRNstD615u2oiKeMpn5fTPMNyMwsM5KAC4xusWINHcCc4kwoWR5AoaYlmVWI0IGv-IzMAphjRCmGKMh6Cdw05uoFeMySgFZ1xnNWdTOQqegkEGvbMpz1xu3WUK57YwLhyrnvffaruD-s9VCfyQuus4Zt0otDOR-FyIzRlsJtQ29YdF5-GYX8hycKmaCvPh6x2DxOFtMn7P569PLdDLPOKFVzBRpBFtiUaOalk3RYJbXqFFYVWUhRFUViqZFElJXhUBUUKyavFpSRpNAcjIG18e2nXfvvQyxXbve2zSxzcscVXlT5ChR6Ehx70LwUrVcx4MD0TNtWozavbftA57ODt7eJ8nNH0nn9Yb53f_w1RH2gX9zP4cin4A_h2s |
CitedBy_id | crossref_primary_10_1016_j_apt_2023_103970 crossref_primary_10_1021_acsanm_4c06033 crossref_primary_10_1088_1361_6528_acf584 |
Cites_doi | 10.1002/anie.200500496 10.1103/PhysRevLett.82.3416 10.1126/science.1219643 10.1021/nl8016187 10.1038/srep11313 10.1039/C9NR01479A 10.1126/science.289.5480.751 10.1002/anie.201004900 10.1002/adma.201104407 10.1126/science.281.5379.969 10.1002/anie.201409776 10.1103/PhysRevLett.47.160 10.1038/nphys2442 10.1021/ja0292849 10.1038/nnano.2014.81 10.1021/cm303338v 10.1002/adma.200702149 10.1038/ncomms1969 10.1038/natrevmats.2016.34 10.1002/adma.201004493 10.1002/ange.201106826 10.1039/c3cc43097a 10.1063/1.4941234 10.1038/ncomms2191 10.1038/nmat1996 10.1007/3-540-36507-9_1 10.1021/jp0377782 10.1126/science.282.5391.1111 10.1038/s41467-018-02925-6 10.1016/S1387-7003(02)00707-4 10.2138/am-1998-9-1016 10.1021/nn400423y 10.1002/adma.201400136 10.1021/ja500860m 10.1002/adma.200900599 10.1021/jp2059613 10.1039/b104879c 10.1039/c0cc01044h 10.1016/j.apsusc.2011.09.027 10.1126/science.244.4903.426 10.1063/1.3318261 10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9 10.1021/cr068020s 10.1016/j.susc.2005.01.061 10.1021/nl501953s 10.1002/adma.201201779 10.1016/j.apsusc.2018.04.246 10.1038/nmat3449 10.1039/C7TA02222K 10.1002/adma.200903879 10.1039/C8NR01298A 10.1038/ncomms7694 10.1002/adma.200800854 10.1063/1.1802554 10.1063/1.334269 10.1016/S0016-7037(99)00037-X |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/d1ce01343b |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 578 |
ExternalDocumentID | 10_1039_D1CE01343B d1ce01343b |
GroupedDBID | 0-7 0R 1TJ 29F 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABPTK ABRYZ ACGFS ACLDK ADACO ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 E3Z EBS ECGLT EE0 EF- GNO HZ H~N IDZ J3I JG KC5 N9A O9- OK1 P2P R7B RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SLH VH6 0R~ 6J9 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7U5 8FD L7M |
ID | FETCH-LOGICAL-c347t-f39dab1d808469591a2809f1f765dd775f4001dab875d04d41f927b4a4084ec3 |
ISSN | 1466-8033 |
IngestDate | Sun Jun 29 12:35:32 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 Tue Jul 01 02:07:26 EDT 2025 Wed Jan 19 11:26:32 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-f39dab1d808469591a2809f1f765dd775f4001dab875d04d41f927b4a4084ec3 |
Notes | Electronic supplementary information (ESI) available: XRD, XPS spectra, SEM and TEM images. See DOI 10.1039/d1ce01343b ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1104-7237 0000-0001-8793-7338 |
PQID | 2620729520 |
PQPubID | 2047491 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_D1CE01343B rsc_primary_d1ce01343b crossref_citationtrail_10_1039_D1CE01343B proquest_journals_2620729520 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-18 |
PublicationDateYYYYMMDD | 2022-01-18 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Xu (D1CE01343B/cit18/1) 2012; 3 Cho (D1CE01343B/cit53/1) 2011; 23 Guan (D1CE01343B/cit57/1) 2010; 46 Lin (D1CE01343B/cit6/1) 2014; 9 Zhang (D1CE01343B/cit14/1) 2018; 10 Wei (D1CE01343B/cit10/1) 2013; 7 Herman (D1CE01343B/cit59/1) 2013; 49 An (D1CE01343B/cit23/1) 2003; 6 Zhu (D1CE01343B/cit34/1) 2018; 9 Shen (D1CE01343B/cit55/1) 2015; 54 Cölfen (D1CE01343B/cit39/1) 2005; 44 Zhang (D1CE01343B/cit54/1) 2012; 24 Wu (D1CE01343B/cit44/1) 2010; 22 Zhou (D1CE01343B/cit52/1) 2012; 24 Shen (D1CE01343B/cit51/1) 2015; 6 Penn (D1CE01343B/cit31/1) 1999; 63 Duan (D1CE01343B/cit4/1) 2008; 20 Banfield (D1CE01343B/cit28/1) 2000; 289 Dapor (D1CE01343B/cit3/1) 2003; 186 Ostwald (D1CE01343B/cit47/1) 1900; 34 Sattler (D1CE01343B/cit7/1) 1981; 47 Tan (D1CE01343B/cit25/1) 2014; 136 Hsieh (D1CE01343B/cit15/1) 2012; 3 Penn (D1CE01343B/cit30/1) 1998; 83 Penn (D1CE01343B/cit29/1) 1998; 281 Last (D1CE01343B/cit5/1) 2004; 121 Wang (D1CE01343B/cit22/1) 2011; 258 Shen (D1CE01343B/cit27/1) 2014; 14 Yang (D1CE01343B/cit48/1) 2004; 108 Zhang (D1CE01343B/cit42/1) 2008; 8 Vager (D1CE01343B/cit8/1) 1989; 244 Chen (D1CE01343B/cit43/1) 2009; 21 Tanaka (D1CE01343B/cit19/1) 2013; 88 Xiong (D1CE01343B/cit50/1) 2012; 124 Caruso (D1CE01343B/cit40/1) 1998; 282 Lou (D1CE01343B/cit41/1) 2008; 20 Lian (D1CE01343B/cit58/1) 2018; 122 Lee (D1CE01343B/cit33/1) 2016; 1 Gu (D1CE01343B/cit24/1) 2017; 5 Krasheninnikov (D1CE01343B/cit2/1) 2010; 107 Teng (D1CE01343B/cit46/1) 2014; 26 Wang (D1CE01343B/cit13/1) 2019; 11 Tanaka (D1CE01343B/cit16/1) 2012; 8 Berchenko (D1CE01343B/cit26/1) 2018; 452 Kamata (D1CE01343B/cit36/1) 2003; 125 Dziawa (D1CE01343B/cit17/1) 2012; 11 Neudachina (D1CE01343B/cit21/1) 2005; 584 Krasheninnikov (D1CE01343B/cit1/1) 2007; 6 Teng (D1CE01343B/cit45/1) 2013; 25 Chelkowski (D1CE01343B/cit9/1) 1999; 82 Chen (D1CE01343B/cit12/1) 2015; 5 Wan (D1CE01343B/cit38/1) 2007; 107 Lai (D1CE01343B/cit56/1) 2011; 50 Fowler (D1CE01343B/cit37/1) 2001 Li (D1CE01343B/cit32/1) 2012; 336 Zhang (D1CE01343B/cit49/1) 2011; 115 Caruso (D1CE01343B/cit35/1) 2000; 6 Saghir (D1CE01343B/cit20/1) 2016; 108 Gross (D1CE01343B/cit11/1) 1984; 56 |
References_xml | – volume: 44 start-page: 5576 year: 2005 ident: D1CE01343B/cit39/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200500496 – volume: 82 start-page: 3416 year: 1999 ident: D1CE01343B/cit9/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.3416 – volume: 336 start-page: 1014 year: 2012 ident: D1CE01343B/cit32/1 publication-title: Science doi: 10.1126/science.1219643 – volume: 8 start-page: 2867 year: 2008 ident: D1CE01343B/cit42/1 publication-title: Nano Lett. doi: 10.1021/nl8016187 – volume: 5 start-page: 11313 year: 2015 ident: D1CE01343B/cit12/1 publication-title: Sci. Rep. doi: 10.1038/srep11313 – volume: 11 start-page: 7595 year: 2019 ident: D1CE01343B/cit13/1 publication-title: Nanoscale doi: 10.1039/C9NR01479A – volume: 34 start-page: 495 year: 1900 ident: D1CE01343B/cit47/1 publication-title: Phys. Chem. – volume: 289 start-page: 751 year: 2000 ident: D1CE01343B/cit28/1 publication-title: Science doi: 10.1126/science.289.5480.751 – volume: 50 start-page: 2738 year: 2011 ident: D1CE01343B/cit56/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201004900 – volume: 24 start-page: 745 year: 2012 ident: D1CE01343B/cit52/1 publication-title: Adv. Mater. doi: 10.1002/adma.201104407 – volume: 281 start-page: 969 year: 1998 ident: D1CE01343B/cit29/1 publication-title: Science doi: 10.1126/science.281.5379.969 – volume: 54 start-page: 1868 year: 2015 ident: D1CE01343B/cit55/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409776 – volume: 47 start-page: 160 year: 1981 ident: D1CE01343B/cit7/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.47.160 – volume: 8 start-page: 800 year: 2012 ident: D1CE01343B/cit16/1 publication-title: Nat. Phys. doi: 10.1038/nphys2442 – volume: 125 start-page: 2384 year: 2003 ident: D1CE01343B/cit36/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0292849 – volume: 9 start-page: 436 year: 2014 ident: D1CE01343B/cit6/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.81 – volume: 25 start-page: 98 year: 2013 ident: D1CE01343B/cit45/1 publication-title: Chem. Mater. doi: 10.1021/cm303338v – volume: 20 start-page: 3284 year: 2008 ident: D1CE01343B/cit4/1 publication-title: Adv. Mater. doi: 10.1002/adma.200702149 – volume: 3 start-page: 982 year: 2012 ident: D1CE01343B/cit15/1 publication-title: Nat. Commun. doi: 10.1038/ncomms1969 – volume: 1 start-page: 16034 year: 2016 ident: D1CE01343B/cit33/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.34 – volume: 23 start-page: 1720 year: 2011 ident: D1CE01343B/cit53/1 publication-title: Adv. Mater. doi: 10.1002/adma.201004493 – volume: 124 start-page: 973 year: 2012 ident: D1CE01343B/cit50/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201106826 – volume: 49 start-page: 6203 year: 2013 ident: D1CE01343B/cit59/1 publication-title: Chem. Commun. doi: 10.1039/c3cc43097a – volume: 108 start-page: 061602 year: 2016 ident: D1CE01343B/cit20/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4941234 – volume: 3 start-page: 1192 year: 2012 ident: D1CE01343B/cit18/1 publication-title: Nat. Commun. doi: 10.1038/ncomms2191 – volume: 6 start-page: 723 year: 2007 ident: D1CE01343B/cit1/1 publication-title: Nat. Mater. doi: 10.1038/nmat1996 – volume: 186 start-page: 1 year: 2003 ident: D1CE01343B/cit3/1 publication-title: Springer Tracts Mod. Phys. doi: 10.1007/3-540-36507-9_1 – volume: 108 start-page: 3492 year: 2004 ident: D1CE01343B/cit48/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp0377782 – volume: 282 start-page: 1111 year: 1998 ident: D1CE01343B/cit40/1 publication-title: Science doi: 10.1126/science.282.5391.1111 – volume: 9 start-page: 421 year: 2018 ident: D1CE01343B/cit34/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02925-6 – volume: 6 start-page: 181 year: 2003 ident: D1CE01343B/cit23/1 publication-title: Inorg. Chem. Commun. doi: 10.1016/S1387-7003(02)00707-4 – volume: 83 start-page: 1077 year: 1998 ident: D1CE01343B/cit30/1 publication-title: Am. Mineral. doi: 10.2138/am-1998-9-1016 – volume: 7 start-page: 3491 year: 2013 ident: D1CE01343B/cit10/1 publication-title: ACS Nano doi: 10.1021/nn400423y – volume: 26 start-page: 3741 year: 2014 ident: D1CE01343B/cit46/1 publication-title: Adv. Mater. doi: 10.1002/adma.201400136 – volume: 136 start-page: 7006 year: 2014 ident: D1CE01343B/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500860m – volume: 122 start-page: 49 year: 2018 ident: D1CE01343B/cit58/1 publication-title: J. Phys. Chem. C – volume: 21 start-page: 3804 year: 2009 ident: D1CE01343B/cit43/1 publication-title: Adv. Mater. doi: 10.1002/adma.200900599 – volume: 115 start-page: 18479 year: 2011 ident: D1CE01343B/cit49/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp2059613 – start-page: 2028 year: 2001 ident: D1CE01343B/cit37/1 publication-title: Chem. Commun. doi: 10.1039/b104879c – volume: 46 start-page: 6605 year: 2010 ident: D1CE01343B/cit57/1 publication-title: Chem. Commun. doi: 10.1039/c0cc01044h – volume: 258 start-page: 919 year: 2011 ident: D1CE01343B/cit22/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.09.027 – volume: 244 start-page: 426 year: 1989 ident: D1CE01343B/cit8/1 publication-title: Science doi: 10.1126/science.244.4903.426 – volume: 107 start-page: 3 year: 2010 ident: D1CE01343B/cit2/1 publication-title: J. Appl. Phys. doi: 10.1063/1.3318261 – volume: 6 start-page: 413 year: 2000 ident: D1CE01343B/cit35/1 publication-title: Chem. – Eur. J. doi: 10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9 – volume: 107 start-page: 2821 year: 2007 ident: D1CE01343B/cit38/1 publication-title: Chem. Rev. doi: 10.1021/cr068020s – volume: 584 start-page: 77 year: 2005 ident: D1CE01343B/cit21/1 publication-title: Surf. Sci. doi: 10.1016/j.susc.2005.01.061 – volume: 14 start-page: 4183 year: 2014 ident: D1CE01343B/cit27/1 publication-title: Nano Lett. doi: 10.1021/nl501953s – volume: 24 start-page: 4609 year: 2012 ident: D1CE01343B/cit54/1 publication-title: Adv. Mater. doi: 10.1002/adma.201201779 – volume: 88 start-page: 330 year: 2013 ident: D1CE01343B/cit19/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 452 start-page: 134 year: 2018 ident: D1CE01343B/cit26/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.246 – volume: 11 start-page: 1023 year: 2012 ident: D1CE01343B/cit17/1 publication-title: Nat. Mater. doi: 10.1038/nmat3449 – volume: 5 start-page: 11171 year: 2017 ident: D1CE01343B/cit24/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02222K – volume: 22 start-page: 1516 year: 2010 ident: D1CE01343B/cit44/1 publication-title: Adv. Mater. doi: 10.1002/adma.200903879 – volume: 10 start-page: 8285 year: 2018 ident: D1CE01343B/cit14/1 publication-title: Nanoscale doi: 10.1039/C8NR01298A – volume: 6 start-page: 6694 year: 2015 ident: D1CE01343B/cit51/1 publication-title: Nat. Commun. doi: 10.1038/ncomms7694 – volume: 20 start-page: 3987 year: 2008 ident: D1CE01343B/cit41/1 publication-title: Adv. Mater. doi: 10.1002/adma.200800854 – volume: 121 start-page: 8329 year: 2004 ident: D1CE01343B/cit5/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1802554 – volume: 56 start-page: 2333 year: 1984 ident: D1CE01343B/cit11/1 publication-title: J. Appl. Phys. doi: 10.1063/1.334269 – volume: 63 start-page: 1549 year: 1999 ident: D1CE01343B/cit31/1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00037-X |
SSID | ssj0014110 |
Score | 2.3608704 |
Snippet | Coulomb explosion, characterized by Coulomb repulsion between particles with the same charge on the surface of a material, has been used to realize exquisite... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 571 |
SubjectTerms | Charged particles Crystal structure Crystallinity Electron beams Encapsulation Explosions Insulation Low temperature Nanocrystals Physical vapor deposition Recrystallization Shielding Topology |
Title | A multifaceted application of designed coulomb explosion occurring on oxidized topological crystalline insulator SnTe |
URI | https://www.proquest.com/docview/2620729520 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY3QscEK8VhQVZggtCWeLYzuNYLYUFAReCtLfK8QOtVBLUTSXYX89M7DxKe1i4RI1rR1Xmq_2NPfMNIS_zPBUuzVRUKMkjkdsqUmksIhUXFtir1IxhNvLnL-n5N_HxQl6MobxddklbnerrvXkl_2NVaAO7YpbsP1h2eCg0wGewL1zBwnC9kY3nPh7QKW2ROE4Oo5EDmi44w2La2mbV_KhQzX_VXHXfao1bfxjwDDe_Ls3lNfRrfcEErxmy_g28cdWR0C5eHZ3z11_rclvbAHst6u-YZrKzBf1-0zgbFsYugCDkgQAgq6D3HbYbEozbiLZmSJGigrFXrzi1e9rCtOpTowN8-GSOlL7mSlhupa_gszOTxxyFUN-yswWQVMHH85zhjP6vZWwILuyO1XmxHMcekKMEvAiYBo_mi_LDp-GYSTAvV9H__l6_lhdvxtHbjGV0Qw7WfY2YjouU98jd4ETQuUfEfXLL1g_InYm05EOymdMpNugEG7RxtMcGDdigAzbogA2KNwEbdIINOsEGHbBBERuPSPluUZ6dR6HERqS5yNrI8cKoipk8Bh5ayIKpJI8Lx1yWSmOyTDqY4xl0AbfWxMII5ookq4QSMMBqfkwO66a2jwnNrFWKw_tCvSOtjEoUE9JlGhh7DrxyRl71b3Gpg_w8VkFZLXftNSMvhr4_vejK3l4nvTGW4U95tcT6CuAvyiSekWMw0DDeMG27cdWTGz39Kbk9wv-EHLbrjX0G_LOtngcU_QFHm4fS |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multifaceted+application+of+designed+coulomb+explosion+occurring+on+oxidized+topological+crystalline+insulator+SnTe&rft.jtitle=CrystEngComm&rft.au=Zhang%2C+Guofeng&rft.au=Chen%2C+Jianbin&rft.date=2022-01-18&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=24&rft.issue=3&rft.spage=571&rft.epage=578&rft_id=info:doi/10.1039%2FD1CE01343B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1CE01343B |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |