A multifaceted application of designed coulomb explosion occurring on oxidized topological crystalline insulator SnTe

Coulomb explosion, characterized by Coulomb repulsion between particles with the same charge on the surface of a material, has been used to realize exquisite nano-manipulation, however, researchers usually found only one aspect of the application of Coulomb explosion when they utilized it. Herein, w...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 24; no. 3; pp. 571 - 578
Main Authors Zhang, Guofeng, Chen, Jianbin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 18.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coulomb explosion, characterized by Coulomb repulsion between particles with the same charge on the surface of a material, has been used to realize exquisite nano-manipulation, however, researchers usually found only one aspect of the application of Coulomb explosion when they utilized it. Herein, we successfully design a "metal@insulator" based Coulomb explosion process by irradiating oxidized topological crystalline insulator SnTe under an electron beam. The occurrence of Coulomb explosion mainly due to the oxide-encapsulated SnTe retained the metallic surface state, which not only can be positively charged but also can realize charge accumulation through the shielding effect of the insulating oxide layer. By changing experimental conditions and carefully studying various experimental phenomena, we conclude six aspects of the application, namely, speculating the metallic surface state of the oxide-encapsulated SnTe, controllable fabricating nanoplates, observing the PVD (physical vapor deposition) process under low temperature, rapid coating film, unraveling the oriented attachment and self-recrystallization of larger nanocrystals and fabricating hollow structure. Our findings are important for utilizing Coulomb explosion as well as other EBI techniques to conduct nano-manipulation. Multifaceted application of designed coulomb explosion process occurred on the SnTe@oxide experimental model.
AbstractList Coulomb explosion, characterized by Coulomb repulsion between particles with the same charge on the surface of a material, has been used to realize exquisite nano-manipulation, however, researchers usually found only one aspect of the application of Coulomb explosion when they utilized it. Herein, we successfully design a “metal@insulator” based Coulomb explosion process by irradiating oxidized topological crystalline insulator SnTe under an electron beam. The occurrence of Coulomb explosion mainly due to the oxide-encapsulated SnTe retained the metallic surface state, which not only can be positively charged but also can realize charge accumulation through the shielding effect of the insulating oxide layer. By changing experimental conditions and carefully studying various experimental phenomena, we conclude six aspects of the application, namely, speculating the metallic surface state of the oxide-encapsulated SnTe, controllable fabricating nanoplates, observing the PVD (physical vapor deposition) process under low temperature, rapid coating film, unraveling the oriented attachment and self-recrystallization of larger nanocrystals and fabricating hollow structure. Our findings are important for utilizing Coulomb explosion as well as other EBI techniques to conduct nano-manipulation.
Coulomb explosion, characterized by Coulomb repulsion between particles with the same charge on the surface of a material, has been used to realize exquisite nano-manipulation, however, researchers usually found only one aspect of the application of Coulomb explosion when they utilized it. Herein, we successfully design a "metal@insulator" based Coulomb explosion process by irradiating oxidized topological crystalline insulator SnTe under an electron beam. The occurrence of Coulomb explosion mainly due to the oxide-encapsulated SnTe retained the metallic surface state, which not only can be positively charged but also can realize charge accumulation through the shielding effect of the insulating oxide layer. By changing experimental conditions and carefully studying various experimental phenomena, we conclude six aspects of the application, namely, speculating the metallic surface state of the oxide-encapsulated SnTe, controllable fabricating nanoplates, observing the PVD (physical vapor deposition) process under low temperature, rapid coating film, unraveling the oriented attachment and self-recrystallization of larger nanocrystals and fabricating hollow structure. Our findings are important for utilizing Coulomb explosion as well as other EBI techniques to conduct nano-manipulation. Multifaceted application of designed coulomb explosion process occurred on the SnTe@oxide experimental model.
Author Chen, Jianbin
Zhang, Guofeng
AuthorAffiliation Shandong Provincial Key Laboratory of Molecular Engineering
Qilu University of Technology (Shandong Academy of Sciences)
State Key Laboratory of Biobased Material and Green Papermaking
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Shandong Provincial Key Laboratory of Molecular Engineering
– name: School of Chemistry and Chemical Engineering
– name: State Key Laboratory of Biobased Material and Green Papermaking
– name: Qilu University of Technology (Shandong Academy of Sciences)
Author_xml – sequence: 1
  givenname: Guofeng
  surname: Zhang
  fullname: Zhang, Guofeng
– sequence: 2
  givenname: Jianbin
  surname: Chen
  fullname: Chen, Jianbin
BookMark eNptkctLAzEQxoNUsK1evAsBb8Jqssm-jrXWBxQ82PuS5lFS0mRNstD615u2oiKeMpn5fTPMNyMwsM5KAC4xusWINHcCc4kwoWR5AoaYlmVWI0IGv-IzMAphjRCmGKMh6Cdw05uoFeMySgFZ1xnNWdTOQqegkEGvbMpz1xu3WUK57YwLhyrnvffaruD-s9VCfyQuus4Zt0otDOR-FyIzRlsJtQ29YdF5-GYX8hycKmaCvPh6x2DxOFtMn7P569PLdDLPOKFVzBRpBFtiUaOalk3RYJbXqFFYVWUhRFUViqZFElJXhUBUUKyavFpSRpNAcjIG18e2nXfvvQyxXbve2zSxzcscVXlT5ChR6Ehx70LwUrVcx4MD0TNtWozavbftA57ODt7eJ8nNH0nn9Yb53f_w1RH2gX9zP4cin4A_h2s
CitedBy_id crossref_primary_10_1016_j_apt_2023_103970
crossref_primary_10_1021_acsanm_4c06033
crossref_primary_10_1088_1361_6528_acf584
Cites_doi 10.1002/anie.200500496
10.1103/PhysRevLett.82.3416
10.1126/science.1219643
10.1021/nl8016187
10.1038/srep11313
10.1039/C9NR01479A
10.1126/science.289.5480.751
10.1002/anie.201004900
10.1002/adma.201104407
10.1126/science.281.5379.969
10.1002/anie.201409776
10.1103/PhysRevLett.47.160
10.1038/nphys2442
10.1021/ja0292849
10.1038/nnano.2014.81
10.1021/cm303338v
10.1002/adma.200702149
10.1038/ncomms1969
10.1038/natrevmats.2016.34
10.1002/adma.201004493
10.1002/ange.201106826
10.1039/c3cc43097a
10.1063/1.4941234
10.1038/ncomms2191
10.1038/nmat1996
10.1007/3-540-36507-9_1
10.1021/jp0377782
10.1126/science.282.5391.1111
10.1038/s41467-018-02925-6
10.1016/S1387-7003(02)00707-4
10.2138/am-1998-9-1016
10.1021/nn400423y
10.1002/adma.201400136
10.1021/ja500860m
10.1002/adma.200900599
10.1021/jp2059613
10.1039/b104879c
10.1039/c0cc01044h
10.1016/j.apsusc.2011.09.027
10.1126/science.244.4903.426
10.1063/1.3318261
10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9
10.1021/cr068020s
10.1016/j.susc.2005.01.061
10.1021/nl501953s
10.1002/adma.201201779
10.1016/j.apsusc.2018.04.246
10.1038/nmat3449
10.1039/C7TA02222K
10.1002/adma.200903879
10.1039/C8NR01298A
10.1038/ncomms7694
10.1002/adma.200800854
10.1063/1.1802554
10.1063/1.334269
10.1016/S0016-7037(99)00037-X
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/d1ce01343b
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 578
ExternalDocumentID 10_1039_D1CE01343B
d1ce01343b
GroupedDBID 0-7
0R
1TJ
29F
5GY
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABPTK
ABRYZ
ACGFS
ACLDK
ADACO
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
E3Z
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
IDZ
J3I
JG
KC5
N9A
O9-
OK1
P2P
R7B
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0R~
6J9
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7U5
8FD
L7M
ID FETCH-LOGICAL-c347t-f39dab1d808469591a2809f1f765dd775f4001dab875d04d41f927b4a4084ec3
ISSN 1466-8033
IngestDate Sun Jun 29 12:35:32 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Tue Jul 01 02:07:26 EDT 2025
Wed Jan 19 11:26:32 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-f39dab1d808469591a2809f1f765dd775f4001dab875d04d41f927b4a4084ec3
Notes Electronic supplementary information (ESI) available: XRD, XPS spectra, SEM and TEM images. See DOI
10.1039/d1ce01343b
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1104-7237
0000-0001-8793-7338
PQID 2620729520
PQPubID 2047491
PageCount 8
ParticipantIDs crossref_primary_10_1039_D1CE01343B
rsc_primary_d1ce01343b
crossref_citationtrail_10_1039_D1CE01343B
proquest_journals_2620729520
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-18
PublicationDateYYYYMMDD 2022-01-18
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-18
  day: 18
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xu (D1CE01343B/cit18/1) 2012; 3
Cho (D1CE01343B/cit53/1) 2011; 23
Guan (D1CE01343B/cit57/1) 2010; 46
Lin (D1CE01343B/cit6/1) 2014; 9
Zhang (D1CE01343B/cit14/1) 2018; 10
Wei (D1CE01343B/cit10/1) 2013; 7
Herman (D1CE01343B/cit59/1) 2013; 49
An (D1CE01343B/cit23/1) 2003; 6
Zhu (D1CE01343B/cit34/1) 2018; 9
Shen (D1CE01343B/cit55/1) 2015; 54
Cölfen (D1CE01343B/cit39/1) 2005; 44
Zhang (D1CE01343B/cit54/1) 2012; 24
Wu (D1CE01343B/cit44/1) 2010; 22
Zhou (D1CE01343B/cit52/1) 2012; 24
Shen (D1CE01343B/cit51/1) 2015; 6
Penn (D1CE01343B/cit31/1) 1999; 63
Duan (D1CE01343B/cit4/1) 2008; 20
Banfield (D1CE01343B/cit28/1) 2000; 289
Dapor (D1CE01343B/cit3/1) 2003; 186
Ostwald (D1CE01343B/cit47/1) 1900; 34
Sattler (D1CE01343B/cit7/1) 1981; 47
Tan (D1CE01343B/cit25/1) 2014; 136
Hsieh (D1CE01343B/cit15/1) 2012; 3
Penn (D1CE01343B/cit30/1) 1998; 83
Penn (D1CE01343B/cit29/1) 1998; 281
Last (D1CE01343B/cit5/1) 2004; 121
Wang (D1CE01343B/cit22/1) 2011; 258
Shen (D1CE01343B/cit27/1) 2014; 14
Yang (D1CE01343B/cit48/1) 2004; 108
Zhang (D1CE01343B/cit42/1) 2008; 8
Vager (D1CE01343B/cit8/1) 1989; 244
Chen (D1CE01343B/cit43/1) 2009; 21
Tanaka (D1CE01343B/cit19/1) 2013; 88
Xiong (D1CE01343B/cit50/1) 2012; 124
Caruso (D1CE01343B/cit40/1) 1998; 282
Lou (D1CE01343B/cit41/1) 2008; 20
Lian (D1CE01343B/cit58/1) 2018; 122
Lee (D1CE01343B/cit33/1) 2016; 1
Gu (D1CE01343B/cit24/1) 2017; 5
Krasheninnikov (D1CE01343B/cit2/1) 2010; 107
Teng (D1CE01343B/cit46/1) 2014; 26
Wang (D1CE01343B/cit13/1) 2019; 11
Tanaka (D1CE01343B/cit16/1) 2012; 8
Berchenko (D1CE01343B/cit26/1) 2018; 452
Kamata (D1CE01343B/cit36/1) 2003; 125
Dziawa (D1CE01343B/cit17/1) 2012; 11
Neudachina (D1CE01343B/cit21/1) 2005; 584
Krasheninnikov (D1CE01343B/cit1/1) 2007; 6
Teng (D1CE01343B/cit45/1) 2013; 25
Chelkowski (D1CE01343B/cit9/1) 1999; 82
Chen (D1CE01343B/cit12/1) 2015; 5
Wan (D1CE01343B/cit38/1) 2007; 107
Lai (D1CE01343B/cit56/1) 2011; 50
Fowler (D1CE01343B/cit37/1) 2001
Li (D1CE01343B/cit32/1) 2012; 336
Zhang (D1CE01343B/cit49/1) 2011; 115
Caruso (D1CE01343B/cit35/1) 2000; 6
Saghir (D1CE01343B/cit20/1) 2016; 108
Gross (D1CE01343B/cit11/1) 1984; 56
References_xml – volume: 44
  start-page: 5576
  year: 2005
  ident: D1CE01343B/cit39/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200500496
– volume: 82
  start-page: 3416
  year: 1999
  ident: D1CE01343B/cit9/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.3416
– volume: 336
  start-page: 1014
  year: 2012
  ident: D1CE01343B/cit32/1
  publication-title: Science
  doi: 10.1126/science.1219643
– volume: 8
  start-page: 2867
  year: 2008
  ident: D1CE01343B/cit42/1
  publication-title: Nano Lett.
  doi: 10.1021/nl8016187
– volume: 5
  start-page: 11313
  year: 2015
  ident: D1CE01343B/cit12/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep11313
– volume: 11
  start-page: 7595
  year: 2019
  ident: D1CE01343B/cit13/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR01479A
– volume: 34
  start-page: 495
  year: 1900
  ident: D1CE01343B/cit47/1
  publication-title: Phys. Chem.
– volume: 289
  start-page: 751
  year: 2000
  ident: D1CE01343B/cit28/1
  publication-title: Science
  doi: 10.1126/science.289.5480.751
– volume: 50
  start-page: 2738
  year: 2011
  ident: D1CE01343B/cit56/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201004900
– volume: 24
  start-page: 745
  year: 2012
  ident: D1CE01343B/cit52/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104407
– volume: 281
  start-page: 969
  year: 1998
  ident: D1CE01343B/cit29/1
  publication-title: Science
  doi: 10.1126/science.281.5379.969
– volume: 54
  start-page: 1868
  year: 2015
  ident: D1CE01343B/cit55/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409776
– volume: 47
  start-page: 160
  year: 1981
  ident: D1CE01343B/cit7/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.47.160
– volume: 8
  start-page: 800
  year: 2012
  ident: D1CE01343B/cit16/1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2442
– volume: 125
  start-page: 2384
  year: 2003
  ident: D1CE01343B/cit36/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0292849
– volume: 9
  start-page: 436
  year: 2014
  ident: D1CE01343B/cit6/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.81
– volume: 25
  start-page: 98
  year: 2013
  ident: D1CE01343B/cit45/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm303338v
– volume: 20
  start-page: 3284
  year: 2008
  ident: D1CE01343B/cit4/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702149
– volume: 3
  start-page: 982
  year: 2012
  ident: D1CE01343B/cit15/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1969
– volume: 1
  start-page: 16034
  year: 2016
  ident: D1CE01343B/cit33/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.34
– volume: 23
  start-page: 1720
  year: 2011
  ident: D1CE01343B/cit53/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004493
– volume: 124
  start-page: 973
  year: 2012
  ident: D1CE01343B/cit50/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201106826
– volume: 49
  start-page: 6203
  year: 2013
  ident: D1CE01343B/cit59/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43097a
– volume: 108
  start-page: 061602
  year: 2016
  ident: D1CE01343B/cit20/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4941234
– volume: 3
  start-page: 1192
  year: 2012
  ident: D1CE01343B/cit18/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2191
– volume: 6
  start-page: 723
  year: 2007
  ident: D1CE01343B/cit1/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1996
– volume: 186
  start-page: 1
  year: 2003
  ident: D1CE01343B/cit3/1
  publication-title: Springer Tracts Mod. Phys.
  doi: 10.1007/3-540-36507-9_1
– volume: 108
  start-page: 3492
  year: 2004
  ident: D1CE01343B/cit48/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0377782
– volume: 282
  start-page: 1111
  year: 1998
  ident: D1CE01343B/cit40/1
  publication-title: Science
  doi: 10.1126/science.282.5391.1111
– volume: 9
  start-page: 421
  year: 2018
  ident: D1CE01343B/cit34/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02925-6
– volume: 6
  start-page: 181
  year: 2003
  ident: D1CE01343B/cit23/1
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/S1387-7003(02)00707-4
– volume: 83
  start-page: 1077
  year: 1998
  ident: D1CE01343B/cit30/1
  publication-title: Am. Mineral.
  doi: 10.2138/am-1998-9-1016
– volume: 7
  start-page: 3491
  year: 2013
  ident: D1CE01343B/cit10/1
  publication-title: ACS Nano
  doi: 10.1021/nn400423y
– volume: 26
  start-page: 3741
  year: 2014
  ident: D1CE01343B/cit46/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400136
– volume: 136
  start-page: 7006
  year: 2014
  ident: D1CE01343B/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500860m
– volume: 122
  start-page: 49
  year: 2018
  ident: D1CE01343B/cit58/1
  publication-title: J. Phys. Chem. C
– volume: 21
  start-page: 3804
  year: 2009
  ident: D1CE01343B/cit43/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900599
– volume: 115
  start-page: 18479
  year: 2011
  ident: D1CE01343B/cit49/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2059613
– start-page: 2028
  year: 2001
  ident: D1CE01343B/cit37/1
  publication-title: Chem. Commun.
  doi: 10.1039/b104879c
– volume: 46
  start-page: 6605
  year: 2010
  ident: D1CE01343B/cit57/1
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01044h
– volume: 258
  start-page: 919
  year: 2011
  ident: D1CE01343B/cit22/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.09.027
– volume: 244
  start-page: 426
  year: 1989
  ident: D1CE01343B/cit8/1
  publication-title: Science
  doi: 10.1126/science.244.4903.426
– volume: 107
  start-page: 3
  year: 2010
  ident: D1CE01343B/cit2/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3318261
– volume: 6
  start-page: 413
  year: 2000
  ident: D1CE01343B/cit35/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9
– volume: 107
  start-page: 2821
  year: 2007
  ident: D1CE01343B/cit38/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr068020s
– volume: 584
  start-page: 77
  year: 2005
  ident: D1CE01343B/cit21/1
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2005.01.061
– volume: 14
  start-page: 4183
  year: 2014
  ident: D1CE01343B/cit27/1
  publication-title: Nano Lett.
  doi: 10.1021/nl501953s
– volume: 24
  start-page: 4609
  year: 2012
  ident: D1CE01343B/cit54/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201779
– volume: 88
  start-page: 330
  year: 2013
  ident: D1CE01343B/cit19/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 452
  start-page: 134
  year: 2018
  ident: D1CE01343B/cit26/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.246
– volume: 11
  start-page: 1023
  year: 2012
  ident: D1CE01343B/cit17/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3449
– volume: 5
  start-page: 11171
  year: 2017
  ident: D1CE01343B/cit24/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02222K
– volume: 22
  start-page: 1516
  year: 2010
  ident: D1CE01343B/cit44/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903879
– volume: 10
  start-page: 8285
  year: 2018
  ident: D1CE01343B/cit14/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR01298A
– volume: 6
  start-page: 6694
  year: 2015
  ident: D1CE01343B/cit51/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7694
– volume: 20
  start-page: 3987
  year: 2008
  ident: D1CE01343B/cit41/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800854
– volume: 121
  start-page: 8329
  year: 2004
  ident: D1CE01343B/cit5/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1802554
– volume: 56
  start-page: 2333
  year: 1984
  ident: D1CE01343B/cit11/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.334269
– volume: 63
  start-page: 1549
  year: 1999
  ident: D1CE01343B/cit31/1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00037-X
SSID ssj0014110
Score 2.3608704
Snippet Coulomb explosion, characterized by Coulomb repulsion between particles with the same charge on the surface of a material, has been used to realize exquisite...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 571
SubjectTerms Charged particles
Crystal structure
Crystallinity
Electron beams
Encapsulation
Explosions
Insulation
Low temperature
Nanocrystals
Physical vapor deposition
Recrystallization
Shielding
Topology
Title A multifaceted application of designed coulomb explosion occurring on oxidized topological crystalline insulator SnTe
URI https://www.proquest.com/docview/2620729520
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY3QscEK8VhQVZggtCWeLYzuNYLYUFAReCtLfK8QOtVBLUTSXYX89M7DxKe1i4RI1rR1Xmq_2NPfMNIS_zPBUuzVRUKMkjkdsqUmksIhUXFtir1IxhNvLnL-n5N_HxQl6MobxddklbnerrvXkl_2NVaAO7YpbsP1h2eCg0wGewL1zBwnC9kY3nPh7QKW2ROE4Oo5EDmi44w2La2mbV_KhQzX_VXHXfao1bfxjwDDe_Ls3lNfRrfcEErxmy_g28cdWR0C5eHZ3z11_rclvbAHst6u-YZrKzBf1-0zgbFsYugCDkgQAgq6D3HbYbEozbiLZmSJGigrFXrzi1e9rCtOpTowN8-GSOlL7mSlhupa_gszOTxxyFUN-yswWQVMHH85zhjP6vZWwILuyO1XmxHMcekKMEvAiYBo_mi_LDp-GYSTAvV9H__l6_lhdvxtHbjGV0Qw7WfY2YjouU98jd4ETQuUfEfXLL1g_InYm05EOymdMpNugEG7RxtMcGDdigAzbogA2KNwEbdIINOsEGHbBBERuPSPluUZ6dR6HERqS5yNrI8cKoipk8Bh5ayIKpJI8Lx1yWSmOyTDqY4xl0AbfWxMII5ookq4QSMMBqfkwO66a2jwnNrFWKw_tCvSOtjEoUE9JlGhh7DrxyRl71b3Gpg_w8VkFZLXftNSMvhr4_vejK3l4nvTGW4U95tcT6CuAvyiSekWMw0DDeMG27cdWTGz39Kbk9wv-EHLbrjX0G_LOtngcU_QFHm4fS
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multifaceted+application+of+designed+coulomb+explosion+occurring+on+oxidized+topological+crystalline+insulator+SnTe&rft.jtitle=CrystEngComm&rft.au=Zhang%2C+Guofeng&rft.au=Chen%2C+Jianbin&rft.date=2022-01-18&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=24&rft.issue=3&rft.spage=571&rft.epage=578&rft_id=info:doi/10.1039%2FD1CE01343B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1CE01343B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon