Synthesis of a bead-like multicyclic polymer by UV-induced coupling of an anthracene-telechelic monocyclic precursor and its reversible topological conversion
In this study, a bead-like multicyclic polymer was synthesized by the UV-induced coupling reaction of an anthracene-telechelic monocyclic precursor and the reversible topological transformation between the monocyclic polymer and the multicyclic polymer was realized. Poly(ethylene oxide) (PEO) contai...
Saved in:
Published in | Polymer chemistry Vol. 12; no. 37; pp. 5357 - 5363 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a bead-like multicyclic polymer was synthesized by the UV-induced coupling reaction of an anthracene-telechelic monocyclic precursor and the reversible topological transformation between the monocyclic polymer and the multicyclic polymer was realized. Poly(ethylene oxide) (PEO) containing bromine and anthryl groups at both ends was used as a macroinitiator for the atom transfer radical polymerization (ATRP) of styrene to afford a linear block polymer (PS-PEO-Br). After azidation, the azide-terminated linear polymer (PEO-PS-N
3
) underwent bimolecular ring-closure using
sym
-dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD) as a bifunctional linker
via
a self-accelerating click reaction, and the corresponding monocyclic polymer with two pendant anthryl groups (C(PEO-PS)-ant) was synthesized. Considering the photo-responsive nature of anthracene, the monocyclic polymer was taken as a macromonomer for synthesizing a bead-like multicyclic polymer through the dimerization reaction of anthryl groups under 365 nm UV irradiation. The obtained polymers were characterized by NMR, FT-IR and GPC. According to the result of GPC, there were about 14 "monocyclic units" in the bead-like multicyclic polymer on average. Moreover, the bead-like multicyclic polymer could be cleaved at the nodal points and converted back to the monocyclic structure when exposed to 254 nm UV light.
In this study, a bead-like multicyclic polymer was synthesized by the UV-induced coupling reaction of an anthracene-telechelic monocyclic precursor and the reversible topological transformation between the monocyclic polymer and the multicyclic polymer was realized. |
---|---|
AbstractList | In this study, a bead-like multicyclic polymer was synthesized by the UV-induced coupling reaction of an anthracene-telechelic monocyclic precursor and the reversible topological transformation between the monocyclic polymer and the multicyclic polymer was realized. Poly(ethylene oxide) (PEO) containing bromine and anthryl groups at both ends was used as a macroinitiator for the atom transfer radical polymerization (ATRP) of styrene to afford a linear block polymer (PS-PEO-Br). After azidation, the azide-terminated linear polymer (PEO-PS-N3) underwent bimolecular ring-closure using sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD) as a bifunctional linker via a self-accelerating click reaction, and the corresponding monocyclic polymer with two pendant anthryl groups (C(PEO-PS)-ant) was synthesized. Considering the photo-responsive nature of anthracene, the monocyclic polymer was taken as a macromonomer for synthesizing a bead-like multicyclic polymer through the dimerization reaction of anthryl groups under 365 nm UV irradiation. The obtained polymers were characterized by NMR, FT-IR and GPC. According to the result of GPC, there were about 14 “monocyclic units” in the bead-like multicyclic polymer on average. Moreover, the bead-like multicyclic polymer could be cleaved at the nodal points and converted back to the monocyclic structure when exposed to 254 nm UV light. In this study, a bead-like multicyclic polymer was synthesized by the UV-induced coupling reaction of an anthracene-telechelic monocyclic precursor and the reversible topological transformation between the monocyclic polymer and the multicyclic polymer was realized. Poly(ethylene oxide) (PEO) containing bromine and anthryl groups at both ends was used as a macroinitiator for the atom transfer radical polymerization (ATRP) of styrene to afford a linear block polymer (PS-PEO-Br). After azidation, the azide-terminated linear polymer (PEO-PS-N 3 ) underwent bimolecular ring-closure using sym -dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD) as a bifunctional linker via a self-accelerating click reaction, and the corresponding monocyclic polymer with two pendant anthryl groups (C(PEO-PS)-ant) was synthesized. Considering the photo-responsive nature of anthracene, the monocyclic polymer was taken as a macromonomer for synthesizing a bead-like multicyclic polymer through the dimerization reaction of anthryl groups under 365 nm UV irradiation. The obtained polymers were characterized by NMR, FT-IR and GPC. According to the result of GPC, there were about 14 “monocyclic units” in the bead-like multicyclic polymer on average. Moreover, the bead-like multicyclic polymer could be cleaved at the nodal points and converted back to the monocyclic structure when exposed to 254 nm UV light. In this study, a bead-like multicyclic polymer was synthesized by the UV-induced coupling reaction of an anthracene-telechelic monocyclic precursor and the reversible topological transformation between the monocyclic polymer and the multicyclic polymer was realized. Poly(ethylene oxide) (PEO) containing bromine and anthryl groups at both ends was used as a macroinitiator for the atom transfer radical polymerization (ATRP) of styrene to afford a linear block polymer (PS-PEO-Br). After azidation, the azide-terminated linear polymer (PEO-PS-N 3 ) underwent bimolecular ring-closure using sym -dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD) as a bifunctional linker via a self-accelerating click reaction, and the corresponding monocyclic polymer with two pendant anthryl groups (C(PEO-PS)-ant) was synthesized. Considering the photo-responsive nature of anthracene, the monocyclic polymer was taken as a macromonomer for synthesizing a bead-like multicyclic polymer through the dimerization reaction of anthryl groups under 365 nm UV irradiation. The obtained polymers were characterized by NMR, FT-IR and GPC. According to the result of GPC, there were about 14 "monocyclic units" in the bead-like multicyclic polymer on average. Moreover, the bead-like multicyclic polymer could be cleaved at the nodal points and converted back to the monocyclic structure when exposed to 254 nm UV light. In this study, a bead-like multicyclic polymer was synthesized by the UV-induced coupling reaction of an anthracene-telechelic monocyclic precursor and the reversible topological transformation between the monocyclic polymer and the multicyclic polymer was realized. |
Author | Xu, Wen Liu, Chao Hong, Chun-yan Zhang, Hua-long |
AuthorAffiliation | Department of Polymer Science and Engineering University of Science and Technology of China CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Department of Polymer Science and Engineering – name: CAS Key Laboratory of Soft Matter Chemistry – name: Hefei National Laboratory for Physical Sciences at the Microscale |
Author_xml | – sequence: 1 givenname: Hua-long surname: Zhang fullname: Zhang, Hua-long – sequence: 2 givenname: Wen surname: Xu fullname: Xu, Wen – sequence: 3 givenname: Chao surname: Liu fullname: Liu, Chao – sequence: 4 givenname: Chun-yan surname: Hong fullname: Hong, Chun-yan |
BookMark | eNptkUtrGzEUhUVJoU7qTfYFQXaFaaWR5rUMaR6lhgYSB7Ia5DvXsWxZmkqawPyZ_NYodpNCiRDoIr5zDpdzSA6ss0jIMWffOBPN9473I2NC8s0HMuFV0WRNU-YHb3MhP5FpCGuWjuAyF-WEPN2MNq4w6EDdkiq6QNVlRm-QbgcTNYxgNNDemXGLni5GOr_LtO0GwI6CG3qj7cNOadONK68ALWYRDcIKX6RbZ92ri0cYfHA-oR3VMVCPj-iDXhik0aUQ96BBmWRsd__OfiYfl8oEnP59j8j84vz27Cqb_b78eXY6y0DIKmbYFXWHi7LKm5rXpSolKs46rlAo2TAQwGWjoFBQc1HUBZYs5yIXsq5AVHUpjsjJ3rf37s-AIbZrN3ibItu8qMqGFzKvEvV1T4F3IXhctr3XW-XHlrP2pYL2B7--31XwK8HsPxh0VDEtFb3S5n3Jl73EB3iz_teqeAalnZfZ |
CitedBy_id | crossref_primary_10_1021_acsmacrolett_3c00527 crossref_primary_10_1039_D3PY00816A crossref_primary_10_1002_anie_202110766 crossref_primary_10_1002_ange_202110766 crossref_primary_10_1039_D2PY00824F crossref_primary_10_1039_D3PY01170D crossref_primary_10_1016_j_cclet_2023_108956 crossref_primary_10_1039_D1PY01667A crossref_primary_10_1039_D2PY00137C crossref_primary_10_1039_D3PY00298E crossref_primary_10_1039_D2PY00662F crossref_primary_10_1002_asia_202200193 crossref_primary_10_1016_j_progpolymsci_2022_101606 crossref_primary_10_1039_D3PY00449J |
Cites_doi | 10.1021/ja048548j 10.1002/marc.1991.030120712 10.1071/CH10092 10.1039/c0cc05478j 10.1021/ma301296w 10.1021/acs.macromol.9b01307 10.1021/acs.biomac.5b01176 10.1021/ma60075a032 10.1021/ja0114409 10.1126/science.1075401 10.1021/ma501049n 10.1021/ma001183c 10.1002/anie.200905898 10.1016/j.polymer.2017.06.028 10.1039/D0PY01604G 10.1002/marc.1981.030020621 10.1002/anie.201101303 10.1021/bc0497665 10.1021/ma00240a002 10.1021/ma000059q 10.1021/ol0516824 10.1007/12_2013_238 10.1039/a801821i 10.1002/marc.200800337 10.1021/acs.macromol.8b02192 10.1002/marc.201700121 10.1002/anie.201501800 10.1021/ja00126a005 10.1021/acs.macromol.6b02614 10.1021/ja001736z 10.1002/pola.28635 10.1021/ja044778m 10.1039/C9PY00472F 10.1021/ja042479r 10.1016/j.aca.2017.05.003 10.1021/la048015o 10.1002/marc.201900164 10.1021/jacs.6b00800 10.1021/ja042198j 10.1021/ma901041x 10.1002/pola.23347 10.1021/jacs.5b00980 10.1021/ma9014565 10.1021/ma071425+ 10.1002/anie.201703418 10.1021/ma060652t 10.1021/ma802585k 10.1038/nchem.687 10.1021/acs.macromol.7b01658 10.1039/b809916m 10.1002/macp.201100001 10.1038/177126a0 10.1039/b809136f 10.1038/s41557-020-0440-5 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1039/d1py00341k |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-9962 |
EndPage | 5363 |
ExternalDocumentID | 10_1039_D1PY00341K d1py00341k |
GroupedDBID | 0-7 0R 29O 4.4 705 7~J AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- HZ H~N J3I JG O-G O9- P2P RCNCU RIG RNS RPMJG RRC RSCEA SKF SKH SKJ SKM SKR SKZ SLC SLF 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ADNWM AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c347t-ed58deb67298186a64ea10d1ae3a490c3c149ac5ac813585e6021323487c37863 |
ISSN | 1759-9954 |
IngestDate | Mon Jun 30 06:23:09 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Tue Jul 01 03:34:17 EDT 2025 Sun Apr 17 04:30:15 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-ed58deb67298186a64ea10d1ae3a490c3c149ac5ac813585e6021323487c37863 |
Notes | 10.1039/d1py00341k Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7060-4086 0000-0002-5295-4741 |
PQID | 2576915427 |
PQPubID | 2047483 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2576915427 crossref_primary_10_1039_D1PY00341K crossref_citationtrail_10_1039_D1PY00341K rsc_primary_d1py00341k |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-28 |
PublicationDateYYYYMMDD | 2021-09-28 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Polymer chemistry |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Michel (D1PY00341K/cit19) 1991; 12 Fei (D1PY00341K/cit38) 2019; 10 Bruno (D1PY00341K/cit22) 1981; 2 Ge (D1PY00341K/cit39) 2009; 42 Shi (D1PY00341K/cit35) 2008; 29 Tezuka (D1PY00341K/cit32) 2007; 40 Liu (D1PY00341K/cit34) 2021; 12 Yoon (D1PY00341K/cit49) 2010; 2 Shi (D1PY00341K/cit37) 2011; 212 Mir (D1PY00341K/cit48) 2010; 49 Chang (D1PY00341K/cit18) 2017; 55 Shi (D1PY00341K/cit36) 2009; 47 Oike (D1PY00341K/cit26) 2000; 122 Qu (D1PY00341K/cit31) 2017; 38 Lee (D1PY00341K/cit7) 2005; 16 Thomas (D1PY00341K/cit10) 2005; 127 William (D1PY00341K/cit9) 2005; 7 Tezuka (D1PY00341K/cit28) 2005; 127 Jia (D1PY00341K/cit44) 2011; 47 Lucie (D1PY00341K/cit55) 2017; 981 Cortez (D1PY00341K/cit4) 2015; 137 Kulis (D1PY00341K/cit45) 2012; 45 Verbraeken (D1PY00341K/cit2) 2017; 56 Daisuke (D1PY00341K/cit11) 2006; 39 Nagarathinam (D1PY00341K/cit47) 2008; 42 Casassa (D1PY00341K/cit12) 1965; 3 Wang (D1PY00341K/cit3) 2016; 17 Miao (D1PY00341K/cit13) 2019; 52 Geiser (D1PY00341K/cit21) 1980; 13 Christopher (D1PY00341K/cit14) 2002; 297 Joaquin (D1PY00341K/cit5) 2005; 127 Heguri (D1PY00341K/cit33) 2015; 54 Lepoittevin (D1PY00341K/cit25) 2001; 34 Laurent (D1PY00341K/cit17) 2009; 38 Zhao (D1PY00341K/cit52) 2017; 50 Kulis (D1PY00341K/cit42) 2009; 42 Zhu (D1PY00341K/cit1) 2011; 50 Tezuka (D1PY00341K/cit27) 2001; 123 Yamamoto (D1PY00341K/cit54) 2016; 138 Roovers (D1PY00341K/cit23) 1983; 16 Peng (D1PY00341K/cit40) 2009; 42 Chakravarthy (D1PY00341K/cit6) 2005; 21 Henri (D1PY00341K/cit53) 2000; 29 Hossain (D1PY00341K/cit41) 2014; 47 Hermans (D1PY00341K/cit20) 1956; 177 Liu (D1PY00341K/cit50) 2018; 52 Sun (D1PY00341K/cit29) 2017; 50 Andrew (D1PY00341K/cit46) 1995; 117 Lepoittevin (D1PY00341K/cit24) 2000; 33 Jakov (D1PY00341K/cit43) 2010; 63 Jia (D1PY00341K/cit16) 2013; 262 Haque (D1PY00341K/cit15) 2020; 12 Chen (D1PY00341K/cit8) 2004; 126 Sun (D1PY00341K/cit30) 2017; 121 Liu (D1PY00341K/cit51) 2019; 40 |
References_xml | – volume: 126 start-page: 10044 year: 2004 ident: D1PY00341K/cit8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja048548j – volume: 12 start-page: 447 year: 1991 ident: D1PY00341K/cit19 publication-title: Makromol. Chem., Rapid Commun. doi: 10.1002/marc.1991.030120712 – volume: 63 start-page: 1227 year: 2010 ident: D1PY00341K/cit43 publication-title: Aust. J. Chem. doi: 10.1071/CH10092 – volume: 47 start-page: 4165 year: 2011 ident: D1PY00341K/cit44 publication-title: Chem. Commun. doi: 10.1039/c0cc05478j – volume: 45 start-page: 5956 year: 2012 ident: D1PY00341K/cit45 publication-title: Macromolecules doi: 10.1021/ma301296w – volume: 52 start-page: 6260 year: 2019 ident: D1PY00341K/cit13 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01307 – volume: 17 start-page: 69 year: 2016 ident: D1PY00341K/cit3 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b01176 – volume: 13 start-page: 653 year: 1980 ident: D1PY00341K/cit21 publication-title: Macromolecules doi: 10.1021/ma60075a032 – volume: 123 start-page: 11570 year: 2001 ident: D1PY00341K/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0114409 – volume: 297 start-page: 2041 year: 2002 ident: D1PY00341K/cit14 publication-title: Science doi: 10.1126/science.1075401 – volume: 47 start-page: 4955 year: 2014 ident: D1PY00341K/cit41 publication-title: Macromolecules doi: 10.1021/ma501049n – volume: 34 start-page: 425 year: 2001 ident: D1PY00341K/cit25 publication-title: Macromolecules doi: 10.1021/ma001183c – volume: 49 start-page: 390 year: 2010 ident: D1PY00341K/cit48 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905898 – volume: 121 start-page: 196 year: 2017 ident: D1PY00341K/cit30 publication-title: Polymer doi: 10.1016/j.polymer.2017.06.028 – volume: 12 start-page: 759 year: 2021 ident: D1PY00341K/cit34 publication-title: Polym. Chem. doi: 10.1039/D0PY01604G – volume: 2 start-page: 467 year: 1981 ident: D1PY00341K/cit22 publication-title: Makromol. Chem., Rapid Commun. doi: 10.1002/marc.1981.030020621 – volume: 50 start-page: 6615 year: 2011 ident: D1PY00341K/cit1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201101303 – volume: 16 start-page: 535 year: 2005 ident: D1PY00341K/cit7 publication-title: Bioconjugate Chem. doi: 10.1021/bc0497665 – volume: 16 start-page: 843 year: 1983 ident: D1PY00341K/cit23 publication-title: Macromolecules doi: 10.1021/ma00240a002 – volume: 33 start-page: 8218 year: 2000 ident: D1PY00341K/cit24 publication-title: Macromolecules doi: 10.1021/ma000059q – volume: 7 start-page: 4451 year: 2005 ident: D1PY00341K/cit9 publication-title: Org. Lett. doi: 10.1021/ol0516824 – volume: 262 start-page: 295 year: 2013 ident: D1PY00341K/cit16 publication-title: Adv. Polym. Sci. doi: 10.1007/12_2013_238 – volume: 29 start-page: 43 year: 2000 ident: D1PY00341K/cit53 publication-title: Chem. Soc. Rev. doi: 10.1039/a801821i – volume: 29 start-page: 1672 year: 2008 ident: D1PY00341K/cit35 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200800337 – volume: 52 start-page: 176 year: 2018 ident: D1PY00341K/cit50 publication-title: Macromolecules doi: 10.1021/acs.macromol.8b02192 – volume: 3 start-page: 605 year: 1965 ident: D1PY00341K/cit12 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 38 start-page: 1700121 year: 2017 ident: D1PY00341K/cit31 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201700121 – volume: 54 start-page: 8688 year: 2015 ident: D1PY00341K/cit33 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501800 – volume: 117 start-page: 5647 year: 1995 ident: D1PY00341K/cit46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00126a005 – volume: 50 start-page: 1463 year: 2017 ident: D1PY00341K/cit29 publication-title: Macromolecules doi: 10.1021/acs.macromol.6b02614 – volume: 122 start-page: 9592 year: 2000 ident: D1PY00341K/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja001736z – volume: 55 start-page: 2892 year: 2017 ident: D1PY00341K/cit18 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.28635 – volume: 127 start-page: 373 year: 2005 ident: D1PY00341K/cit10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044778m – volume: 10 start-page: 3895 year: 2019 ident: D1PY00341K/cit38 publication-title: Polym. Chem. doi: 10.1039/C9PY00472F – volume: 127 start-page: 5097 year: 2005 ident: D1PY00341K/cit5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042479r – volume: 981 start-page: 71 year: 2017 ident: D1PY00341K/cit55 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.05.003 – volume: 21 start-page: 3044 year: 2005 ident: D1PY00341K/cit6 publication-title: Langmuir doi: 10.1021/la048015o – volume: 40 start-page: 1900164 year: 2019 ident: D1PY00341K/cit51 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201900164 – volume: 138 start-page: 3904 year: 2016 ident: D1PY00341K/cit54 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00800 – volume: 127 start-page: 6266 year: 2005 ident: D1PY00341K/cit28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042198j – volume: 42 start-page: 6457 year: 2009 ident: D1PY00341K/cit40 publication-title: Macromolecules doi: 10.1021/ma901041x – volume: 47 start-page: 2620 year: 2009 ident: D1PY00341K/cit36 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.23347 – volume: 137 start-page: 6541 year: 2015 ident: D1PY00341K/cit4 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00980 – volume: 42 start-page: 8218 year: 2009 ident: D1PY00341K/cit42 publication-title: Macromolecules doi: 10.1021/ma9014565 – volume: 40 start-page: 7910 year: 2007 ident: D1PY00341K/cit32 publication-title: Macromolecules doi: 10.1021/ma071425+ – volume: 56 start-page: 7034 year: 2017 ident: D1PY00341K/cit2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703418 – volume: 39 start-page: 5180 year: 2006 ident: D1PY00341K/cit11 publication-title: Macromolecules doi: 10.1021/ma060652t – volume: 42 start-page: 2903 year: 2009 ident: D1PY00341K/cit39 publication-title: Macromolecules doi: 10.1021/ma802585k – volume: 2 start-page: 527 year: 2010 ident: D1PY00341K/cit49 publication-title: Nat. Chem. doi: 10.1038/nchem.687 – volume: 50 start-page: 8907 year: 2017 ident: D1PY00341K/cit52 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01658 – volume: 38 start-page: 2202 year: 2009 ident: D1PY00341K/cit17 publication-title: Chem. Soc. Rev. doi: 10.1039/b809916m – volume: 212 start-page: 1305 year: 2011 ident: D1PY00341K/cit37 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201100001 – volume: 177 start-page: 126 year: 1956 ident: D1PY00341K/cit20 publication-title: Nature doi: 10.1038/177126a0 – volume: 42 start-page: 5277 year: 2008 ident: D1PY00341K/cit47 publication-title: Chem. Commun. doi: 10.1039/b809136f – volume: 12 start-page: 433 year: 2020 ident: D1PY00341K/cit15 publication-title: Nat. Chem. doi: 10.1038/s41557-020-0440-5 |
SSID | ssj0000314236 |
Score | 2.3849611 |
Snippet | In this study, a bead-like multicyclic polymer was synthesized by the UV-induced coupling reaction of an anthracene-telechelic monocyclic precursor and the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5357 |
SubjectTerms | Anthracene Bromine Chemical reactions Chemical synthesis Coupling Dimerization Ethylene oxide NMR Nuclear magnetic resonance Polyethylene oxide Polymer chemistry Polymers Polystyrene resins Precursors Topology Ultraviolet radiation |
Title | Synthesis of a bead-like multicyclic polymer by UV-induced coupling of an anthracene-telechelic monocyclic precursor and its reversible topological conversion |
URI | https://www.proquest.com/docview/2576915427 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QFe0LhMdBvIErwgZGhi5_Y4yqVigCaxQnmKHMdVp4WkyhKk8GP4FfxAjmMnDmsfBi9R5NpW0vPlXOzj7yD0FIIO30kil_ClSAkDG0uS1KPEZ6EE3RjyoD3h_fGTP5uz9wtvMRr9HmQt1VXyQvzceq7kf6QKbSBXdUr2HyTbTwoNcA_yhStIGK43kvHnJgf_zVCK8OcJyItkF5dSpwmKRigG63WRNd9lqfzM-RcCIXittvxFUa8zk_HMVUJytSq5AMVHKlUZZyXVUHiRopulVAvzVyblUu82tBkd6uRVpSstGLKR_Idegxv6vWfmIURXX25jwXpWc5IVxo7CD4u6Tf-zJ9U-XNQmP6DosWjyiaerOieNwblZwnAdlW_hDrVu4EVEEdNpozRsu6aq3QEkNVmMUbwe1TzXxoh7VKvNDQMxoYpf9bVz9k0x8zin1gx2W__XrGOfs9ju1tMotmN30J4LwQlo172T01fvvvZre6okgNtWp-zfrGPGpdFLO8HfvpANcHbKrvpM6-Wc76M7JjzBJxprd9FI5vfQrWkntfvoV485XCwxxz3m8ABz2GAOJw22mMMd5tqROd6KOWwxh3vMQdcUA-awxRweYA5bzD1A87dvzqczYmp8EEFZUBGZemEqEx9iPMWtyH0muTNJHS4pZ9FEUAEhPBceF6FDIbSVPuCHuhTibEGD0KcHaDcvcvkQYcZVdUo_CLzUYyyCuSLGRMKWidPy5I3Rs-7fjoUhwFd1WLJ4U7Rj9KTvu9a0L1t7HXdCi41auIpVBB9BYOIGY3QAguzHp866acddHt5o9iN0234sx2i3Kmv5CDzgKnlsAPcH8Py1lQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+a+bead-like+multicyclic+polymer+by+UV-induced+coupling+of+an+anthracene-telechelic+monocyclic+precursor+and+its+reversible+topological+conversion&rft.jtitle=Polymer+chemistry&rft.au=Zhang%2C+Hua-long&rft.au=Xu%2C+Wen&rft.au=Liu%2C+Chao&rft.au=Hong%2C+Chun-yan&rft.date=2021-09-28&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=12&rft.issue=37&rft.spage=5357&rft.epage=5363&rft_id=info:doi/10.1039%2FD1PY00341K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1PY00341K |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon |