Predicting Human Operator’s Decisions Based on Prospect Theory

Abstract The aim of this work is to predict human operator’s (HO) decisions in a specific operational context, such as a cooperative human-robot mission, by approximating his/her utility function based on prospect theory (PT). To this aim, a within-subject experiment was designed in which the HO has...

Full description

Saved in:
Bibliographic Details
Published inInteracting with computers Vol. 32; no. 3; pp. 221 - 232
Main Authors de Souza, Paulo E U, Chanel, Caroline P C, Mailliez, Melody, Dehais, Frédéric
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.05.2020
Oxford University Press (OUP)
Subjects
Online AccessGet full text
ISSN0953-5438
1873-7951
DOI10.1093/iwcomp/iwaa016

Cover

Loading…
Abstract Abstract The aim of this work is to predict human operator’s (HO) decisions in a specific operational context, such as a cooperative human-robot mission, by approximating his/her utility function based on prospect theory (PT). To this aim, a within-subject experiment was designed in which the HO has to decide with limited time and incomplete information. This experiment also involved a framing effect paradigm, a typical cognitive bias causing people to react differently depending on the context. Such an experiment allowed to acquire data concerning the HO’s decisions in two different mission scenarios: search and rescue and Mars rock sampling. The framing was manipulated (e.g. positive vs. negative) and the probability of the outcomes causing people to react differently depending on the context. Statistical results observed for this experiment supported the hypothesis that the way the problem was presented (positively or negatively framed) and the emotional commitment affected the HO’s decisions. Thus, based on the collected data, the present work is willed to propose: (i) a formal approximation of the HO’s utility function founded on the prospect theory and (ii) a model used to predict the HO’s decisions based on the economics approach of multi-dimensional consumption bundle and PT. The obtained results, in terms of utility function fit and prediction accuracy, are promising and show that similar modeling and prediction method should be taken into account when an intelligent cybernetic system drives human–robot interaction. The advantage of predicting the HO’s decision, in this operational context, is to anticipate his/her decision, given the way a question is framed to the HO. Such a predictor lays the foundation for the development of a decision-making system capable of choosing how to present the information to the operator while expecting to align his/her decision with the given operational guideline.
AbstractList The aim of this work is to predict human operator’s (HO) decisions in a specific operational context, such as a cooperative human-robot mission, by approximating his/her utility function based on prospect theory (PT). To this aim, a within-subject experiment was designed in which the HO has to decide with limited time and incomplete information. This experiment also involved a framing effect paradigm, a typical cognitive bias causing people to react differently depending on the context. Such an experiment allowed to acquire data concerning the HO’s decisions in two different mission scenarios: search and rescue and Mars rock sampling. The framing was manipulated (e.g. positive vs. negative) and the probability of the outcomes causing people to react differently depending on the context. Statistical results observed for this experiment supported the hypothesis that the way the problem was presented (positively or negatively framed) and the emotional commitment affected the HO’s decisions. Thus, based on the collected data, the present work is willed to propose: (i) a formal approximation of the HO’s utility function founded on the prospect theory and (ii) a model used to predict the HO’s decisions based on the economics approach of multi-dimensional consumption bundle and PT. The obtained results, in terms of utility function fit and prediction accuracy, are promising and show that similar modeling and prediction method should be taken into account when an intelligent cybernetic system drives human–robot interaction. The advantage of predicting the HO’s decision, in this operational context, is to anticipate his/her decision, given the way a question is framed to the HO. Such a predictor lays the foundation for the development of a decision-making system capable of choosing how to present the information to the operator while expecting to align his/her decision with the given operational guideline.
Abstract The aim of this work is to predict human operator’s (HO) decisions in a specific operational context, such as a cooperative human-robot mission, by approximating his/her utility function based on prospect theory (PT). To this aim, a within-subject experiment was designed in which the HO has to decide with limited time and incomplete information. This experiment also involved a framing effect paradigm, a typical cognitive bias causing people to react differently depending on the context. Such an experiment allowed to acquire data concerning the HO’s decisions in two different mission scenarios: search and rescue and Mars rock sampling. The framing was manipulated (e.g. positive vs. negative) and the probability of the outcomes causing people to react differently depending on the context. Statistical results observed for this experiment supported the hypothesis that the way the problem was presented (positively or negatively framed) and the emotional commitment affected the HO’s decisions. Thus, based on the collected data, the present work is willed to propose: (i) a formal approximation of the HO’s utility function founded on the prospect theory and (ii) a model used to predict the HO’s decisions based on the economics approach of multi-dimensional consumption bundle and PT. The obtained results, in terms of utility function fit and prediction accuracy, are promising and show that similar modeling and prediction method should be taken into account when an intelligent cybernetic system drives human–robot interaction. The advantage of predicting the HO’s decision, in this operational context, is to anticipate his/her decision, given the way a question is framed to the HO. Such a predictor lays the foundation for the development of a decision-making system capable of choosing how to present the information to the operator while expecting to align his/her decision with the given operational guideline.
The aim of this work is to predict human operator's decisions in a specific operational context, such as a cooperative human-robots mission, by approximating her utility function based on Prospect Theory. To this aim, a within-subject experiment was designed in which the human operator has to decide with limited time and incomplete information. This experiment also involved a framing effect paradigm, a typical cognitive bias causing people to react differently depending on the context. Such an experiment allowed to acquire data concerning the human operator's decisions in two different mission scenarios: search and rescue and Mars rock sampling. The framing was manipulated (e.g. positive vs. negative) and the probability of the outcomes causing people to react differently depending on the context. Statistical results observed for this experiment supported the hypothesis that the way the problem was presented (positively or negatively framed) and the emotional commitment affected the human operator's decisions. Thus, based on the collected data, the present work is willed to propose: (i) a formal approximation of the human operator's utility function founded on the Prospect Theory; and (ii) a model used to predict the human operator's decisions based on the economics approach of multi-dimensional consumption bundle and Prospect Theory. The obtained results, in terms of utility function fit and prediction accuracy, are promising and show that similar modeling and prediction method should be taken into account when an intelligent cybernetic system drives human-robots interaction. The advantage of predicting the human operator's decision, in this operational context, is to anticipate her decision, given the way a question is framed to the human operator. Such a predictor lays the foundation for the development of a decision-making system capable of choosing how to present the information to the operator while expecting to align her decision with the given operational guideline.
Author de Souza, Paulo E U
Chanel, Caroline P C
Mailliez, Melody
Dehais, Frédéric
Author_xml – sequence: 1
  givenname: Paulo E U
  surname: de Souza
  fullname: de Souza, Paulo E U
  organization: ISAE-SUPAERO, Université de Toulouse 10, Av Edouard Belin 31400 Toulouse, France
– sequence: 2
  givenname: Caroline P C
  surname: Chanel
  fullname: Chanel, Caroline P C
  email: caroline.chanel@isae-supaero.fr
  organization: ISAE-SUPAERO, Université de Toulouse 10, Av Edouard Belin 31400 Toulouse, France
– sequence: 3
  givenname: Melody
  surname: Mailliez
  fullname: Mailliez, Melody
  organization: ISAE-SUPAERO, Université de Toulouse 10, Av Edouard Belin 31400 Toulouse, France
– sequence: 4
  givenname: Frédéric
  surname: Dehais
  fullname: Dehais, Frédéric
  organization: ISAE-SUPAERO, Université de Toulouse 10, Av Edouard Belin 31400 Toulouse, France
BackLink https://hal.science/hal-02923113$$DView record in HAL
BookMark eNqFkL1OwzAUhS1UJNrCypyVIcWO4zreKOUnSJXaoczWjX-oURtHdgrqxmvwejwJqVoWJMR0pKvz3XvuGaBe7WuD0CXBI4IFvXbvym-aTgAwGZ-gPik4TblgpIf6WDCaspwWZ2gQ4yvGmPMi76ObRTDaqdbVL0m53UCdzBsToPXh6-MzJndGueh8HZNbiEYnvk4WwcfGqDZZrowPu3N0amEdzcVRh-j54X45LdPZ_PFpOpmliua8TU2lC601L6yGscAZsyTPOIOKZwqMEnac44LbnFhWaQaEKyAgLK1MxXRlCB2iq8PeFaxlE9wGwk56cLKczOR-hjORUULo296bH7yqyxqDsVK5FtrujzaAW0uC5b4xeWhMHhvrsNEv7OfOn8Axk982_3m_AXd2g9A
CitedBy_id crossref_primary_10_1007_s10846_022_01642_z
crossref_primary_10_3389_fnhum_2021_692878
Cites_doi 10.1017/CBO9780511779329
10.1109/TCYB.2016.2638498
10.1007/s10111-011-0188-1
10.1037/a0026788
10.1006/obhd.1998.2804
10.1109/SMC.2016.7844521
10.1007/BF00122574
10.1080/026999300402763
10.32614/CRAN.package.groupdata2
10.1145/1529282.1529542
10.1109/SMC.2015.246
10.1038/s41562-018-0372-x
10.1016/j.apergo.2011.09.004
10.1007/978-3-319-73888-8_33
10.1016/j.cogsys.2016.07.007
10.1007/978-3-540-30301-5_51
10.1109/SSRR.2011.6106744
10.1257/jep.27.1.173
10.1109/SMC.2015.174
10.1177/0278364916688255
10.1109/ICECENG.2011.6057781
10.3758/s13423-014-0688-0
10.2307/1914185
10.1080/135467897394329
10.1023/A:1022291921717
10.18637/jss.v028.i05
10.1109/ICRA.2018.8460793
10.1016/j.cognition.2016.10.014
10.1109/THMS.2015.2480801
10.18637/jss.v067.i01
10.1080/13669877.2016.1200654
10.1017/S0140525X00003447
10.1109/TKDE.2009.191
10.1016/j.neubiorev.2019.03.006
10.1126/science.7455683
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1093/iwcomp/iwaa016
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7951
EndPage 232
ExternalDocumentID oai_HAL_hal_02923113v1
10_1093_iwcomp_iwaa016
10.1093/iwcomp/iwaa016
GroupedDBID --K
.2P
.DC
.I3
0R~
1B1
1TH
29J
4.4
48X
5GY
5VS
5WD
71M
77K
AABZA
AACTN
AACZT
AAEDT
AAFXQ
AAIJN
AAJKP
AAJQQ
AALRI
AAMOW
AAMVS
AAMZS
AAOGV
AAPGJ
AAPQZ
AAPXW
AAQFI
AAQXK
AARHZ
AAUAY
AAUOS
AAUQX
AAVAP
AAWDT
AAXUO
ABAZT
ABBGM
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABICN
ABIME
ABIVO
ABIXL
ABJHR
ABJNI
ABKEB
ABMAC
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABWST
ABWVN
ABXVK
ABXVV
ABZBJ
ABZEO
ACDXO
ACFRR
ACGFS
ACHQT
ACMCV
ACOZV
ACRPL
ACUFI
ACUKT
ACUTJ
ACUTO
ACUXJ
ACVCV
ACVJI
ACYTK
ACZBC
ADAES
ADBBV
ADBKU
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADJOM
ADLMC
ADLOL
ADMLS
ADMTO
ADMUD
ADNBA
ADNMO
ADOCK
ADQBN
ADQIT
ADRDM
ADRTK
ADVEK
ADYLA
ADYVW
ADZXQ
AECKG
AEGPL
AEJER
AEJOX
AEKER
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFQV
AFFZL
AFHLB
AFIQY
AFIYH
AFOFC
AFVIK
AFVSF
AFYAG
AGFCL
AGINJ
AGKRT
AGMDO
AGQXC
AGSYK
AHHHB
AHMMS
AHXPO
AICVH
AIDGQ
AIRXX
AITUG
AJDVS
AJECE
AJEEA
AJEUX
AJNCP
ALJLX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMMGX
ANAKG
ANDVN
ANFBD
ANNUL
APIBT
APJGH
AQDSO
AQKUS
ASAOO
ASPBG
ASPYK
ATDFG
ATGXG
AVNTJ
AVWKF
AVWTO
AXUDD
AYLYT
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BHZBG
BKEBE
BMSTW
BOXDG
BPEOZ
BQUQU
BTQHN
BTRTY
BVRKM
BZKNY
BZYEK
CDBKE
CS3
CXTWN
DAKXR
DDUBX
DFGAJ
DILTD
DU5
D~K
EBS
ECIRT
EE~
EIHJH
EJD
ELUNK
EO8
EO9
EP2
EP3
ETYVG
EYXSX
F5P
F9B
FDB
FEDTE
FGOYB
FIRID
FLIZI
FLUFQ
FNPLU
FOEOM
FOTVD
FQBLK
G-Q
GAOTZ
GAUVT
GJXCC
H13
H5~
HAR
HLZ
HVGLF
HW0
HZ~
IHE
J1W
J21
JAVBF
JXSIZ
KBUDW
KOP
KSI
KSN
LG9
LOXHT
M41
MBLQV
MBTAY
MBUXU
MJWOD
ML0
MXSPP
N9A
NGC
NMDNZ
NOMLY
NOYVH
NQ-
NU-
NVLIB
O0~
O9-
OAIJC
OAWHX
OBFPC
OCL
OCZFY
ODMLO
OJQWA
OJZSN
OKKKP
OPAEJ
OWPYF
OXVUA
OZT
O~Y
P2P
PAFKI
PB-
PEELM
PLIXB
Q1.
Q5Y
R2-
RIG
ROL
ROX
ROZ
RPZ
RUSNO
RW1
RXO
SBC
SDG
SDP
SES
SSZ
TCN
THA
TJH
TJJ
TJP
TJX
TMA
TSS
UHS
WUQ
YADRA
YAJVU
YAYTL
YKOAZ
YXANX
~S-
~SN
AAYXX
ABVLG
ADYJX
AGORE
AHGBF
AJBYB
CITATION
1XC
AGQPQ
VOOES
ID FETCH-LOGICAL-c347t-ebd8ddd78fda69025f14275ab72caec9f64087f41f5bd5a17ca1a9f3beb5dbe13
ISSN 0953-5438
IngestDate Fri May 09 12:15:05 EDT 2025
Thu Apr 24 22:59:29 EDT 2025
Tue Jul 01 02:03:49 EDT 2025
Wed Apr 02 07:04:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords prospect theory
model-based predictor design
framing effect
human–computer interaction (HCI)
cognitive bias
human–robot(s) interaction (HRI)
Prospect theory
Human-computer interaction (HCI)- Human-robot(s) interaction (HRI)
Model-based predictor design
Framing effect
Cognitive bias
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-ebd8ddd78fda69025f14275ab72caec9f64087f41f5bd5a17ca1a9f3beb5dbe13
OpenAccessLink https://hal.science/hal-02923113
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_02923113v1
crossref_citationtrail_10_1093_iwcomp_iwaa016
crossref_primary_10_1093_iwcomp_iwaa016
oup_primary_10_1093_iwcomp_iwaa016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Interacting with computers
PublicationYear 2020
Publisher Oxford University Press
Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press
– name: Oxford University Press (OUP)
References Nadendla (2021070704135722300_ref31) 2016
Kahneman (2021070704135722300_ref21) 1979; 47
Tversky (2021070704135722300_ref47) 1992; 5
Suarez (2021070704135722300_ref42) 2011
Guo (2021070704135722300_ref17) 2018
Robinette (2021070704135722300_ref36) 2016
Souza (2021070704135722300_ref52) 2016
Jiang (2021070704135722300_ref18) 2015
Pan (2021070704135722300_ref34) 2010; 22
Todd (2021070704135722300_ref45) 2000; 23
Klein (2021070704135722300_ref23) 1997; 3
Wakker (2021070704135722300_ref49) 2010
Kappes (2021070704135722300_ref22) 2018; 2
Olsen (2021070704135722300_ref32) 2017
Lerner (2021070704135722300_ref27) 2000; 14
Matarić (2021070704135722300_ref29) 2003; 14
Agresti (2021070704135722300_ref1) 2011
Zhang (2021070704135722300_ref51) 2016
Dehais (2021070704135722300_ref15) 2015
Timotheou (2021070704135722300_ref44) 2009
Xue (2021070704135722300_ref50) 2011
Bevacqua (2021070704135722300_ref8) 2015
Tversky (2021070704135722300_ref46) 1981; 211
Bates (2021070704135722300_ref6) 2015; 67
Kőszegi (2021070704135722300_ref25) 2006; 121
Biswas (2021070704135722300_ref9) 2017; 43
Ren (2021070704135722300_ref35) 2016; 47
Barnes (2021070704135722300_ref4) 2015
Strimmer (2021070704135722300_ref41) 2015
Osmont (2021070704135722300_ref33) 2015; 22
Kuhn (2021070704135722300_ref26) 2008; 28
Steiger (2021070704135722300_ref40) 2018
Kahneman (2021070704135722300_ref20) 1979
Dehais (2021070704135722300_ref13) 2005
Barberis (2021070704135722300_ref3) 2013; 27
Schurr (2021070704135722300_ref38) 2009
de Winter (2021070704135722300_ref11) 2014; 16
Suhonen (2021070704135722300_ref43) 2007
Bago (2021070704135722300_ref2) 2017; 158
Stark (2021070704135722300_ref39) 2017; 20
Kahneman (2021070704135722300_ref19) 2011
Von Neumann (2021070704135722300_ref48) 2007
Cassotti (2021070704135722300_ref10) 2012; 12
Dehais (2021070704135722300_ref14) 2019; 100
Kolling (2021070704135722300_ref24) 2016; 46
Levin (2021070704135722300_ref28) 1998; 76
Dehais (2021070704135722300_ref12) 2012; 43
Murphy (2021070704135722300_ref30) 2008
Baron (2021070704135722300_ref5) 2007
Belloni (2021070704135722300_ref7) 2014
Gombolay (2021070704135722300_ref16) 2017; 36
Schmitt (2021070704135722300_ref37) 2018
References_xml – volume-title: AAAI 2005 fall symposium “from reactive to anticipatory cognitive embodied systems”
  year: 2005
  ident: 2021070704135722300_ref13
  article-title: Towards an anticipatory agent to help pilots
– volume-title: Prospect Theory: For Risk and Ambiguity
  year: 2010
  ident: 2021070704135722300_ref49
  doi: 10.1017/CBO9780511779329
– volume-title: Thinking and Deciding
  year: 2007
  ident: 2021070704135722300_ref5
– start-page: 315
  volume-title: 25th int. conf. automated planning and scheduling (ICAPS)
  year: 2015
  ident: 2021070704135722300_ref8
  article-title: Mixed-initiative planning and execution for multiple drones in search and rescue missions
– volume: 47
  start-page: 2531
  year: 2016
  ident: 2021070704135722300_ref35
  article-title: Hesitant fuzzy thermodynamic method for emergency decision making based on prospect theory
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2638498
– volume: 16
  start-page: 1
  year: 2014
  ident: 2021070704135722300_ref11
  article-title: Why the Fitts list has persisted throughout the history of function allocation
  publication-title: Cogn. Tech. Work
  doi: 10.1007/s10111-011-0188-1
– volume: 12
  start-page: 926
  year: 2012
  ident: 2021070704135722300_ref10
  article-title: Positive emotional context eliminates the framing effect in decision-making
  publication-title: Emotion
  doi: 10.1037/a0026788
– volume: 76
  start-page: 149
  year: 1998
  ident: 2021070704135722300_ref28
  article-title: All frames are not created equal: A typology and critical analysis of framing effects
  publication-title: Organ. Behav. Hum. Decis. Process.
  doi: 10.1006/obhd.1998.2804
– year: 2018
  ident: 2021070704135722300_ref40
  article-title: A meta-analytic re-appraisal of the framing effect
  publication-title: Z. Psychol.
– start-page: 1929
  volume-title: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016
  year: 2016
  ident: 2021070704135722300_ref52
  article-title: Towards human-robot interaction: {A} framing effect experiment
  doi: 10.1109/SMC.2016.7844521
– volume: 5
  start-page: 297
  year: 1992
  ident: 2021070704135722300_ref47
  article-title: Advances in prospect theory: Cumulative representation of uncertainty
  publication-title: J. Risk Uncertain.
  doi: 10.1007/BF00122574
– volume: 14
  start-page: 473
  year: 2000
  ident: 2021070704135722300_ref27
  article-title: Beyond valence: Toward a model of emotion-specific influences on judgement and choice
  publication-title: Cognit. Emot.
  doi: 10.1080/026999300402763
– year: 2017
  ident: 2021070704135722300_ref32
  article-title: groupdata2: Creating groups from data
  doi: 10.32614/CRAN.package.groupdata2
– start-page: 353
  volume-title: Proc. 8th int. conf. autonomous agents and multiagent systems
  year: 2009
  ident: 2021070704135722300_ref38
  article-title: Improving adjustable autonomy strategies for time-critical domains
– volume-title: Thinking, Fast and Slow
  year: 2011
  ident: 2021070704135722300_ref19
– start-page: 1171
  volume-title: Proc. 2009 ACM symposium on applied computing
  year: 2009
  ident: 2021070704135722300_ref44
  article-title: Autonomous networked robots for the establishment of wireless communication in uncertain emergency response scenarios
  doi: 10.1145/1529282.1529542
– start-page: 1386
  volume-title: 2015 IEEE int. conf. systems, man, and cybernetics (SMC)
  year: 2015
  ident: 2021070704135722300_ref4
  article-title: Designing for mixed-initiative interactions between human and autonomous systems in complex environments
  doi: 10.1109/SMC.2015.246
– volume: 2
  start-page: 573
  year: 2018
  ident: 2021070704135722300_ref22
  article-title: Uncertainty about the impact of social decisions increases prosocial behaviour
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-018-0372-x
– start-page: 2525
  volume-title: Proc. 33rd annual ACM conf. human factors in computing systems
  year: 2015
  ident: 2021070704135722300_ref15
  article-title: Automation surprise in aviation: real-time solutions
– start-page: 101
  volume-title: 11th ACM/IEEE int. conf. human-robot interaction (HRI)
  year: 2016
  ident: 2021070704135722300_ref36
  article-title: Overtrust of robots in emergency evacuation scenarios
– volume: 43
  start-page: 588
  year: 2012
  ident: 2021070704135722300_ref12
  article-title: Cognitive conflict in human–automation interactions: A psychophysiological study
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2011.09.004
– start-page: 209
  volume-title: Int. conf. intelligent human systems integration
  year: 2018
  ident: 2021070704135722300_ref37
  article-title: Experimental validation of pilot situation awareness enhancement through transparency design of a scalable mixed-initiative mission planner
  doi: 10.1007/978-3-319-73888-8_33
– volume: 43
  start-page: 266
  year: 2017
  ident: 2021070704135722300_ref9
  article-title: The effects of cognitive biases and imperfectness in long-term robot-human interactions: Case studies using five cognitive biases on three robots
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2016.07.007
– start-page: 1151
  volume-title: Springer Handbook of Robotics
  year: 2008
  ident: 2021070704135722300_ref30
  article-title: Search and Rescue Robotics
  doi: 10.1007/978-3-540-30301-5_51
– start-page: 314
  volume-title: 2011 IEEE int. symposium on safety, security, and rescue robotics (SSRR)
  year: 2011
  ident: 2021070704135722300_ref42
  article-title: A survey of animal foraging for directed, persistent search by rescue robotics
  doi: 10.1109/SSRR.2011.6106744
– volume: 121
  start-page: 1133
  year: 2006
  ident: 2021070704135722300_ref25
  article-title: A model of reference-dependent preferences
  publication-title: The Quarterly Journal of Economics
– volume: 27
  start-page: 173
  year: 2013
  ident: 2021070704135722300_ref3
  article-title: Thirty years of prospect theory in economics: A review and assessment
  publication-title: J. Econ. Perspect.
  doi: 10.1257/jep.27.1.173
– start-page: 954
  volume-title: 2015 IEEE int. conf. systems, man, and cybernetics (SMC)
  year: 2015
  ident: 2021070704135722300_ref18
  article-title: Mixed-initiative human-robot interaction: Definition, taxonomy, and survey
  doi: 10.1109/SMC.2015.174
– volume: 36
  start-page: 597
  year: 2017
  ident: 2021070704135722300_ref16
  article-title: Computational design of mixed-initiative human–robot teaming that considers human factors: Situational awareness, workload, and workflow preferences
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364916688255
– start-page: 3792
  volume-title: 2011 int. conf. electrical and control engineering (ICECE)
  year: 2011
  ident: 2021070704135722300_ref50
  article-title: A review of autonomous robotic search
  doi: 10.1109/ICECENG.2011.6057781
– volume-title: Normative and Descriptive Theories of Decision Making Under Risk: A Short Review
  year: 2007
  ident: 2021070704135722300_ref43
– volume: 22
  start-page: 572
  year: 2015
  ident: 2021070704135722300_ref33
  article-title: Does ambiguity aversion influence the framing effect during decision making?
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/s13423-014-0688-0
– volume: 47
  start-page: 263
  year: 1979
  ident: 2021070704135722300_ref21
  article-title: Prospect theory: An analysis of decision under risk
  publication-title: Econometrica
  doi: 10.2307/1914185
– volume: 3
  start-page: 337
  year: 1997
  ident: 2021070704135722300_ref23
  article-title: Developing expertise in decision making
  publication-title: Think. Reason.
  doi: 10.1080/135467897394329
– volume: 14
  start-page: 255
  year: 2003
  ident: 2021070704135722300_ref29
  article-title: Multi-Robot task allocation in uncertain environments
  publication-title: Auton. Robot.
  doi: 10.1023/A:1022291921717
– year: 2015
  ident: 2021070704135722300_ref41
  article-title: crossval: Generic functions for cross validation
– start-page: 766
  volume-title: 54th annual Allerton conf. communication, control, and computing (Allerton)
  year: 2016
  ident: 2021070704135722300_ref31
  article-title: Towards the design of prospect-theory based human decision rules for hypothesis testing
– volume: 28
  start-page: 1
  year: 2008
  ident: 2021070704135722300_ref26
  article-title: Building predictive models in r using the caret package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i05
– start-page: 6395
  volume-title: IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, 2018
  year: 2018
  ident: 2021070704135722300_ref17
  article-title: Human-in-the-Loop Mixed-Initiative Control Under Temporal Tasks
  doi: 10.1109/ICRA.2018.8460793
– start-page: 538
  volume-title: 8th int. conf. intelligent human-machine systems and cybernetics (IHMSC)
  year: 2016
  ident: 2021070704135722300_ref51
  article-title: Comparison of decision-making mechanism between emotion behavior selection and prospect theory
– volume: 158
  start-page: 90
  year: 2017
  ident: 2021070704135722300_ref2
  article-title: Fast logic?: Examining the time course assumption of dual process theory
  publication-title: Cognition
  doi: 10.1016/j.cognition.2016.10.014
– volume: 46
  start-page: 9
  year: 2016
  ident: 2021070704135722300_ref24
  article-title: Human interaction with robot swarms: A survey
  publication-title: IEEE T. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2015.2480801
– volume: 67
  start-page: 1
  year: 2015
  ident: 2021070704135722300_ref6
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v067.i01
– start-page: paper 8
  volume-title: CEPE 2014 well-being, flourishing, and ICTs
  year: 2014
  ident: 2021070704135722300_ref7
  article-title: Towards a framework to deal with ethical conflicts in autonomous agents and multi-agent systems
– volume-title: Categorical Data Analysis
  year: 2011
  ident: 2021070704135722300_ref1
– volume: 20
  start-page: 1585
  year: 2017
  ident: 2021070704135722300_ref39
  article-title: Understanding the framing effect: Do affective responses to decision options mediate the influence of frame on choice?
  publication-title: J. Risk Res.
  doi: 10.1080/13669877.2016.1200654
– start-page: 263
  year: 1979
  ident: 2021070704135722300_ref20
  article-title: Prospect theory: An analysis of decision under risk
  publication-title: Econometrica
  doi: 10.2307/1914185
– volume: 23
  start-page: 727
  year: 2000
  ident: 2021070704135722300_ref45
  article-title: Précis of simple heuristics that make us smart
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X00003447
– volume: 22
  start-page: 1345
  year: 2010
  ident: 2021070704135722300_ref34
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume-title: Theory of Games and Economic Behavior
  year: 2007
  ident: 2021070704135722300_ref48
– volume: 100
  start-page: 252
  year: 2019
  ident: 2021070704135722300_ref14
  article-title: Momentary lapse of control: A cognitive continuum approach to understanding and mitigating perseveration in human error
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2019.03.006
– volume: 211
  start-page: 453
  year: 1981
  ident: 2021070704135722300_ref46
  article-title: The framing of decisions and the psychology of choice
  publication-title: Science
  doi: 10.1126/science.7455683
SSID ssj0007784
Score 2.2727497
Snippet Abstract The aim of this work is to predict human operator’s (HO) decisions in a specific operational context, such as a cooperative human-robot mission, by...
The aim of this work is to predict human operator’s (HO) decisions in a specific operational context, such as a cooperative human-robot mission, by...
The aim of this work is to predict human operator's decisions in a specific operational context, such as a cooperative human-robots mission, by approximating...
SourceID hal
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 221
SubjectTerms Cognitive science
Neuroscience
Title Predicting Human Operator’s Decisions Based on Prospect Theory
URI https://hal.science/hal-02923113
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBabzaWXvkuTPhCl0INx4ods2bdu82Ap2XYhWcjNSJZMAsEO-2ghp_6EXvv3-ks68sjytt3StBevEdpZVjOM5vHNDCGvI54q04PFz3WufJZJ7gupSr_iIgEZ0iwoTXHy5EM6nrH358n5YPB1DbW0Wsq98mZjXcn_cBXWgK-mSvYfOOuIwgK8A3_hCRyG5614PJ2bNEsLXMZg_Mdr3abNOwhDvgCFgkN0Ft47uLCUSQ5M501bYNkX5jv7tA0QCiRpUek49cGZ3kp7p83qRnSwwsY78mZrIIEa0_4HOA5Ie9M-DmvwHGDytiHrib5qlAvnH-oLgc0Ojm3qXuHH_LJcj0tEQY8CdAFGA7vA3i17GtVrxmOf57bFrNW_fXyzd89RmWLttL2XI9z3m8rHdliXn815tC9CBOGG7tq_3HoOi4hZ-LhACoX9_hbZjsDxiIZke3Q4OTl1tzvn7RRr9-9cI9B4HynsWwo_GTpbFwZma0oo16yXs_vkrnU76Ahl6AEZ6PohudeN9KBWwz8ib3uRoq1I0U6kvn_5tqBOmGgrTLSpaSdMFIXpMZkdH50djH07ZMMvY8aXvpYqU0rxrFIiNTnnKmQRT4TkUSl0mVcpCzJesbBKpEpEyEsRiryKpZaJkjqMn5Bh3dT6KaFgekupGXgYSrMUbEdpuiGKMEsFk1kkdojfnUhR2g70ZhDKVbGZBzvkjdt_jb1X_rjzFRyw22Rapo9HJ4VZCyLjwoTxpxA2wfn_hdLurX_zGbnTi_1zMlzOV_oFGKhL-dLKzA8rgJWu
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Human+Operator%E2%80%99s+Decisions+Based+on+Prospect+Theory&rft.jtitle=Interacting+with+computers&rft.au=de+Souza%2C+Paulo+E+U&rft.au=Chanel%2C+Caroline+P+C&rft.au=Mailliez%2C+Melody&rft.au=Dehais%2C+Fr%C3%A9d%C3%A9ric&rft.date=2020-05-01&rft.issn=0953-5438&rft.eissn=1873-7951&rft.volume=32&rft.issue=3&rft.spage=221&rft.epage=232&rft_id=info:doi/10.1093%2Fiwcomp%2Fiwaa016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_iwcomp_iwaa016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-5438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-5438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-5438&client=summon