Lower bounds for finding stationary points I

We prove lower bounds on the complexity of finding ϵ -stationary points (points x such that ‖ ∇ f ( x ) ‖ ≤ ϵ ) of smooth, high-dimensional, and potentially non-convex functions f . We consider oracle-based complexity measures, where an algorithm is given access to the value and all derivatives of f...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 184; no. 1-2; pp. 71 - 120
Main Authors Carmon, Yair, Duchi, John C., Hinder, Oliver, Sidford, Aaron
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We prove lower bounds on the complexity of finding ϵ -stationary points (points x such that ‖ ∇ f ( x ) ‖ ≤ ϵ ) of smooth, high-dimensional, and potentially non-convex functions f . We consider oracle-based complexity measures, where an algorithm is given access to the value and all derivatives of f at a query point x . We show that for any (potentially randomized) algorithm A , there exists a function f with Lipschitz p th order derivatives such that A requires at least ϵ - ( p + 1 ) / p queries to find an ϵ -stationary point. Our lower bounds are sharp to within constants, and they show that gradient descent, cubic-regularized Newton’s method, and generalized p th order regularization are worst-case optimal within their natural function classes.
AbstractList We prove lower bounds on the complexity of finding ϵ-stationary points (points x such that ‖∇f(x)‖≤ϵ) of smooth, high-dimensional, and potentially non-convex functions f. We consider oracle-based complexity measures, where an algorithm is given access to the value and all derivatives of f at a query point x. We show that for any (potentially randomized) algorithm A, there exists a function f with Lipschitz pth order derivatives such that A requires at least ϵ-(p+1)/p queries to find an ϵ-stationary point. Our lower bounds are sharp to within constants, and they show that gradient descent, cubic-regularized Newton’s method, and generalized pth order regularization are worst-case optimal within their natural function classes.
We prove lower bounds on the complexity of finding ϵ -stationary points (points x such that ‖ ∇ f ( x ) ‖ ≤ ϵ ) of smooth, high-dimensional, and potentially non-convex functions f . We consider oracle-based complexity measures, where an algorithm is given access to the value and all derivatives of f at a query point x . We show that for any (potentially randomized) algorithm A , there exists a function f with Lipschitz p th order derivatives such that A requires at least ϵ - ( p + 1 ) / p queries to find an ϵ -stationary point. Our lower bounds are sharp to within constants, and they show that gradient descent, cubic-regularized Newton’s method, and generalized p th order regularization are worst-case optimal within their natural function classes.
Author Carmon, Yair
Duchi, John C.
Sidford, Aaron
Hinder, Oliver
Author_xml – sequence: 1
  givenname: Yair
  orcidid: 0000-0001-5731-8640
  surname: Carmon
  fullname: Carmon, Yair
  email: yairc@stanford.edu
  organization: Department of Electrical Engineering, Stanford University
– sequence: 2
  givenname: John C.
  surname: Duchi
  fullname: Duchi, John C.
  organization: Departments of Statistics and Electrical Engineering, Stanford University
– sequence: 3
  givenname: Oliver
  surname: Hinder
  fullname: Hinder, Oliver
  organization: Department of Management Science and Engineering, Stanford University
– sequence: 4
  givenname: Aaron
  surname: Sidford
  fullname: Sidford, Aaron
  organization: Department of Management Science and Engineering, Stanford University
BookMark eNp9kE1LAzEURYNUsK3-AVcDbo2-fEwyXUrRWii40XVI81FSalKTKdJ_b3QEwUUDIZt78u47EzSKKTqErgncEQB5XwgQkBjIrF4OAh_P0JhwJjAXXIzQGIC2uBUELtCklC0AENZ1Y3S7Sp8uN-t0iLY0PuXGh2hD3DSl131IUedjs08h9qVZXqJzr3fFXf2-U_T29Pg6f8arl8Vy_rDChnHZY8c96Yyth6zBaEaNldaz1nXOclvbtdJxTTUHWRuaWlgT3jprjWTMrymbopvh331OHwdXerVNhxzrSEV5S9hsJtjpFGU1ISgjNUWHlMmplOy82ufwXrdSBNS3OzW4U9Wd-nGnjhXq_kEmDDr6rMPuNMoGtNQ5cePyX6sT1BdmG4SA
CitedBy_id crossref_primary_10_1287_moor_2020_0274
crossref_primary_10_1109_TSP_2021_3115952
crossref_primary_10_3390_math13040681
crossref_primary_10_1007_s10107_020_01505_1
crossref_primary_10_1109_TSP_2022_3184772
crossref_primary_10_1007_s10208_022_09573_9
crossref_primary_10_1137_21M1397854
crossref_primary_10_1093_imaiai_iaae025
crossref_primary_10_1137_20M1337600
crossref_primary_10_1214_23_EJP1066
crossref_primary_10_1007_s10107_024_02139_3
crossref_primary_10_1137_22M1540934
crossref_primary_10_1007_s10107_024_02062_7
crossref_primary_10_1007_s10107_021_01660_z
crossref_primary_10_1007_s11075_021_01200_y
crossref_primary_10_1007_s10107_019_01431_x
crossref_primary_10_1137_21M1457011
crossref_primary_10_1109_TSP_2019_2943230
crossref_primary_10_1145_3568163
crossref_primary_10_1007_s10107_025_02197_1
crossref_primary_10_1137_23M1566972
crossref_primary_10_1016_j_orl_2024_107115
crossref_primary_10_1007_s10957_022_02093_0
crossref_primary_10_1007_s10107_024_02154_4
crossref_primary_10_1109_TNNLS_2021_3056947
crossref_primary_10_1137_20M135474X
crossref_primary_10_1137_21M1395302
crossref_primary_10_1016_j_knosys_2022_109277
crossref_primary_10_1007_s10107_024_02075_2
crossref_primary_10_1007_s10107_024_02100_4
crossref_primary_10_1016_j_aim_2024_109808
crossref_primary_10_1137_20M1322716
crossref_primary_10_1007_s10107_023_02031_6
crossref_primary_10_1016_j_ejco_2022_100045
crossref_primary_10_22331_q_2023_03_16_949
Cites_doi 10.1038/nature14539
10.1137/100802001
10.1137/110835335
10.1007/s10107-016-1065-8
10.1007/BF01589116
10.1109/TIT.2011.2182178
10.4153/CJM-1951-038-3
10.1007/978-1-4419-8853-9
10.1007/s10107-002-0352-8
10.1137/17M1114296
10.1080/10556788.2012.722632
10.1080/10556788.2011.638924
10.1016/j.jco.2011.06.001
10.1007/s10107-006-0706-8
10.1214/12-AOS1018
10.1109/TIT.2015.2399924
10.1145/3055399.3055464
10.1137/0803004
10.1007/s10208-017-9365-9
10.1109/TIT.2017.2701343
10.1017/CBO9780511804441
10.1007/BF02592948
10.1137/1.9780898719857
10.1137/110833786
10.1137/090774100
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019
Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019
– notice: Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-019-01406-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 120
ExternalDocumentID 10_1007_s10107_019_01406_y
GrantInformation_xml – fundername: Division of Computing and Communication Foundations
  grantid: 1553086
  funderid: http://dx.doi.org/10.13039/100000143
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c347t-e4f18cdddd1b0ca32cd7df35e8ed4d40657e4a2a407436c014a145eddc733fb23
IEDL.DBID U2A
ISSN 0025-5610
IngestDate Fri Jul 25 19:50:46 EDT 2025
Fri Jul 25 19:50:00 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Tue Jul 01 02:15:12 EDT 2025
Fri Feb 21 02:32:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Dimension-free rates
Gradient descent
Cubic regularization of Newton’s method
68Q25
Non-convex optimization
90C30
Information-based complexity
90C06
90C26
90C60
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-e4f18cdddd1b0ca32cd7df35e8ed4d40657e4a2a407436c014a145eddc733fb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5731-8640
PQID 2236326231
PQPubID 25307
PageCount 50
ParticipantIDs proquest_journals_2451399632
proquest_journals_2236326231
crossref_primary_10_1007_s10107_019_01406_y
crossref_citationtrail_10_1007_s10107_019_01406_y
springer_journals_10_1007_s10107_019_01406_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Braun, Guzmán, Pokutta (CR10) 2017; 63
Murty, Kabadi (CR33) 1987; 39
Sun, Qu, Wright (CR42) 2018; 18
CR18
Nemirovski, Yudin (CR35) 1983
Nesterov, Polyak (CR40) 2006; 108
CR14
CR13
CR34
Arjevani, Shalev-Shwartz, Shamir (CR3) 2016; 17
Burer, Monteiro (CR11) 2003; 95
Nesterov (CR37) 2004
Zhang, Ling, Qi (CR47) 2012; 33
Woodworth, Srebro (CR45) 2016; 30
Birgin, Gardenghi, Martínez, Santos, Toint (CR7) 2017; 163
Berend, Tassa (CR6) 2010; 30
Carmon, Duchi, Hinder, Sidford (CR15) 2018; 28
Ball, Levy (CR5) 1997
Hager, Zhang (CR23) 2006; 2
Liu, Nocedal (CR29) 1989; 45
LeCun, Bengio, Hinton (CR28) 2015; 521
Jarre (CR25) 2013; 28
Loh, Wainwright (CR31) 2013; 16
Monteiro, Svaiter (CR32) 2013; 23
Nesterov (CR39) 2012; 88
Vavasis (CR44) 1993; 3
CR2
Boumal, Voroninski, Bandeira (CR8) 2016; 30
CR4
Cartis, Gould, Toint (CR19) 2013; 28
Chowla, Herstein, Moore (CR21) 1951; 3
Keshavan, Montanari, Oh (CR27) 2010; 11
Agarwal, Bartlett, Ravikumar, Wainwright (CR1) 2012; 58
Candès, Li, Soltanolkotabi (CR12) 2015; 61
Cartis, Gould, Toint (CR16) 2010; 20
CR26
CR24
Nesterov (CR36) 1983; 27
CR46
Traub, Wasilkowski, Wozniakowski (CR43) 1988
Cartis, Gould, Toint (CR17) 2012; 28
Boyd, Vandenberghe (CR9) 2004
Loh, Wainwright (CR30) 2012; 40
CR20
Nesterov (CR38) 2012; 22
Conn, Gould, Toint (CR22) 2000
Nocedal, Wright (CR41) 2006
1406_CR20
X Zhang (1406_CR47) 2012; 33
Y Arjevani (1406_CR3) 2016; 17
1406_CR24
1406_CR46
1406_CR26
J Nocedal (1406_CR41) 2006
Y Nesterov (1406_CR36) 1983; 27
EJ Candès (1406_CR12) 2015; 61
BE Woodworth (1406_CR45) 2016; 30
A Agarwal (1406_CR1) 2012; 58
C Cartis (1406_CR16) 2010; 20
D Liu (1406_CR29) 1989; 45
N Boumal (1406_CR8) 2016; 30
K Murty (1406_CR33) 1987; 39
A Nemirovski (1406_CR35) 1983
C Cartis (1406_CR17) 2012; 28
RH Keshavan (1406_CR27) 2010; 11
Y Nesterov (1406_CR39) 2012; 88
F Jarre (1406_CR25) 2013; 28
WW Hager (1406_CR23) 2006; 2
P-L Loh (1406_CR31) 2013; 16
G Braun (1406_CR10) 2017; 63
1406_CR4
1406_CR2
D Berend (1406_CR6) 2010; 30
1406_CR13
Y Carmon (1406_CR15) 2018; 28
1406_CR34
Y Nesterov (1406_CR38) 2012; 22
1406_CR14
Y LeCun (1406_CR28) 2015; 521
P-L Loh (1406_CR30) 2012; 40
Y Nesterov (1406_CR40) 2006; 108
AR Conn (1406_CR22) 2000
1406_CR18
SA Vavasis (1406_CR44) 1993; 3
S Burer (1406_CR11) 2003; 95
S Chowla (1406_CR21) 1951; 3
J Sun (1406_CR42) 2018; 18
K Ball (1406_CR5) 1997
EG Birgin (1406_CR7) 2017; 163
J Traub (1406_CR43) 1988
S Boyd (1406_CR9) 2004
C Cartis (1406_CR19) 2013; 28
RD Monteiro (1406_CR32) 2013; 23
Y Nesterov (1406_CR37) 2004
References_xml – ident: CR18
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR4
– ident: CR14
– ident: CR2
– volume: 18
  start-page: 1131
  issue: 5
  year: 2018
  end-page: 1198
  ident: CR42
  article-title: A geometric analysis of phase retrieval
  publication-title: Found. Comput. Math.
– volume: 16
  start-page: 559
  year: 2013
  end-page: 616
  ident: CR31
  article-title: Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima
  publication-title: J. Mach. Learn. Res.
– year: 1988
  ident: CR43
  publication-title: Information-Based Complexity
– volume: 39
  start-page: 117
  year: 1987
  end-page: 129
  ident: CR33
  article-title: Some NP-complete problems in quadratic and nonlinear programming
  publication-title: Math. Program.
– volume: 27
  start-page: 372
  issue: 2
  year: 1983
  end-page: 376
  ident: CR36
  article-title: A method of solving a convex programming problem with convergence rate
  publication-title: Sov. Math. Dokl.
– volume: 58
  start-page: 3235
  issue: 5
  year: 2012
  end-page: 3249
  ident: CR1
  article-title: Information-theoretic lower bounds on the oracle complexity of convex optimization
  publication-title: IEEE Trans. Inf. Theory
– volume: 163
  start-page: 359
  issue: 1–2
  year: 2017
  end-page: 368
  ident: CR7
  article-title: Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models
  publication-title: Math. Program.
– volume: 108
  start-page: 177
  year: 2006
  end-page: 205
  ident: CR40
  article-title: Cubic regularization of Newton method and its global performance
  publication-title: Math. Program. Ser. A
– volume: 33
  start-page: 806
  issue: 3
  year: 2012
  end-page: 821
  ident: CR47
  article-title: The best rank-1 approximation of a symmetric tensor and related spherical optimization problems
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 1983
  ident: CR35
  publication-title: Problem Complexity and Method Efficiency in Optimization
– volume: 61
  start-page: 1985
  issue: 4
  year: 2015
  end-page: 2007
  ident: CR12
  article-title: Phase retrieval via Wirtinger flow: theory and algorithms
  publication-title: IEEE Trans. Inf. Theory
– volume: 20
  start-page: 2833
  issue: 6
  year: 2010
  end-page: 2852
  ident: CR16
  article-title: On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization problems
  publication-title: SIAM J. Optim.
– volume: 28
  start-page: 451
  year: 2013
  end-page: 457
  ident: CR19
  article-title: A note about the complexity of minimizing nesterov’s smooth Chebyshev–Rosenbrock function
  publication-title: Optim. Methods Softw.
– year: 2006
  ident: CR41
  publication-title: Numerical Optimization
– volume: 30
  start-page: 3639
  year: 2016
  end-page: 3647
  ident: CR45
  article-title: Tight complexity bounds for optimizing composite objectives
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 3
  start-page: 328
  year: 1951
  end-page: 334
  ident: CR21
  article-title: On recursions connected with symmetric groups I
  publication-title: Can. J. Math.
– volume: 11
  start-page: 2057
  year: 2010
  end-page: 2078
  ident: CR27
  article-title: Matrix completion from noisy entries
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 341
  issue: 2
  year: 2012
  end-page: 362
  ident: CR38
  article-title: Efficiency of coordinate descent methods on huge-scale optimization problems
  publication-title: SIAM J. Optim.
– volume: 63
  start-page: 4709
  issue: 7
  year: 2017
  end-page: 4724
  ident: CR10
  article-title: Lower bounds on the oracle complexity of nonsmooth convex optimization via information theory
  publication-title: IEEE Trans. Inf. Theory
– volume: 40
  start-page: 1637
  issue: 3
  year: 2012
  end-page: 1664
  ident: CR30
  article-title: High-dimensional regression with noisy and missing data: provable guarantees with nonconvexity
  publication-title: Ann. Stat.
– ident: CR46
– volume: 30
  start-page: 185
  issue: 2
  year: 2010
  end-page: 205
  ident: CR6
  article-title: Improved bounds on Bell numbers and on moments of sums of random variables
  publication-title: Prob. Math. Stat.
– start-page: 1
  year: 1997
  end-page: 58
  ident: CR5
  article-title: An elementary introduction to modern convex geometry
  publication-title: Flavors of Geometry
– volume: 2
  start-page: 35
  issue: 1
  year: 2006
  end-page: 58
  ident: CR23
  article-title: A survey of nonlinear conjugate gradient methods
  publication-title: Pac. J. Optim.
– volume: 30
  start-page: 2757
  year: 2016
  end-page: 2765
  ident: CR8
  article-title: The non-convex Burer–Monteiro approach works on smooth semidefinite programs
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2004
  ident: CR9
  publication-title: Convex Optimization
– ident: CR13
– volume: 28
  start-page: 478
  issue: 3
  year: 2013
  end-page: 500
  ident: CR25
  article-title: On Nesterov’s smooth Chebyshev–Rosenbrock function
  publication-title: Optim. Methods Softw.
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  end-page: 528
  ident: CR29
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– year: 2004
  ident: CR37
  publication-title: Introductory Lectures on Convex Optimization
– volume: 17
  start-page: 1
  issue: 126
  year: 2016
  end-page: 51
  ident: CR3
  article-title: On lower and upper bounds in smooth and strongly convex optimization
  publication-title: J. Mach. Learn. Res.
– ident: CR34
– volume: 88
  start-page: 10
  year: 2012
  end-page: 11
  ident: CR39
  article-title: How to make the gradients small
  publication-title: Optima
– year: 2000
  ident: CR22
  publication-title: Trust Region Methods
– volume: 28
  start-page: 1751
  issue: 2
  year: 2018
  end-page: 1772
  ident: CR15
  article-title: Accelerated methods for non-convex optimization
  publication-title: SIAM J. Optim.
– volume: 28
  start-page: 93
  issue: 1
  year: 2012
  end-page: 108
  ident: CR17
  article-title: Complexity bounds for second-order optimality in unconstrained optimization
  publication-title: J. Complex.
– ident: CR26
– volume: 23
  start-page: 1092
  issue: 2
  year: 2013
  end-page: 1125
  ident: CR32
  article-title: An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods
  publication-title: SIAM J. Optim.
– ident: CR24
– volume: 95
  start-page: 329
  issue: 2
  year: 2003
  end-page: 357
  ident: CR11
  article-title: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization
  publication-title: Math. Program.
– ident: CR20
– volume: 3
  start-page: 60
  issue: 1
  year: 1993
  end-page: 80
  ident: CR44
  article-title: Black-box complexity of local minimization
  publication-title: SIAM J. Optim.
– volume: 30
  start-page: 185
  issue: 2
  year: 2010
  ident: 1406_CR6
  publication-title: Prob. Math. Stat.
– volume: 22
  start-page: 341
  issue: 2
  year: 2012
  ident: 1406_CR38
  publication-title: SIAM J. Optim.
  doi: 10.1137/100802001
– volume: 33
  start-page: 806
  issue: 3
  year: 2012
  ident: 1406_CR47
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/110835335
– volume: 163
  start-page: 359
  issue: 1–2
  year: 2017
  ident: 1406_CR7
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1065-8
– start-page: 1
  volume-title: Flavors of Geometry
  year: 1997
  ident: 1406_CR5
– volume: 11
  start-page: 2057
  year: 2010
  ident: 1406_CR27
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  ident: 1406_CR29
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume-title: Problem Complexity and Method Efficiency in Optimization
  year: 1983
  ident: 1406_CR35
– volume: 58
  start-page: 3235
  issue: 5
  year: 2012
  ident: 1406_CR1
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2182178
– ident: 1406_CR26
– volume: 3
  start-page: 328
  year: 1951
  ident: 1406_CR21
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1951-038-3
– ident: 1406_CR24
– volume-title: Introductory Lectures on Convex Optimization
  year: 2004
  ident: 1406_CR37
  doi: 10.1007/978-1-4419-8853-9
– volume: 95
  start-page: 329
  issue: 2
  year: 2003
  ident: 1406_CR11
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0352-8
– volume-title: Information-Based Complexity
  year: 1988
  ident: 1406_CR43
– ident: 1406_CR4
– volume: 28
  start-page: 1751
  issue: 2
  year: 2018
  ident: 1406_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1114296
– volume: 28
  start-page: 451
  year: 2013
  ident: 1406_CR19
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2012.722632
– volume: 30
  start-page: 2757
  year: 2016
  ident: 1406_CR8
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  start-page: 478
  issue: 3
  year: 2013
  ident: 1406_CR25
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2011.638924
– volume: 30
  start-page: 3639
  year: 2016
  ident: 1406_CR45
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  start-page: 93
  issue: 1
  year: 2012
  ident: 1406_CR17
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2011.06.001
– ident: 1406_CR20
– volume: 16
  start-page: 559
  year: 2013
  ident: 1406_CR31
  publication-title: J. Mach. Learn. Res.
– volume: 108
  start-page: 177
  year: 2006
  ident: 1406_CR40
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-006-0706-8
– volume: 40
  start-page: 1637
  issue: 3
  year: 2012
  ident: 1406_CR30
  publication-title: Ann. Stat.
  doi: 10.1214/12-AOS1018
– volume: 88
  start-page: 10
  year: 2012
  ident: 1406_CR39
  publication-title: Optima
– volume: 61
  start-page: 1985
  issue: 4
  year: 2015
  ident: 1406_CR12
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2015.2399924
– ident: 1406_CR13
– ident: 1406_CR2
  doi: 10.1145/3055399.3055464
– ident: 1406_CR34
– volume: 27
  start-page: 372
  issue: 2
  year: 1983
  ident: 1406_CR36
  publication-title: Sov. Math. Dokl.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 1406_CR28
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 2
  start-page: 35
  issue: 1
  year: 2006
  ident: 1406_CR23
  publication-title: Pac. J. Optim.
– volume: 3
  start-page: 60
  issue: 1
  year: 1993
  ident: 1406_CR44
  publication-title: SIAM J. Optim.
  doi: 10.1137/0803004
– volume: 18
  start-page: 1131
  issue: 5
  year: 2018
  ident: 1406_CR42
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-017-9365-9
– volume-title: Numerical Optimization
  year: 2006
  ident: 1406_CR41
– ident: 1406_CR46
– volume: 63
  start-page: 4709
  issue: 7
  year: 2017
  ident: 1406_CR10
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2701343
– ident: 1406_CR18
– volume-title: Convex Optimization
  year: 2004
  ident: 1406_CR9
  doi: 10.1017/CBO9780511804441
– volume: 39
  start-page: 117
  year: 1987
  ident: 1406_CR33
  publication-title: Math. Program.
  doi: 10.1007/BF02592948
– volume: 17
  start-page: 1
  issue: 126
  year: 2016
  ident: 1406_CR3
  publication-title: J. Mach. Learn. Res.
– volume-title: Trust Region Methods
  year: 2000
  ident: 1406_CR22
  doi: 10.1137/1.9780898719857
– volume: 23
  start-page: 1092
  issue: 2
  year: 2013
  ident: 1406_CR32
  publication-title: SIAM J. Optim.
  doi: 10.1137/110833786
– ident: 1406_CR14
– volume: 20
  start-page: 2833
  issue: 6
  year: 2010
  ident: 1406_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/090774100
SSID ssj0001388
Score 2.6625795
Snippet We prove lower bounds on the complexity of finding ϵ -stationary points (points x such that ‖ ∇ f ( x ) ‖ ≤ ϵ ) of smooth, high-dimensional, and potentially...
We prove lower bounds on the complexity of finding ϵ-stationary points (points x such that ‖∇f(x)‖≤ϵ) of smooth, high-dimensional, and potentially non-convex...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Complexity
Convex analysis
Derivatives
Electrical engineering
Full Length Paper
Lower bounds
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Queries
Regularization
Regularization methods
Theoretical
Title Lower bounds for finding stationary points I
URI https://link.springer.com/article/10.1007/s10107-019-01406-y
https://www.proquest.com/docview/2236326231
https://www.proquest.com/docview/2451399632
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ULnowfkYUSQ_epAnrxzqPoCB-4EkSPC39mjExgzA88N_7OjZAgybu0ixt1_S1e-_38r4QuhQaBIFRhoTACQmPrjVRIPiI4InWobEs1D4aefAc9of8YSRGRVBYVnq7lybJnFOvBbsFuZuk9-8BMUTm26gqQHf3jlxD2l7y34BFUVmo1aODIlRm8ze-i6MVxvxhFs2lTW8f7RUwEbcX53qAtlx6iHbXkgfC22CZcTU7Qs0nX-4Ma18lKcOARHFujU7fcLYwtqvpHE_G7-ksw_fHaNjrvtz0SVEJgRjG5Yw4ngSRsfAEumUUo8ZKmzDhIme5hY0I6biiintAEBrYmwq4cNYayViiKTtBlXSculOEYbaRTga2FSWgGlNtAeOA3qWkdBTQSQ0FJUFiU6QJ99UqPuJVgmNPxBiIGOdEjOc1dLWcM1kkyfhzdL2kc1z8MFkMKCUEJAloc3M3FwBVgVnQGmqWR7Pq_n2xs_8NP0c71CvUebBhHVVm0093Aahjphuo2u7cdnq-vXt97DbyS_cFenHPIQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QPagH4zOiqHvQk2xCt9uHBw9EJSCPEyTcavdRY2IKoTWG_-MPdba0gAZNPNBbs7vdZnZ25pvMC-DKEagIZCipi5KQcv9W0BAVH3V4JIQrle0Kk43c7bnNAX8aOsMSfBa5MFm0e-GSzCT1UrKblYVJmvgeVEN0modStvX0Aw215K71gKd6zVjjsX_fpHkvASpt7qVU88jypcLHEjUZ2kwqT0W2o32tuMLPOZ7mIQu5UamuxB1CiztaKenZdiRMeQMU9JsIPnxzdwasPpf3lu37RWNYg0by1JzV__xd_S0w7Q83bKbdGnuwm8NSUp_x0T6UdHwAO0vFCvGtO6_wmhxCtWPaqxFhujIlBJEvybzf8QtJZs79cDIl49FrnCakdQSDtVDrGDbiUaxPgOBq6WnPUjU_QlOcCYWYCu280PM0QzRUBqsgSCDzsuSmO8ZbsCiobIgYIBGDjIjBtAw38zXjWVGOP2dXCjoH-QVNAkRFLiJXRLerh7mD0BiFEytDtTiaxfDvm53-b_olbDX73U7QafXaZ7DNjDGfJTpWYCOdvOtzRDypuMgYjsDzujn8C4q9CqM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KBdGD-MRq1T3oyYY2m83Dg4diLa194MFCbzH7iAiSliYi_Vf-RGfTpK1SBQ_NLexuNszOznzDvAAubY6KQATCcFASGsy74UaAis-wWci5I6TlcJ2N3Os7rQF7GNrDAnzmuTBptHvukpzlNOgqTVFSHcuwupT4ZqYhkzrWB1WSMc3CKjtq-oFGW3zbbuAJX1HavH-6axlZXwFDWMxNDMVC0xMSH5PXRGBRIV0ZWrbylGQSP2e7igU0YFq9OgJ3CExmKymFa1kh16UOUOhvMJ19jDdoQOtz2W9anpc3idXIJEvTWf3P31XhAt_-cMmmmq65CzsZRCX1GU_tQUFF-7C9VLgQ33rzaq_xAVS6utUa4bpDU0wQBZPUEx69kHjm6A8mUzIevUZJTNqHMFgLtY6gGI0idQwEVwtXuaaseSGa5ZRLxFdo8wWuqygioxKYOUF8kZUo150y3vxFcWVNRB-J6KdE9KcluJ6vGc8KdPw5u5zT2c8ua-wjQnIQxSLSXT3MbITJKKhoCSr50SyGf9_s5H_TL2DzsdH0u-1-5xS2qLbr05zHMhSTybs6Q_CT8POU3wg8r5vBvwBFUA7W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lower+bounds+for+finding+stationary+points+I&rft.jtitle=Mathematical+programming&rft.au=Carmon+Yair&rft.au=Duchi%2C+John+C&rft.au=Hinder+Oliver&rft.au=Sidford+Aaron&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=184&rft.issue=1-2&rft.spage=71&rft.epage=120&rft_id=info:doi/10.1007%2Fs10107-019-01406-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon