Lower bounds for finding stationary points I
We prove lower bounds on the complexity of finding ϵ -stationary points (points x such that ‖ ∇ f ( x ) ‖ ≤ ϵ ) of smooth, high-dimensional, and potentially non-convex functions f . We consider oracle-based complexity measures, where an algorithm is given access to the value and all derivatives of f...
Saved in:
Published in | Mathematical programming Vol. 184; no. 1-2; pp. 71 - 120 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We prove lower bounds on the complexity of finding
ϵ
-stationary points (points
x
such that
‖
∇
f
(
x
)
‖
≤
ϵ
) of smooth, high-dimensional, and potentially non-convex functions
f
. We consider oracle-based complexity measures, where an algorithm is given access to the value and all derivatives of
f
at a query point
x
. We show that for any (potentially randomized) algorithm
A
, there exists a function
f
with Lipschitz
p
th order derivatives such that
A
requires at least
ϵ
-
(
p
+
1
)
/
p
queries to find an
ϵ
-stationary point. Our lower bounds are sharp to within constants, and they show that gradient descent, cubic-regularized Newton’s method, and generalized
p
th order regularization are worst-case optimal within their natural function classes. |
---|---|
AbstractList | We prove lower bounds on the complexity of finding ϵ-stationary points (points x such that ‖∇f(x)‖≤ϵ) of smooth, high-dimensional, and potentially non-convex functions f. We consider oracle-based complexity measures, where an algorithm is given access to the value and all derivatives of f at a query point x. We show that for any (potentially randomized) algorithm A, there exists a function f with Lipschitz pth order derivatives such that A requires at least ϵ-(p+1)/p queries to find an ϵ-stationary point. Our lower bounds are sharp to within constants, and they show that gradient descent, cubic-regularized Newton’s method, and generalized pth order regularization are worst-case optimal within their natural function classes. We prove lower bounds on the complexity of finding ϵ -stationary points (points x such that ‖ ∇ f ( x ) ‖ ≤ ϵ ) of smooth, high-dimensional, and potentially non-convex functions f . We consider oracle-based complexity measures, where an algorithm is given access to the value and all derivatives of f at a query point x . We show that for any (potentially randomized) algorithm A , there exists a function f with Lipschitz p th order derivatives such that A requires at least ϵ - ( p + 1 ) / p queries to find an ϵ -stationary point. Our lower bounds are sharp to within constants, and they show that gradient descent, cubic-regularized Newton’s method, and generalized p th order regularization are worst-case optimal within their natural function classes. |
Author | Carmon, Yair Duchi, John C. Sidford, Aaron Hinder, Oliver |
Author_xml | – sequence: 1 givenname: Yair orcidid: 0000-0001-5731-8640 surname: Carmon fullname: Carmon, Yair email: yairc@stanford.edu organization: Department of Electrical Engineering, Stanford University – sequence: 2 givenname: John C. surname: Duchi fullname: Duchi, John C. organization: Departments of Statistics and Electrical Engineering, Stanford University – sequence: 3 givenname: Oliver surname: Hinder fullname: Hinder, Oliver organization: Department of Management Science and Engineering, Stanford University – sequence: 4 givenname: Aaron surname: Sidford fullname: Sidford, Aaron organization: Department of Management Science and Engineering, Stanford University |
BookMark | eNp9kE1LAzEURYNUsK3-AVcDbo2-fEwyXUrRWii40XVI81FSalKTKdJ_b3QEwUUDIZt78u47EzSKKTqErgncEQB5XwgQkBjIrF4OAh_P0JhwJjAXXIzQGIC2uBUELtCklC0AENZ1Y3S7Sp8uN-t0iLY0PuXGh2hD3DSl131IUedjs08h9qVZXqJzr3fFXf2-U_T29Pg6f8arl8Vy_rDChnHZY8c96Yyth6zBaEaNldaz1nXOclvbtdJxTTUHWRuaWlgT3jprjWTMrymbopvh331OHwdXerVNhxzrSEV5S9hsJtjpFGU1ISgjNUWHlMmplOy82ufwXrdSBNS3OzW4U9Wd-nGnjhXq_kEmDDr6rMPuNMoGtNQ5cePyX6sT1BdmG4SA |
CitedBy_id | crossref_primary_10_1287_moor_2020_0274 crossref_primary_10_1109_TSP_2021_3115952 crossref_primary_10_3390_math13040681 crossref_primary_10_1007_s10107_020_01505_1 crossref_primary_10_1109_TSP_2022_3184772 crossref_primary_10_1007_s10208_022_09573_9 crossref_primary_10_1137_21M1397854 crossref_primary_10_1093_imaiai_iaae025 crossref_primary_10_1137_20M1337600 crossref_primary_10_1214_23_EJP1066 crossref_primary_10_1007_s10107_024_02139_3 crossref_primary_10_1137_22M1540934 crossref_primary_10_1007_s10107_024_02062_7 crossref_primary_10_1007_s10107_021_01660_z crossref_primary_10_1007_s11075_021_01200_y crossref_primary_10_1007_s10107_019_01431_x crossref_primary_10_1137_21M1457011 crossref_primary_10_1109_TSP_2019_2943230 crossref_primary_10_1145_3568163 crossref_primary_10_1007_s10107_025_02197_1 crossref_primary_10_1137_23M1566972 crossref_primary_10_1016_j_orl_2024_107115 crossref_primary_10_1007_s10957_022_02093_0 crossref_primary_10_1007_s10107_024_02154_4 crossref_primary_10_1109_TNNLS_2021_3056947 crossref_primary_10_1137_20M135474X crossref_primary_10_1137_21M1395302 crossref_primary_10_1016_j_knosys_2022_109277 crossref_primary_10_1007_s10107_024_02075_2 crossref_primary_10_1007_s10107_024_02100_4 crossref_primary_10_1016_j_aim_2024_109808 crossref_primary_10_1137_20M1322716 crossref_primary_10_1007_s10107_023_02031_6 crossref_primary_10_1016_j_ejco_2022_100045 crossref_primary_10_22331_q_2023_03_16_949 |
Cites_doi | 10.1038/nature14539 10.1137/100802001 10.1137/110835335 10.1007/s10107-016-1065-8 10.1007/BF01589116 10.1109/TIT.2011.2182178 10.4153/CJM-1951-038-3 10.1007/978-1-4419-8853-9 10.1007/s10107-002-0352-8 10.1137/17M1114296 10.1080/10556788.2012.722632 10.1080/10556788.2011.638924 10.1016/j.jco.2011.06.001 10.1007/s10107-006-0706-8 10.1214/12-AOS1018 10.1109/TIT.2015.2399924 10.1145/3055399.3055464 10.1137/0803004 10.1007/s10208-017-9365-9 10.1109/TIT.2017.2701343 10.1017/CBO9780511804441 10.1007/BF02592948 10.1137/1.9780898719857 10.1137/110833786 10.1137/090774100 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019 Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved. Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019 – notice: Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved. – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10107-019-01406-y |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1436-4646 |
EndPage | 120 |
ExternalDocumentID | 10_1007_s10107_019_01406_y |
GrantInformation_xml | – fundername: Division of Computing and Communication Foundations grantid: 1553086 funderid: http://dx.doi.org/10.13039/100000143 |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c347t-e4f18cdddd1b0ca32cd7df35e8ed4d40657e4a2a407436c014a145eddc733fb23 |
IEDL.DBID | U2A |
ISSN | 0025-5610 |
IngestDate | Fri Jul 25 19:50:46 EDT 2025 Fri Jul 25 19:50:00 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Tue Jul 01 02:15:12 EDT 2025 Fri Feb 21 02:32:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Dimension-free rates Gradient descent Cubic regularization of Newton’s method 68Q25 Non-convex optimization 90C30 Information-based complexity 90C06 90C26 90C60 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-e4f18cdddd1b0ca32cd7df35e8ed4d40657e4a2a407436c014a145eddc733fb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5731-8640 |
PQID | 2236326231 |
PQPubID | 25307 |
PageCount | 50 |
ParticipantIDs | proquest_journals_2451399632 proquest_journals_2236326231 crossref_primary_10_1007_s10107_019_01406_y crossref_citationtrail_10_1007_s10107_019_01406_y springer_journals_10_1007_s10107_019_01406_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Braun, Guzmán, Pokutta (CR10) 2017; 63 Murty, Kabadi (CR33) 1987; 39 Sun, Qu, Wright (CR42) 2018; 18 CR18 Nemirovski, Yudin (CR35) 1983 Nesterov, Polyak (CR40) 2006; 108 CR14 CR13 CR34 Arjevani, Shalev-Shwartz, Shamir (CR3) 2016; 17 Burer, Monteiro (CR11) 2003; 95 Nesterov (CR37) 2004 Zhang, Ling, Qi (CR47) 2012; 33 Woodworth, Srebro (CR45) 2016; 30 Birgin, Gardenghi, Martínez, Santos, Toint (CR7) 2017; 163 Berend, Tassa (CR6) 2010; 30 Carmon, Duchi, Hinder, Sidford (CR15) 2018; 28 Ball, Levy (CR5) 1997 Hager, Zhang (CR23) 2006; 2 Liu, Nocedal (CR29) 1989; 45 LeCun, Bengio, Hinton (CR28) 2015; 521 Jarre (CR25) 2013; 28 Loh, Wainwright (CR31) 2013; 16 Monteiro, Svaiter (CR32) 2013; 23 Nesterov (CR39) 2012; 88 Vavasis (CR44) 1993; 3 CR2 Boumal, Voroninski, Bandeira (CR8) 2016; 30 CR4 Cartis, Gould, Toint (CR19) 2013; 28 Chowla, Herstein, Moore (CR21) 1951; 3 Keshavan, Montanari, Oh (CR27) 2010; 11 Agarwal, Bartlett, Ravikumar, Wainwright (CR1) 2012; 58 Candès, Li, Soltanolkotabi (CR12) 2015; 61 Cartis, Gould, Toint (CR16) 2010; 20 CR26 CR24 Nesterov (CR36) 1983; 27 CR46 Traub, Wasilkowski, Wozniakowski (CR43) 1988 Cartis, Gould, Toint (CR17) 2012; 28 Boyd, Vandenberghe (CR9) 2004 Loh, Wainwright (CR30) 2012; 40 CR20 Nesterov (CR38) 2012; 22 Conn, Gould, Toint (CR22) 2000 Nocedal, Wright (CR41) 2006 1406_CR20 X Zhang (1406_CR47) 2012; 33 Y Arjevani (1406_CR3) 2016; 17 1406_CR24 1406_CR46 1406_CR26 J Nocedal (1406_CR41) 2006 Y Nesterov (1406_CR36) 1983; 27 EJ Candès (1406_CR12) 2015; 61 BE Woodworth (1406_CR45) 2016; 30 A Agarwal (1406_CR1) 2012; 58 C Cartis (1406_CR16) 2010; 20 D Liu (1406_CR29) 1989; 45 N Boumal (1406_CR8) 2016; 30 K Murty (1406_CR33) 1987; 39 A Nemirovski (1406_CR35) 1983 C Cartis (1406_CR17) 2012; 28 RH Keshavan (1406_CR27) 2010; 11 Y Nesterov (1406_CR39) 2012; 88 F Jarre (1406_CR25) 2013; 28 WW Hager (1406_CR23) 2006; 2 P-L Loh (1406_CR31) 2013; 16 G Braun (1406_CR10) 2017; 63 1406_CR4 1406_CR2 D Berend (1406_CR6) 2010; 30 1406_CR13 Y Carmon (1406_CR15) 2018; 28 1406_CR34 Y Nesterov (1406_CR38) 2012; 22 1406_CR14 Y LeCun (1406_CR28) 2015; 521 P-L Loh (1406_CR30) 2012; 40 Y Nesterov (1406_CR40) 2006; 108 AR Conn (1406_CR22) 2000 1406_CR18 SA Vavasis (1406_CR44) 1993; 3 S Burer (1406_CR11) 2003; 95 S Chowla (1406_CR21) 1951; 3 J Sun (1406_CR42) 2018; 18 K Ball (1406_CR5) 1997 EG Birgin (1406_CR7) 2017; 163 J Traub (1406_CR43) 1988 S Boyd (1406_CR9) 2004 C Cartis (1406_CR19) 2013; 28 RD Monteiro (1406_CR32) 2013; 23 Y Nesterov (1406_CR37) 2004 |
References_xml | – ident: CR18 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: CR4 – ident: CR14 – ident: CR2 – volume: 18 start-page: 1131 issue: 5 year: 2018 end-page: 1198 ident: CR42 article-title: A geometric analysis of phase retrieval publication-title: Found. Comput. Math. – volume: 16 start-page: 559 year: 2013 end-page: 616 ident: CR31 article-title: Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima publication-title: J. Mach. Learn. Res. – year: 1988 ident: CR43 publication-title: Information-Based Complexity – volume: 39 start-page: 117 year: 1987 end-page: 129 ident: CR33 article-title: Some NP-complete problems in quadratic and nonlinear programming publication-title: Math. Program. – volume: 27 start-page: 372 issue: 2 year: 1983 end-page: 376 ident: CR36 article-title: A method of solving a convex programming problem with convergence rate publication-title: Sov. Math. Dokl. – volume: 58 start-page: 3235 issue: 5 year: 2012 end-page: 3249 ident: CR1 article-title: Information-theoretic lower bounds on the oracle complexity of convex optimization publication-title: IEEE Trans. Inf. Theory – volume: 163 start-page: 359 issue: 1–2 year: 2017 end-page: 368 ident: CR7 article-title: Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models publication-title: Math. Program. – volume: 108 start-page: 177 year: 2006 end-page: 205 ident: CR40 article-title: Cubic regularization of Newton method and its global performance publication-title: Math. Program. Ser. A – volume: 33 start-page: 806 issue: 3 year: 2012 end-page: 821 ident: CR47 article-title: The best rank-1 approximation of a symmetric tensor and related spherical optimization problems publication-title: SIAM J. Matrix Anal. Appl. – year: 1983 ident: CR35 publication-title: Problem Complexity and Method Efficiency in Optimization – volume: 61 start-page: 1985 issue: 4 year: 2015 end-page: 2007 ident: CR12 article-title: Phase retrieval via Wirtinger flow: theory and algorithms publication-title: IEEE Trans. Inf. Theory – volume: 20 start-page: 2833 issue: 6 year: 2010 end-page: 2852 ident: CR16 article-title: On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization problems publication-title: SIAM J. Optim. – volume: 28 start-page: 451 year: 2013 end-page: 457 ident: CR19 article-title: A note about the complexity of minimizing nesterov’s smooth Chebyshev–Rosenbrock function publication-title: Optim. Methods Softw. – year: 2006 ident: CR41 publication-title: Numerical Optimization – volume: 30 start-page: 3639 year: 2016 end-page: 3647 ident: CR45 article-title: Tight complexity bounds for optimizing composite objectives publication-title: Adv. Neural Inf. Process. Syst. – volume: 3 start-page: 328 year: 1951 end-page: 334 ident: CR21 article-title: On recursions connected with symmetric groups I publication-title: Can. J. Math. – volume: 11 start-page: 2057 year: 2010 end-page: 2078 ident: CR27 article-title: Matrix completion from noisy entries publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 341 issue: 2 year: 2012 end-page: 362 ident: CR38 article-title: Efficiency of coordinate descent methods on huge-scale optimization problems publication-title: SIAM J. Optim. – volume: 63 start-page: 4709 issue: 7 year: 2017 end-page: 4724 ident: CR10 article-title: Lower bounds on the oracle complexity of nonsmooth convex optimization via information theory publication-title: IEEE Trans. Inf. Theory – volume: 40 start-page: 1637 issue: 3 year: 2012 end-page: 1664 ident: CR30 article-title: High-dimensional regression with noisy and missing data: provable guarantees with nonconvexity publication-title: Ann. Stat. – ident: CR46 – volume: 30 start-page: 185 issue: 2 year: 2010 end-page: 205 ident: CR6 article-title: Improved bounds on Bell numbers and on moments of sums of random variables publication-title: Prob. Math. Stat. – start-page: 1 year: 1997 end-page: 58 ident: CR5 article-title: An elementary introduction to modern convex geometry publication-title: Flavors of Geometry – volume: 2 start-page: 35 issue: 1 year: 2006 end-page: 58 ident: CR23 article-title: A survey of nonlinear conjugate gradient methods publication-title: Pac. J. Optim. – volume: 30 start-page: 2757 year: 2016 end-page: 2765 ident: CR8 article-title: The non-convex Burer–Monteiro approach works on smooth semidefinite programs publication-title: Adv. Neural Inf. Process. Syst. – year: 2004 ident: CR9 publication-title: Convex Optimization – ident: CR13 – volume: 28 start-page: 478 issue: 3 year: 2013 end-page: 500 ident: CR25 article-title: On Nesterov’s smooth Chebyshev–Rosenbrock function publication-title: Optim. Methods Softw. – volume: 45 start-page: 503 issue: 1 year: 1989 end-page: 528 ident: CR29 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. – year: 2004 ident: CR37 publication-title: Introductory Lectures on Convex Optimization – volume: 17 start-page: 1 issue: 126 year: 2016 end-page: 51 ident: CR3 article-title: On lower and upper bounds in smooth and strongly convex optimization publication-title: J. Mach. Learn. Res. – ident: CR34 – volume: 88 start-page: 10 year: 2012 end-page: 11 ident: CR39 article-title: How to make the gradients small publication-title: Optima – year: 2000 ident: CR22 publication-title: Trust Region Methods – volume: 28 start-page: 1751 issue: 2 year: 2018 end-page: 1772 ident: CR15 article-title: Accelerated methods for non-convex optimization publication-title: SIAM J. Optim. – volume: 28 start-page: 93 issue: 1 year: 2012 end-page: 108 ident: CR17 article-title: Complexity bounds for second-order optimality in unconstrained optimization publication-title: J. Complex. – ident: CR26 – volume: 23 start-page: 1092 issue: 2 year: 2013 end-page: 1125 ident: CR32 article-title: An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods publication-title: SIAM J. Optim. – ident: CR24 – volume: 95 start-page: 329 issue: 2 year: 2003 end-page: 357 ident: CR11 article-title: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization publication-title: Math. Program. – ident: CR20 – volume: 3 start-page: 60 issue: 1 year: 1993 end-page: 80 ident: CR44 article-title: Black-box complexity of local minimization publication-title: SIAM J. Optim. – volume: 30 start-page: 185 issue: 2 year: 2010 ident: 1406_CR6 publication-title: Prob. Math. Stat. – volume: 22 start-page: 341 issue: 2 year: 2012 ident: 1406_CR38 publication-title: SIAM J. Optim. doi: 10.1137/100802001 – volume: 33 start-page: 806 issue: 3 year: 2012 ident: 1406_CR47 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/110835335 – volume: 163 start-page: 359 issue: 1–2 year: 2017 ident: 1406_CR7 publication-title: Math. Program. doi: 10.1007/s10107-016-1065-8 – start-page: 1 volume-title: Flavors of Geometry year: 1997 ident: 1406_CR5 – volume: 11 start-page: 2057 year: 2010 ident: 1406_CR27 publication-title: J. Mach. Learn. Res. – volume: 45 start-page: 503 issue: 1 year: 1989 ident: 1406_CR29 publication-title: Math. Program. doi: 10.1007/BF01589116 – volume-title: Problem Complexity and Method Efficiency in Optimization year: 1983 ident: 1406_CR35 – volume: 58 start-page: 3235 issue: 5 year: 2012 ident: 1406_CR1 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2182178 – ident: 1406_CR26 – volume: 3 start-page: 328 year: 1951 ident: 1406_CR21 publication-title: Can. J. Math. doi: 10.4153/CJM-1951-038-3 – ident: 1406_CR24 – volume-title: Introductory Lectures on Convex Optimization year: 2004 ident: 1406_CR37 doi: 10.1007/978-1-4419-8853-9 – volume: 95 start-page: 329 issue: 2 year: 2003 ident: 1406_CR11 publication-title: Math. Program. doi: 10.1007/s10107-002-0352-8 – volume-title: Information-Based Complexity year: 1988 ident: 1406_CR43 – ident: 1406_CR4 – volume: 28 start-page: 1751 issue: 2 year: 2018 ident: 1406_CR15 publication-title: SIAM J. Optim. doi: 10.1137/17M1114296 – volume: 28 start-page: 451 year: 2013 ident: 1406_CR19 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2012.722632 – volume: 30 start-page: 2757 year: 2016 ident: 1406_CR8 publication-title: Adv. Neural Inf. Process. Syst. – volume: 28 start-page: 478 issue: 3 year: 2013 ident: 1406_CR25 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2011.638924 – volume: 30 start-page: 3639 year: 2016 ident: 1406_CR45 publication-title: Adv. Neural Inf. Process. Syst. – volume: 28 start-page: 93 issue: 1 year: 2012 ident: 1406_CR17 publication-title: J. Complex. doi: 10.1016/j.jco.2011.06.001 – ident: 1406_CR20 – volume: 16 start-page: 559 year: 2013 ident: 1406_CR31 publication-title: J. Mach. Learn. Res. – volume: 108 start-page: 177 year: 2006 ident: 1406_CR40 publication-title: Math. Program. Ser. A doi: 10.1007/s10107-006-0706-8 – volume: 40 start-page: 1637 issue: 3 year: 2012 ident: 1406_CR30 publication-title: Ann. Stat. doi: 10.1214/12-AOS1018 – volume: 88 start-page: 10 year: 2012 ident: 1406_CR39 publication-title: Optima – volume: 61 start-page: 1985 issue: 4 year: 2015 ident: 1406_CR12 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2015.2399924 – ident: 1406_CR13 – ident: 1406_CR2 doi: 10.1145/3055399.3055464 – ident: 1406_CR34 – volume: 27 start-page: 372 issue: 2 year: 1983 ident: 1406_CR36 publication-title: Sov. Math. Dokl. – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 1406_CR28 publication-title: Nature doi: 10.1038/nature14539 – volume: 2 start-page: 35 issue: 1 year: 2006 ident: 1406_CR23 publication-title: Pac. J. Optim. – volume: 3 start-page: 60 issue: 1 year: 1993 ident: 1406_CR44 publication-title: SIAM J. Optim. doi: 10.1137/0803004 – volume: 18 start-page: 1131 issue: 5 year: 2018 ident: 1406_CR42 publication-title: Found. Comput. Math. doi: 10.1007/s10208-017-9365-9 – volume-title: Numerical Optimization year: 2006 ident: 1406_CR41 – ident: 1406_CR46 – volume: 63 start-page: 4709 issue: 7 year: 2017 ident: 1406_CR10 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2017.2701343 – ident: 1406_CR18 – volume-title: Convex Optimization year: 2004 ident: 1406_CR9 doi: 10.1017/CBO9780511804441 – volume: 39 start-page: 117 year: 1987 ident: 1406_CR33 publication-title: Math. Program. doi: 10.1007/BF02592948 – volume: 17 start-page: 1 issue: 126 year: 2016 ident: 1406_CR3 publication-title: J. Mach. Learn. Res. – volume-title: Trust Region Methods year: 2000 ident: 1406_CR22 doi: 10.1137/1.9780898719857 – volume: 23 start-page: 1092 issue: 2 year: 2013 ident: 1406_CR32 publication-title: SIAM J. Optim. doi: 10.1137/110833786 – ident: 1406_CR14 – volume: 20 start-page: 2833 issue: 6 year: 2010 ident: 1406_CR16 publication-title: SIAM J. Optim. doi: 10.1137/090774100 |
SSID | ssj0001388 |
Score | 2.6625795 |
Snippet | We prove lower bounds on the complexity of finding
ϵ
-stationary points (points
x
such that
‖
∇
f
(
x
)
‖
≤
ϵ
) of smooth, high-dimensional, and potentially... We prove lower bounds on the complexity of finding ϵ-stationary points (points x such that ‖∇f(x)‖≤ϵ) of smooth, high-dimensional, and potentially non-convex... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 71 |
SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Complexity Convex analysis Derivatives Electrical engineering Full Length Paper Lower bounds Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Queries Regularization Regularization methods Theoretical |
Title | Lower bounds for finding stationary points I |
URI | https://link.springer.com/article/10.1007/s10107-019-01406-y https://www.proquest.com/docview/2236326231 https://www.proquest.com/docview/2451399632 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ULnowfkYUSQ_epAnrxzqPoCB-4EkSPC39mjExgzA88N_7OjZAgybu0ixt1_S1e-_38r4QuhQaBIFRhoTACQmPrjVRIPiI4InWobEs1D4aefAc9of8YSRGRVBYVnq7lybJnFOvBbsFuZuk9-8BMUTm26gqQHf3jlxD2l7y34BFUVmo1aODIlRm8ze-i6MVxvxhFs2lTW8f7RUwEbcX53qAtlx6iHbXkgfC22CZcTU7Qs0nX-4Ma18lKcOARHFujU7fcLYwtqvpHE_G7-ksw_fHaNjrvtz0SVEJgRjG5Yw4ngSRsfAEumUUo8ZKmzDhIme5hY0I6biiintAEBrYmwq4cNYayViiKTtBlXSculOEYbaRTga2FSWgGlNtAeOA3qWkdBTQSQ0FJUFiU6QJ99UqPuJVgmNPxBiIGOdEjOc1dLWcM1kkyfhzdL2kc1z8MFkMKCUEJAloc3M3FwBVgVnQGmqWR7Pq_n2xs_8NP0c71CvUebBhHVVm0093Aahjphuo2u7cdnq-vXt97DbyS_cFenHPIQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QPagH4zOiqHvQk2xCt9uHBw9EJSCPEyTcavdRY2IKoTWG_-MPdba0gAZNPNBbs7vdZnZ25pvMC-DKEagIZCipi5KQcv9W0BAVH3V4JIQrle0Kk43c7bnNAX8aOsMSfBa5MFm0e-GSzCT1UrKblYVJmvgeVEN0modStvX0Aw215K71gKd6zVjjsX_fpHkvASpt7qVU88jypcLHEjUZ2kwqT0W2o32tuMLPOZ7mIQu5UamuxB1CiztaKenZdiRMeQMU9JsIPnxzdwasPpf3lu37RWNYg0by1JzV__xd_S0w7Q83bKbdGnuwm8NSUp_x0T6UdHwAO0vFCvGtO6_wmhxCtWPaqxFhujIlBJEvybzf8QtJZs79cDIl49FrnCakdQSDtVDrGDbiUaxPgOBq6WnPUjU_QlOcCYWYCu280PM0QzRUBqsgSCDzsuSmO8ZbsCiobIgYIBGDjIjBtAw38zXjWVGOP2dXCjoH-QVNAkRFLiJXRLerh7mD0BiFEytDtTiaxfDvm53-b_olbDX73U7QafXaZ7DNjDGfJTpWYCOdvOtzRDypuMgYjsDzujn8C4q9CqM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KBdGD-MRq1T3oyYY2m83Dg4diLa194MFCbzH7iAiSliYi_Vf-RGfTpK1SBQ_NLexuNszOznzDvAAubY6KQATCcFASGsy74UaAis-wWci5I6TlcJ2N3Os7rQF7GNrDAnzmuTBptHvukpzlNOgqTVFSHcuwupT4ZqYhkzrWB1WSMc3CKjtq-oFGW3zbbuAJX1HavH-6axlZXwFDWMxNDMVC0xMSH5PXRGBRIV0ZWrbylGQSP2e7igU0YFq9OgJ3CExmKymFa1kh16UOUOhvMJ19jDdoQOtz2W9anpc3idXIJEvTWf3P31XhAt_-cMmmmq65CzsZRCX1GU_tQUFF-7C9VLgQ33rzaq_xAVS6utUa4bpDU0wQBZPUEx69kHjm6A8mUzIevUZJTNqHMFgLtY6gGI0idQwEVwtXuaaseSGa5ZRLxFdo8wWuqygioxKYOUF8kZUo150y3vxFcWVNRB-J6KdE9KcluJ6vGc8KdPw5u5zT2c8ua-wjQnIQxSLSXT3MbITJKKhoCSr50SyGf9_s5H_TL2DzsdH0u-1-5xS2qLbr05zHMhSTybs6Q_CT8POU3wg8r5vBvwBFUA7W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lower+bounds+for+finding+stationary+points+I&rft.jtitle=Mathematical+programming&rft.au=Carmon+Yair&rft.au=Duchi%2C+John+C&rft.au=Hinder+Oliver&rft.au=Sidford+Aaron&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=184&rft.issue=1-2&rft.spage=71&rft.epage=120&rft_id=info:doi/10.1007%2Fs10107-019-01406-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |