Using land surface phenology and information theory to assess and map complex landscape dynamics
Context Characterizing landscape ecological complexity and change requires integrated description of spatial and temporal landscape organization and dynamics, as suggested by the shifting mosaic concept. Remotely sensed land surface phenology allows the detection of even small differences among land...
Saved in:
Published in | Landscape ecology Vol. 39; no. 12; p. 203 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context
Characterizing landscape ecological complexity and change requires integrated description of spatial and temporal landscape organization and dynamics, as suggested by the shifting mosaic concept. Remotely sensed land surface phenology allows the detection of even small differences among landscape patches and through time, allowing for the analysis of landscapes as shifting mosaics.
Objectives
We sought to quantify aspects of the complex landscape behaviors that are implied by spatiotemporal variation in land surface phenology. We adapted an information-theoretic (IT) framework from ecosystem ecology to capture landscape-level spatiotemporal complexity and organization and map these properties across large areas.
Methods
Phenology data were derived from remotely sensed, pixel-level time series of a vegetation greenness index, across a large portion of North America. We summarized multi-year, multi-pixel dynamics in transition matrices, calculated IT metrics from the matrices, and used matrix projection to quantify disequilibrium dynamics and long-term trajectories of the metrics.
Results
Mapping the IT metrics and their disequilibria revealed gradients in the spatiotemporal complexity and organization of multi-year land surface phenology dynamics at continental to local scales. These gradients suggest influences of biophysical and biogeographic setting, ecological development and disturbances, land use, and other drivers of landscape ecological dynamics. The spatiotemporal IT metrics were influenced by both year-to-year dynamics and spatial landscape heterogeneity, but correlations with spatial and temporal complexity measures varied among the IT metrics. Landscapes showing the strongest disequilibrium dynamics were mostly in the western part of the continent and appeared to be associated with large-scale disturbances including severe fire, forest pathogens, climate variability, and land use change—important subjects for further study.
Conclusions
This approach reveals novel features of the shifting landscape mosaic, with implications for understanding landscape resilience and sustainability. Resulting spatial data products describing long-term landscape dynamics have potential applications in broad-scale ecological modeling, monitoring, assessment, and prediction. |
---|---|
AbstractList | CONTEXT: Characterizing landscape ecological complexity and change requires integrated description of spatial and temporal landscape organization and dynamics, as suggested by the shifting mosaic concept. Remotely sensed land surface phenology allows the detection of even small differences among landscape patches and through time, allowing for the analysis of landscapes as shifting mosaics. OBJECTIVES: We sought to quantify aspects of the complex landscape behaviors that are implied by spatiotemporal variation in land surface phenology. We adapted an information-theoretic (IT) framework from ecosystem ecology to capture landscape-level spatiotemporal complexity and organization and map these properties across large areas. METHODS: Phenology data were derived from remotely sensed, pixel-level time series of a vegetation greenness index, across a large portion of North America. We summarized multi-year, multi-pixel dynamics in transition matrices, calculated IT metrics from the matrices, and used matrix projection to quantify disequilibrium dynamics and long-term trajectories of the metrics. RESULTS: Mapping the IT metrics and their disequilibria revealed gradients in the spatiotemporal complexity and organization of multi-year land surface phenology dynamics at continental to local scales. These gradients suggest influences of biophysical and biogeographic setting, ecological development and disturbances, land use, and other drivers of landscape ecological dynamics. The spatiotemporal IT metrics were influenced by both year-to-year dynamics and spatial landscape heterogeneity, but correlations with spatial and temporal complexity measures varied among the IT metrics. Landscapes showing the strongest disequilibrium dynamics were mostly in the western part of the continent and appeared to be associated with large-scale disturbances including severe fire, forest pathogens, climate variability, and land use change—important subjects for further study. CONCLUSIONS: This approach reveals novel features of the shifting landscape mosaic, with implications for understanding landscape resilience and sustainability. Resulting spatial data products describing long-term landscape dynamics have potential applications in broad-scale ecological modeling, monitoring, assessment, and prediction. Context Characterizing landscape ecological complexity and change requires integrated description of spatial and temporal landscape organization and dynamics, as suggested by the shifting mosaic concept. Remotely sensed land surface phenology allows the detection of even small differences among landscape patches and through time, allowing for the analysis of landscapes as shifting mosaics. Objectives We sought to quantify aspects of the complex landscape behaviors that are implied by spatiotemporal variation in land surface phenology. We adapted an information-theoretic (IT) framework from ecosystem ecology to capture landscape-level spatiotemporal complexity and organization and map these properties across large areas. Methods Phenology data were derived from remotely sensed, pixel-level time series of a vegetation greenness index, across a large portion of North America. We summarized multi-year, multi-pixel dynamics in transition matrices, calculated IT metrics from the matrices, and used matrix projection to quantify disequilibrium dynamics and long-term trajectories of the metrics. Results Mapping the IT metrics and their disequilibria revealed gradients in the spatiotemporal complexity and organization of multi-year land surface phenology dynamics at continental to local scales. These gradients suggest influences of biophysical and biogeographic setting, ecological development and disturbances, land use, and other drivers of landscape ecological dynamics. The spatiotemporal IT metrics were influenced by both year-to-year dynamics and spatial landscape heterogeneity, but correlations with spatial and temporal complexity measures varied among the IT metrics. Landscapes showing the strongest disequilibrium dynamics were mostly in the western part of the continent and appeared to be associated with large-scale disturbances including severe fire, forest pathogens, climate variability, and land use change—important subjects for further study. Conclusions This approach reveals novel features of the shifting landscape mosaic, with implications for understanding landscape resilience and sustainability. Resulting spatial data products describing long-term landscape dynamics have potential applications in broad-scale ecological modeling, monitoring, assessment, and prediction. ContextCharacterizing landscape ecological complexity and change requires integrated description of spatial and temporal landscape organization and dynamics, as suggested by the shifting mosaic concept. Remotely sensed land surface phenology allows the detection of even small differences among landscape patches and through time, allowing for the analysis of landscapes as shifting mosaics.ObjectivesWe sought to quantify aspects of the complex landscape behaviors that are implied by spatiotemporal variation in land surface phenology. We adapted an information-theoretic (IT) framework from ecosystem ecology to capture landscape-level spatiotemporal complexity and organization and map these properties across large areas.MethodsPhenology data were derived from remotely sensed, pixel-level time series of a vegetation greenness index, across a large portion of North America. We summarized multi-year, multi-pixel dynamics in transition matrices, calculated IT metrics from the matrices, and used matrix projection to quantify disequilibrium dynamics and long-term trajectories of the metrics.ResultsMapping the IT metrics and their disequilibria revealed gradients in the spatiotemporal complexity and organization of multi-year land surface phenology dynamics at continental to local scales. These gradients suggest influences of biophysical and biogeographic setting, ecological development and disturbances, land use, and other drivers of landscape ecological dynamics. The spatiotemporal IT metrics were influenced by both year-to-year dynamics and spatial landscape heterogeneity, but correlations with spatial and temporal complexity measures varied among the IT metrics. Landscapes showing the strongest disequilibrium dynamics were mostly in the western part of the continent and appeared to be associated with large-scale disturbances including severe fire, forest pathogens, climate variability, and land use change—important subjects for further study.ConclusionsThis approach reveals novel features of the shifting landscape mosaic, with implications for understanding landscape resilience and sustainability. Resulting spatial data products describing long-term landscape dynamics have potential applications in broad-scale ecological modeling, monitoring, assessment, and prediction. |
ArticleNumber | 203 |
Author | Hargrove, William W. Brooks, Bjorn-Gustaf Lee, Danny C. Pomara, Lars Y. |
Author_xml | – sequence: 1 givenname: Lars Y. orcidid: 0000-0002-8263-1820 surname: Pomara fullname: Pomara, Lars Y. email: lazarus.y.pomara@usda.gov organization: Southern Research Station, USDA Forest Service – sequence: 2 givenname: Danny C. orcidid: 0009-0002-4400-3521 surname: Lee fullname: Lee, Danny C. organization: Southern Research Station, USDA Forest Service – sequence: 3 givenname: Bjorn-Gustaf orcidid: 0000-0002-1371-5246 surname: Brooks fullname: Brooks, Bjorn-Gustaf organization: Carbon Solutions, LLC – sequence: 4 givenname: William W. orcidid: 0000-0002-9830-0022 surname: Hargrove fullname: Hargrove, William W. organization: Southern Research Station, USDA Forest Service |
BookMark | eNp9kEtLxTAQhYMo-PwDrgJu3FQnrzZdivgCwY2uY0yTa6VNaqYXvP_eeK-guHAxzDB853A4-2Q7pugJOWZwxgCac2TQaqiAyzIAqmq3yB5TDa_apmbbv-5dso_4BgBCAOyR5yfs44IONnYUlzlY5-n06mMa0mJFv759DCmPdu5TpPOrT3lF50QtokdcA6OdqEvjNPiPtQ86O3naraIde4eHZCfYAf3R9z4gT9dXj5e31f3Dzd3lxX3lhGzmqquVk9pCXTOulWtF0CJwHliopbSWKy2h0_KFed3pWvJavwQlhLWBARdBiANyuvGdcnpfepzN2KPzQ0nk0xKNYEpy1UrNCnryB31LyxxLukIJULJRtSoU31AuJ8Tsg5lyP9q8MgzMV-lmU7oppZt16aYtIrERYYHjwucf639Un3EihgA |
Cites_doi | 10.2307/1929601 10.1016/j.scitotenv.2023.163550 10.1023/A:1009930313242 10.1016/j.rse.2020.111685 10.1086/419172 10.1093/biosci/biw035 10.1111/j.1466-8238.2011.00712.x 10.1016/j.gloenvcha.2006.04.002 10.3354/cr00936 10.3390/rs9050407 10.1016/S0169-2046(00)00078-5 10.3390/e20060398 10.1007/s10980-024-01797-0 10.1016/j.isprsjprs.2020.11.019 10.1007/978-1-4612-4916-0 10.3390/rs12182959 10.1126/science.aac6759 10.1007/s10021-001-0045-9 10.1002/2014GL059576 10.1002/j.1538-7305.1948.tb01338.x 10.1016/S0034-4257(02)00135-9 10.1038/35098000 10.3390/f10090811 10.1111/1365-2664.12649 10.1111/geb.12447 10.1111/ecog.06143 10.3159/10-RA-031.1 10.1007/s10980-013-9894-9 10.3390/land9110417 10.3390/f11060606 10.1080/07060661.2011.563906 10.1007/s10980-015-0305-2 10.1002/fee.1311 10.1016/S1476-9271(03)00050-1 10.1111/1365-2664.12550 10.1641/B580107 10.1016/j.rse.2020.112048 10.3389/fevo.2019.00241 10.1111/j.1600-0706.2011.19622.x 10.1007/s10980-019-00889-6 10.1016/S0169-5347(03)00071-5 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2 10.1890/130066 10.1098/rstb.2013.0190 10.1146/annurev.es.04.110173.000245 10.3390/land10070725 10.1016/j.foreco.2012.11.002 10.1002/2014JD021993 10.1038/s41893-019-0353-8 10.3390/insects9040172 10.1016/j.tree.2007.04.003 10.1002/eap.2526 10.1007/s10980-019-00814-x 10.1016/j.ecolind.2010.03.014 10.1109/ICDMW.2017.45 10.1002/eap.2323 10.1093/biosci/bix075 10.1007/s100219900011 10.1016/j.isprsjprs.2019.11.027 10.1016/j.tree.2005.05.011 10.1007/s00267-003-1084-0 10.1016/j.envint.2007.09.004 10.1111/1365-2664.12511 10.1086/283181 10.2307/3235884 10.1007/978-94-007-6925-0_21 10.1890/070217 10.3390/e23121616 10.1017/CBO9780511613029.006 10.1111/1365-2745.13897 10.3334/ORNLDAAC/1299 10.1111/j.1469-8137.2011.03803.x 10.1016/j.ecocom.2008.10.005 10.1093/bioinformatics/18.suppl_2.S231 10.1007/s10980-023-01705-y 10.1016/j.ecolind.2005.03.017 10.1016/j.scitotenv.2020.137782 10.2737/SRS-GTR-180 10.1016/j.rse.2018.12.009 10.1016/j.ecolind.2008.02.003 10.1016/j.rse.2010.09.013 10.1007/s10980-019-00830-x 10.1111/j.1472-4642.2010.00641.x 10.1016/0022-5193(76)90007-2 10.3390/rs14030597 10.1111/1365-2664.12261 10.1016/j.ecolind.2011.07.008 10.1146/annurev.ecolsys.31.1.425 10.1007/s10980-018-0709-x 10.1016/j.foreco.2017.12.017 10.1016/j.jhydrol.2010.10.043 10.1088/1748-9326/ab04d2 |
ContentType | Journal Article |
Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 Copyright Springer Nature B.V. Dec 2024 |
Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 – notice: Copyright Springer Nature B.V. Dec 2024 |
DBID | C6C AAYXX CITATION 7SN 7ST C1K SOI 7S9 L.6 |
DOI | 10.1007/s10980-024-02005-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Ecology Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Ecology Abstracts Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Ecology Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1572-9761 |
EndPage | 203 |
ExternalDocumentID | 10_1007_s10980_024_02005_9 |
GeographicLocations | North America |
GeographicLocations_xml | – name: North America |
GroupedDBID | -4W -56 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67N 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AABHQ AAHBH AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPRK ACREN ACULB ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGXO AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BENPR BGNMA BHPHI C24 C6C COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDH EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH L8X LAK LLZTM M4Y M7P MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF- PT5 QOK QOR QOS R89 R9I RHV ROL RPX RSV S16 S27 S3A S3B SAP SBL SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WJK WK8 Y6R YLTOR YV5 Z45 Z7U Z7Y Z7Z Z8S ZMTXR ZOVNA ~02 ~A9 ~EX ~KM AAFWJ AASML AAYXX ABDBE ABFSG ACSTC AEZWR AFHIU AHPBZ AHWEU AIXLP AYFIA CITATION EBD 7SN 7ST C1K SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c347t-d65c48a0661285c93f83f22f1f644aa25840d84b1e8d864268bf533aaf1023f33 |
IEDL.DBID | C24 |
ISSN | 1572-9761 0921-2973 |
IngestDate | Fri Jul 11 06:12:04 EDT 2025 Wed Aug 13 07:08:50 EDT 2025 Tue Jul 01 01:56:38 EDT 2025 Fri Feb 21 02:36:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Landscape dynamics Land surface phenology MODIS Shifting mosaic Information theory Resilience |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-d65c48a0661285c93f83f22f1f644aa25840d84b1e8d864268bf533aaf1023f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1371-5246 0000-0002-8263-1820 0009-0002-4400-3521 0000-0002-9830-0022 |
OpenAccessLink | https://link.springer.com/10.1007/s10980-024-02005-9 |
PQID | 3130547565 |
PQPubID | 54617 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3154259481 proquest_journals_3130547565 crossref_primary_10_1007_s10980_024_02005_9 springer_journals_10_1007_s10980_024_02005_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Landscape ecology |
PublicationTitleAbbrev | Landsc Ecol |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | M Scheffer (2005_CR77) 2001; 413 J Franklin (2005_CR27) 2010; 16 2005_CR5 B-L Li (2005_CR46) 2000; 50 KT Weber (2005_CR97) 2020; 12 LJ Heintzman (2005_CR34) 2024; 39 JT Rieb (2005_CR72) 2017; 67 RE Ulanowicz (2005_CR90) 2003; 27 JT Kerr (2005_CR41) 2003; 18 HG Smith (2005_CR81) 2011; 396 AL Mayer (2005_CR49) 2008; 34 CE Shannon (2005_CR79) 1948; 27 K Riitters (2005_CR74) 2020; 9 2005_CR85 WW Hargrove (2005_CR33) 2004; 34 RE Kennedy (2005_CR40) 2014; 12 N Zaccarelli (2005_CR101) 2013; 28 C Folke (2005_CR25) 2006; 16 J Wu (2005_CR99) 2013; 28 B-GJ Brooks (2005_CR4) 2020; 11 N Pettorelli (2005_CR60) 2005; 20 N Pettorelli (2005_CR61) 2011; 46 PE Dennison (2005_CR20) 2014; 41 JP Spruce (2005_CR84) 2019; 10 PV Caldwell (2005_CR7) 2023; 882 RE Ulanowicz (2005_CR88) 1986 CS Holling (2005_CR38) 1973; 4 K Riitters (2005_CR75) 2023; 38 X Zhang (2005_CR103) 2019; 14 N Pettorelli (2005_CR63) 2014; 369 S Carpenter (2005_CR9) 2001; 4 JK Costanza (2005_CR15) 2019; 34 SA Cushman (2005_CR17) 2016; 31 F Müller (2005_CR55) 2005; 5 D Frantz (2005_CR28) 2022; 14 CR Ford (2005_CR26) 2012; 121 EMO Silveira (2005_CR80) 2022; 32 2005_CR16 SA Cushman (2005_CR18) 2021; 23 LY Pomara (2005_CR66) 2021; 10 CA Polgar (2005_CR65) 2011; 191 AM Ellison (2005_CR22) 2018; 9 TA Spies (2005_CR82) 1999 S Kullback (2005_CR44) 1997 RE Ulanowicz (2005_CR91) 2009 M Pfeifer (2005_CR64) 2012; 21 VC Radeloff (2005_CR70) 2019; 222 J Wu (2005_CR100) 1995; 70 BC Reed (2005_CR71) 1994; 5 SP Norman (2005_CR56) 2017; 9 R MacArthur (2005_CR48) 1955; 36 RE Ulanowicz (2005_CR89) 1997 DB McWethy (2005_CR52) 2019; 2 R Seidl (2005_CR78) 2016; 53 H Caswell (2005_CR10) 2001 L Liang (2005_CR47) 2021; 31 S Trumbore (2005_CR87) 2015; 349 EE Cleland (2005_CR12) 2007; 22 R Buitenwerf (2005_CR6) 2016; 25 SJ McNaughton (2005_CR51) 1977; 111 2005_CR36 SJ Hoagland (2005_CR37) 2018; 412 C Wang (2005_CR96) 2018; 20 S Bajocco (2005_CR2) 2019; 74 LH Gunderson (2005_CR30) 2000; 31 VS Konduri (2005_CR42) 2020; 251 JT Morisette (2005_CR54) 2009; 7 KH Riitters (2005_CR73) 2009; 9 JA Caparros-Santiago (2005_CR8) 2021; 171 ESRI (2005_CR24) 2019 DG Angeler (2005_CR1) 2016; 53 SA Levin (2005_CR45) 2008; 58 EJ Gustafson (2005_CR32) 2019; 34 N Pettorelli (2005_CR62) 2014; 51 P Gao (2005_CR29) 2019; 34 JC Chambers (2005_CR11) 2019 LD Daniels (2005_CR19) 2011; 33 RE Ulanowicz (2005_CR92) 2009; 6 EJ Gustafson (2005_CR31) 1998; 1 J Nowosad (2005_CR58) 2019; 34 KJ Krapfl (2005_CR43) 2011; 138 2005_CR57 JP Spruce (2005_CR83) 2011; 115 R Steuer (2005_CR86) 2002; 18 JF Johnstone (2005_CR39) 2016; 14 2005_CR53 RW Rutledge (2005_CR76) 1976; 57 I Dronova (2005_CR21) 2022; 110 JM Vose (2005_CR94) 2013; 291 R Costanza (2005_CR14) 1999; 33 J Vandermeer (2005_CR93) 1981 JL Coen (2005_CR13) 2015; 120 AE Quinlan (2005_CR68) 2016; 53 2005_CR69 X Zhang (2005_CR102) 2003; 84 GM Henebry (2005_CR35) 2013 R Ponti (2005_CR67) 2022; 2023 SR Weiskopf (2005_CR98) 2020; 733 L Parrott (2005_CR59) 2010; 10 DK Bolton (2005_CR3) 2020; 240 T Elmqvist (2005_CR23) 2003; 1 AL Mayer (2005_CR50) 2016; 66 J Wang (2005_CR95) 2020; 159 |
References_xml | – volume: 36 start-page: 533 issue: 3 year: 1955 ident: 2005_CR48 publication-title: Ecology doi: 10.2307/1929601 – ident: 2005_CR36 – volume: 882 start-page: 163550 year: 2023 ident: 2005_CR7 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.163550 – volume-title: Elementary mathematical ecology year: 1981 ident: 2005_CR93 – volume: 33 start-page: 105 issue: 1 year: 1999 ident: 2005_CR14 publication-title: Aquat Ecol doi: 10.1023/A:1009930313242 – volume: 240 start-page: 111685 year: 2020 ident: 2005_CR3 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.111685 – volume: 70 start-page: 439 year: 1995 ident: 2005_CR100 publication-title: Q Rev Biol doi: 10.1086/419172 – volume: 66 start-page: 458 year: 2016 ident: 2005_CR50 publication-title: Bioscience doi: 10.1093/biosci/biw035 – volume: 21 start-page: 603 issue: 6 year: 2012 ident: 2005_CR64 publication-title: Global Ecol Biogeogr doi: 10.1111/j.1466-8238.2011.00712.x – volume: 16 start-page: 253 issue: 3 year: 2006 ident: 2005_CR25 publication-title: Glob Environ Change doi: 10.1016/j.gloenvcha.2006.04.002 – volume: 46 start-page: 15 issue: 1 year: 2011 ident: 2005_CR61 publication-title: Clim Res doi: 10.3354/cr00936 – volume: 9 start-page: 407 issue: 5 year: 2017 ident: 2005_CR56 publication-title: Remote Sens doi: 10.3390/rs9050407 – volume: 50 start-page: 27 issue: 1–3 year: 2000 ident: 2005_CR46 publication-title: Landsc Urban Plann doi: 10.1016/S0169-2046(00)00078-5 – volume: 20 start-page: 398 issue: 6 year: 2018 ident: 2005_CR96 publication-title: Entropy doi: 10.3390/e20060398 – volume: 39 start-page: 29 issue: 2 year: 2024 ident: 2005_CR34 publication-title: Landscape Ecol doi: 10.1007/s10980-024-01797-0 – volume: 171 start-page: 330 year: 2021 ident: 2005_CR8 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2020.11.019 – volume-title: Growth and development: ecosystems phenomenology year: 1986 ident: 2005_CR88 doi: 10.1007/978-1-4612-4916-0 – volume: 12 start-page: 2959 issue: 18 year: 2020 ident: 2005_CR97 publication-title: Remote Sens doi: 10.3390/rs12182959 – volume: 349 start-page: 814 issue: 6250 year: 2015 ident: 2005_CR87 publication-title: Science doi: 10.1126/science.aac6759 – volume: 4 start-page: 765 issue: 8 year: 2001 ident: 2005_CR9 publication-title: Ecosystems doi: 10.1007/s10021-001-0045-9 – volume: 41 start-page: 2928 issue: 8 year: 2014 ident: 2005_CR20 publication-title: Geophys Res Lett doi: 10.1002/2014GL059576 – volume: 27 start-page: 379 year: 1948 ident: 2005_CR79 publication-title: Bell Syst Tech J doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: 2005_CR16 – volume: 84 start-page: 471 issue: 3 year: 2003 ident: 2005_CR102 publication-title: Remote Sens Environ doi: 10.1016/S0034-4257(02)00135-9 – volume: 413 start-page: 591 issue: 6856 year: 2001 ident: 2005_CR77 publication-title: Nature doi: 10.1038/35098000 – volume-title: Information theory and statistics year: 1997 ident: 2005_CR44 – volume: 10 start-page: 811 issue: 9 year: 2019 ident: 2005_CR84 publication-title: Forests doi: 10.3390/f10090811 – volume: 53 start-page: 617 issue: 3 year: 2016 ident: 2005_CR1 publication-title: J Appl Ecol doi: 10.1111/1365-2664.12649 – volume: 25 start-page: 704 issue: 6 year: 2016 ident: 2005_CR6 publication-title: Global Ecol Biogeogr doi: 10.1111/geb.12447 – volume: 2023 start-page: e06143 year: 2022 ident: 2005_CR67 publication-title: Ecography doi: 10.1111/ecog.06143 – volume: 138 start-page: 93 issue: 1 year: 2011 ident: 2005_CR43 publication-title: J Torrey Bot Soc doi: 10.3159/10-RA-031.1 – ident: 2005_CR53 – volume: 28 start-page: 999 issue: 6 year: 2013 ident: 2005_CR99 publication-title: Landscape Ecol doi: 10.1007/s10980-013-9894-9 – volume: 9 start-page: 417 issue: 11 year: 2020 ident: 2005_CR74 publication-title: Land doi: 10.3390/land9110417 – volume: 74 start-page: 314 year: 2019 ident: 2005_CR2 publication-title: Int J Appl Earth Obs Geoinf – volume: 11 start-page: 606 issue: 6 year: 2020 ident: 2005_CR4 publication-title: Forests doi: 10.3390/f11060606 – volume: 33 start-page: 108 issue: 2 year: 2011 ident: 2005_CR19 publication-title: Can J Plant Path doi: 10.1080/07060661.2011.563906 – volume-title: Ecology, the ascendent perspective year: 1997 ident: 2005_CR89 – volume: 31 start-page: 481 issue: 3 year: 2016 ident: 2005_CR17 publication-title: Landsc Ecol doi: 10.1007/s10980-015-0305-2 – volume: 14 start-page: 369 issue: 7 year: 2016 ident: 2005_CR39 publication-title: Front Ecol Environ doi: 10.1002/fee.1311 – volume: 27 start-page: 523 issue: 6 year: 2003 ident: 2005_CR90 publication-title: Comput Biol Chem doi: 10.1016/S1476-9271(03)00050-1 – volume: 53 start-page: 677 issue: 3 year: 2016 ident: 2005_CR68 publication-title: J Appl Ecol doi: 10.1111/1365-2664.12550 – volume: 58 start-page: 27 issue: 1 year: 2008 ident: 2005_CR45 publication-title: Bioscience doi: 10.1641/B580107 – volume: 251 start-page: 112048 year: 2020 ident: 2005_CR42 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.112048 – year: 2019 ident: 2005_CR11 publication-title: Front Ecol Evol doi: 10.3389/fevo.2019.00241 – volume: 121 start-page: 523 issue: 4 year: 2012 ident: 2005_CR26 publication-title: Oikos doi: 10.1111/j.1600-0706.2011.19622.x – volume: 34 start-page: 2049 issue: 9 year: 2019 ident: 2005_CR15 publication-title: Landscape Ecol doi: 10.1007/s10980-019-00889-6 – volume-title: ArcGIS Release 10.7.1 year: 2019 ident: 2005_CR24 – volume: 18 start-page: 299 issue: 6 year: 2003 ident: 2005_CR41 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(03)00071-5 – volume: 1 start-page: 488 issue: 9 year: 2003 ident: 2005_CR23 publication-title: Front Ecol Environ doi: 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2 – volume: 12 start-page: 339 issue: 6 year: 2014 ident: 2005_CR40 publication-title: Front Ecol Environ doi: 10.1890/130066 – volume: 369 start-page: 20130190 issue: 1643 year: 2014 ident: 2005_CR63 publication-title: Philos Trans Royal Soc Lond b: Biol Sci doi: 10.1098/rstb.2013.0190 – volume: 4 start-page: 1 year: 1973 ident: 2005_CR38 publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.es.04.110173.000245 – volume-title: Matrix population models year: 2001 ident: 2005_CR10 – volume: 10 start-page: 725 issue: 7 year: 2021 ident: 2005_CR66 publication-title: Land doi: 10.3390/land10070725 – volume: 291 start-page: 209 year: 2013 ident: 2005_CR94 publication-title: For Ecol Manage doi: 10.1016/j.foreco.2012.11.002 – volume: 120 start-page: 131 issue: 1 year: 2015 ident: 2005_CR13 publication-title: J Geophys Res Atmos doi: 10.1002/2014JD021993 – volume: 2 start-page: 797 year: 2019 ident: 2005_CR52 publication-title: Nat Sustain doi: 10.1038/s41893-019-0353-8 – volume: 9 start-page: 172 issue: 4 year: 2018 ident: 2005_CR22 publication-title: Insects doi: 10.3390/insects9040172 – volume: 22 start-page: 357 issue: 7 year: 2007 ident: 2005_CR12 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2007.04.003 – volume: 32 start-page: e2526 issue: 3 year: 2022 ident: 2005_CR80 publication-title: Ecol Appl doi: 10.1002/eap.2526 – volume: 34 start-page: 2183 issue: 9 year: 2019 ident: 2005_CR29 publication-title: Landsc Ecol doi: 10.1007/s10980-019-00814-x – volume: 10 start-page: 1069 issue: 6 year: 2010 ident: 2005_CR59 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2010.03.014 – ident: 2005_CR5 doi: 10.1109/ICDMW.2017.45 – volume: 31 start-page: e02323 issue: 5 year: 2021 ident: 2005_CR47 publication-title: Ecol Appl doi: 10.1002/eap.2323 – volume: 67 start-page: 820 issue: 9 year: 2017 ident: 2005_CR72 publication-title: Bioscience doi: 10.1093/biosci/bix075 – volume: 1 start-page: 143 issue: 2 year: 1998 ident: 2005_CR31 publication-title: Ecosystems doi: 10.1007/s100219900011 – volume: 159 start-page: 281 year: 2020 ident: 2005_CR95 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2019.11.027 – volume: 20 start-page: 503 issue: 9 year: 2005 ident: 2005_CR60 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2005.05.011 – volume: 34 start-page: S39 issue: 1 year: 2004 ident: 2005_CR33 publication-title: Environ Manage doi: 10.1007/s00267-003-1084-0 – ident: 2005_CR69 – volume: 34 start-page: 277 issue: 2 year: 2008 ident: 2005_CR49 publication-title: Environ Int doi: 10.1016/j.envint.2007.09.004 – volume: 53 start-page: 120 issue: 1 year: 2016 ident: 2005_CR78 publication-title: J Appl Ecol doi: 10.1111/1365-2664.12511 – volume: 111 start-page: 515 year: 1977 ident: 2005_CR51 publication-title: Am Nat doi: 10.1086/283181 – volume: 5 start-page: 703 issue: 5 year: 1994 ident: 2005_CR71 publication-title: J Veg Sci doi: 10.2307/3235884 – start-page: 385 volume-title: Phenology: an integrative environmental science year: 2013 ident: 2005_CR35 doi: 10.1007/978-94-007-6925-0_21 – volume: 7 start-page: 253 issue: 5 year: 2009 ident: 2005_CR54 publication-title: Front Ecol Environ doi: 10.1890/070217 – volume: 23 start-page: 1616 issue: 12 year: 2021 ident: 2005_CR18 publication-title: Entropy doi: 10.3390/e23121616 – volume-title: A third window: natural life beyond Newton and Darwin year: 2009 ident: 2005_CR91 – start-page: 95 volume-title: Maintaining biodiversity in forest ecosystems year: 1999 ident: 2005_CR82 doi: 10.1017/CBO9780511613029.006 – volume: 110 start-page: 1460 issue: 7 year: 2022 ident: 2005_CR21 publication-title: J Ecol doi: 10.1111/1365-2745.13897 – ident: 2005_CR85 doi: 10.3334/ORNLDAAC/1299 – volume: 191 start-page: 926 issue: 4 year: 2011 ident: 2005_CR65 publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03803.x – volume: 6 start-page: 27 issue: 1 year: 2009 ident: 2005_CR92 publication-title: Ecol Complex doi: 10.1016/j.ecocom.2008.10.005 – volume: 18 start-page: S231 issue: suppl 2 year: 2002 ident: 2005_CR86 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_2.S231 – volume: 38 start-page: 2179 issue: 9 year: 2023 ident: 2005_CR75 publication-title: Landsc Ecol doi: 10.1007/s10980-023-01705-y – volume: 5 start-page: 280 issue: 4 year: 2005 ident: 2005_CR55 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2005.03.017 – volume: 733 start-page: 137782 year: 2020 ident: 2005_CR98 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.137782 – ident: 2005_CR57 doi: 10.2737/SRS-GTR-180 – volume: 222 start-page: 204 year: 2019 ident: 2005_CR70 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.12.009 – volume: 9 start-page: 107 issue: 1 year: 2009 ident: 2005_CR73 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2008.02.003 – volume: 115 start-page: 427 issue: 2 year: 2011 ident: 2005_CR83 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2010.09.013 – volume: 34 start-page: 2091 issue: 9 year: 2019 ident: 2005_CR58 publication-title: Landsc Ecol doi: 10.1007/s10980-019-00830-x – volume: 16 start-page: 321 issue: 3 year: 2010 ident: 2005_CR27 publication-title: Divers Distrib doi: 10.1111/j.1472-4642.2010.00641.x – volume: 57 start-page: 355 issue: 2 year: 1976 ident: 2005_CR76 publication-title: J Theor Biol doi: 10.1016/0022-5193(76)90007-2 – volume: 14 start-page: 597 issue: 3 year: 2022 ident: 2005_CR28 publication-title: Remote Sens doi: 10.3390/rs14030597 – volume: 51 start-page: 839 issue: 4 year: 2014 ident: 2005_CR62 publication-title: J Appl Ecol doi: 10.1111/1365-2664.12261 – volume: 28 start-page: 22 year: 2013 ident: 2005_CR101 publication-title: Ecol Indicators doi: 10.1016/j.ecolind.2011.07.008 – volume: 31 start-page: 425 year: 2000 ident: 2005_CR30 publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.ecolsys.31.1.425 – volume: 34 start-page: 2065 issue: 9 year: 2019 ident: 2005_CR32 publication-title: Landsc Ecol doi: 10.1007/s10980-018-0709-x – volume: 412 start-page: 80 year: 2018 ident: 2005_CR37 publication-title: For Ecol Manage doi: 10.1016/j.foreco.2017.12.017 – volume: 396 start-page: 170 issue: 1 year: 2011 ident: 2005_CR81 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.10.043 – volume: 14 start-page: 044020 issue: 4 year: 2019 ident: 2005_CR103 publication-title: Environ Res Lett doi: 10.1088/1748-9326/ab04d2 |
SSID | ssj0003300 |
Score | 2.4381354 |
Snippet | Context
Characterizing landscape ecological complexity and change requires integrated description of spatial and temporal landscape organization and dynamics,... ContextCharacterizing landscape ecological complexity and change requires integrated description of spatial and temporal landscape organization and dynamics,... CONTEXT: Characterizing landscape ecological complexity and change requires integrated description of spatial and temporal landscape organization and dynamics,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 203 |
SubjectTerms | Biogeography Biomedical and Life Sciences climate Climate variability Complexity Disturbances Dynamics Ecological models Ecology ecosystems Environmental Management forests geographical distribution Heterogeneity image analysis Information theory Land use Landscape Landscape Ecology Landscape/Regional and Urban Planning landscapes Life Sciences mathematical theory Mosaics Nature Conservation North America Phenology Pixels prediction Remote sensing Research Article Spatial data Spatiotemporal data Sustainable Development time series analysis |
Title | Using land surface phenology and information theory to assess and map complex landscape dynamics |
URI | https://link.springer.com/article/10.1007/s10980-024-02005-9 https://www.proquest.com/docview/3130547565 https://www.proquest.com/docview/3154259481 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7UIngRn1hfRPCmC_vKbvZYS6so9mRBT2s2j5tt6bZg_70zadaq6MHDZsNuHpCZZL5hHgG4VMKKqlA6sLmyQSpTG1Q2NwEPTa65jeLIUoDz4yC7G6b3z_zZB4XVjbd7Y5J0J_WXYLdChAHKFHwof2axDi2OujvxdZdiHPz5ixp66MNjfu_3XQStcOUPU6iTMP0d2PbQkHWWtNyFNTPag83lZZELrPWUrx32VtFp2MFvz3ofXp0DACNnRVbPp1Yqw8iHy_Vj9NXnSSVqMBfDuGCzMZPO8usavMkJc27m5t2NU5ODFNPLe-vrAxj2e0_du8BfoRCoJM1ngc64SoVEXIFyiKsisSKxcWwjizhIyhjhR6hFWkVGaIGqSCYqiwBQSkspHWySHMLGaDwyR8BUoTOhtQorgVpOUUnKDRfKHBW-uDA8asNVs6rlZJkpo1zlRCYalEiD0tGgLNpw2ix86XdNXSYoUHmaI8Zsw8Xnb-R3MmLIkRnPqQ3HY4ZyzLThuiHYaoi_Zzz-X_MT2IqJZ5znyilszKZzc4b4Y1adQ6vTv7kZ0Pv25aF37tiPyqyL5TDufADqFNg1 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60InoRX8Vq1QjedGHfmz1Kaana9tRCb2s2j5tt6W7B_ntn0m2LRQ8eFsJukoVMkvmGmfkG4FFyw_NUKsck0jihCI2Tm0Q7kasTFRnP9wwlOPcHcXcUvo2jcUWTQ7kwO_57SnFLueugJsGHWDPTfTgI0VKm8L1W3NrcumiXu1VSzO_jfiqeLZrccYBavdI5hZMKELKXlQTPYE9PzuFwVSJyia22rFr19jYnDQdUh7K4gA_r9mcUosiKxdwIqRlFbtlxjN5W7KgkA2YzF5esnDJh_b22w6eYMRtcrr_sPAWFRTG1qlZfXMKo0x62uk5VOMGRQZiUjoojGXKBaAK1TyTTwPDA-L7xDKIfIXwEHa7iYe5prjgaIDHPDcI-IQwROZggqENtMp3oK2AyVTFXSro5R9smzQUxwrkiQTPPT3XkNeBpvarZbMWPkW2ZkEkGGcogszLI0gY01wufVWelyAJUo1GYILJswMPmM-5ycl2IiZ4uqE-ElwsxyzTgeS2w7RR___H6f93v4ag77Pey3uvg_QaOfdo_NnalCbVyvtC3iEDK_M5uvW9Sv9Jw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BEYgLe0VZjcQNQrM2zhFBy15xAAlOwfEiIdS0IqlE-XrGTkILggPiEMlKbCfx2J43mplngH1OFU0iLiwVcmX5zFdWokJpBbYMRaAc11E6wfmm2zq_9y8fgoeJLH4T7V65JIucBs3SlObNgVDNicS3iNoW6he8NJdmNA0zvua2q8HM8dnjVftzN0Z73S6TZX5u-VUhjVHmN8eo0TedRWDVlxZhJi9Hwzw54u_fSBz_8ytLsFCCUXJczJ5lmJLpCswWx1OOsNTmZaneHufDYYNyQ8hW4cmEHBAdHkmy4atiXBIdNWbaEX23ZGbV8icma3JE8j5hxtdsKvTYgJjAdvlm-sl0SBYRo5T1nnm2Bved9t3JuVUe2mBxzw9zS7QC7lOGSAY1X8AjT1FPua5yFCIvxlwEPLagfuJIKigaPy2aKIScjClNIqE8rw61tJ_KdSA8Ei0qBLcTinZVlDDNRmezEE1MN5KB04CDSnLxoODmiMcszHpYYxzW2AxrHDVgqxJuXK7TLPZQhQd-iKi2AXufj3GFabcJS2V_qOsEuLFpVpsGHFbyHHfx-xs3_lZ9F-ZuTzvx9UX3ahPmXT0jTNjMFtTy16HcRvCTJzvl_P4A1ov8ZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+land+surface+phenology+and+information+theory+to+assess+and+map+complex+landscape+dynamics&rft.jtitle=Landscape+ecology&rft.au=Pomara%2C+Lars+Y.&rft.au=Lee%2C+Danny+C.&rft.au=Brooks%2C+Bjorn-Gustaf&rft.au=Hargrove%2C+William+W.&rft.date=2024-12-01&rft.issn=1572-9761&rft.eissn=1572-9761&rft.volume=39&rft.issue=12&rft_id=info:doi/10.1007%2Fs10980-024-02005-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10980_024_02005_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-9761&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-9761&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-9761&client=summon |