Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting

Accurately predicting the particle size distribution of a muck-pile after blasting is always an important subject for mining industry. Adaptive neuro-fuzzy inference system (ANFIS) has emerged as a synergic intelligent system. The main contribution of this paper is to optimize the premise and conseq...

Full description

Saved in:
Bibliographic Details
Published inEngineering with computers Vol. 37; no. 1; pp. 265 - 274
Main Authors Zhou, Jian, Li, Chuanqi, Arslan, Chelang A., Hasanipanah, Mahdi, Bakhshandeh Amnieh, Hassan
Format Journal Article
LanguageEnglish
Published London Springer London 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurately predicting the particle size distribution of a muck-pile after blasting is always an important subject for mining industry. Adaptive neuro-fuzzy inference system (ANFIS) has emerged as a synergic intelligent system. The main contribution of this paper is to optimize the premise and consequent parameters of ANFIS by firefly algorithm (FFA) and genetic algorithm (GA). To the best of our knowledge, no research has been published that assesses FFA and GA with ANFIS for fragmentation prediction and no research has tested the efficiency of these models to predict the fragmentation in different time scales as of yet. To show the effectiveness of the proposed ANFIS-FFA and ANFIS-GA models, their modelling accuracy has been compared with ANFIS, support vector regression (SVR) and artificial neural network (ANN). Intelligence predictions of fragmentation by ANFIS-FFA, ANFIS-GA, ANFIS, SVR and ANN are compared with observed values of fragmentation available in 88 blasting event of two quarry mines, Iran. According to the results, both ANFIS-FFA and ANFIS-GA prediction models performed satisfactorily; however, the lowest root mean square error (RMSE) and the highest correlation of determination ( R 2 ) values were obtained from ANFIS-GA model. The values of R 2 and RMSE obtained from ANFIS-GA, ANFIS-FFA, ANFIS, SVR and ANN models were equal to (0.989, 0.974), (0.981, 1.249), (0.956, 1.591), (0.924, 2.016) and (0.948, 2.554), respectively. Consequently, the proposed ANFIS-GA model has the potential to be used for predicting aims on other fields.
AbstractList Accurately predicting the particle size distribution of a muck-pile after blasting is always an important subject for mining industry. Adaptive neuro-fuzzy inference system (ANFIS) has emerged as a synergic intelligent system. The main contribution of this paper is to optimize the premise and consequent parameters of ANFIS by firefly algorithm (FFA) and genetic algorithm (GA). To the best of our knowledge, no research has been published that assesses FFA and GA with ANFIS for fragmentation prediction and no research has tested the efficiency of these models to predict the fragmentation in different time scales as of yet. To show the effectiveness of the proposed ANFIS-FFA and ANFIS-GA models, their modelling accuracy has been compared with ANFIS, support vector regression (SVR) and artificial neural network (ANN). Intelligence predictions of fragmentation by ANFIS-FFA, ANFIS-GA, ANFIS, SVR and ANN are compared with observed values of fragmentation available in 88 blasting event of two quarry mines, Iran. According to the results, both ANFIS-FFA and ANFIS-GA prediction models performed satisfactorily; however, the lowest root mean square error (RMSE) and the highest correlation of determination (R2) values were obtained from ANFIS-GA model. The values of R2 and RMSE obtained from ANFIS-GA, ANFIS-FFA, ANFIS, SVR and ANN models were equal to (0.989, 0.974), (0.981, 1.249), (0.956, 1.591), (0.924, 2.016) and (0.948, 2.554), respectively. Consequently, the proposed ANFIS-GA model has the potential to be used for predicting aims on other fields.
Accurately predicting the particle size distribution of a muck-pile after blasting is always an important subject for mining industry. Adaptive neuro-fuzzy inference system (ANFIS) has emerged as a synergic intelligent system. The main contribution of this paper is to optimize the premise and consequent parameters of ANFIS by firefly algorithm (FFA) and genetic algorithm (GA). To the best of our knowledge, no research has been published that assesses FFA and GA with ANFIS for fragmentation prediction and no research has tested the efficiency of these models to predict the fragmentation in different time scales as of yet. To show the effectiveness of the proposed ANFIS-FFA and ANFIS-GA models, their modelling accuracy has been compared with ANFIS, support vector regression (SVR) and artificial neural network (ANN). Intelligence predictions of fragmentation by ANFIS-FFA, ANFIS-GA, ANFIS, SVR and ANN are compared with observed values of fragmentation available in 88 blasting event of two quarry mines, Iran. According to the results, both ANFIS-FFA and ANFIS-GA prediction models performed satisfactorily; however, the lowest root mean square error (RMSE) and the highest correlation of determination ( R 2 ) values were obtained from ANFIS-GA model. The values of R 2 and RMSE obtained from ANFIS-GA, ANFIS-FFA, ANFIS, SVR and ANN models were equal to (0.989, 0.974), (0.981, 1.249), (0.956, 1.591), (0.924, 2.016) and (0.948, 2.554), respectively. Consequently, the proposed ANFIS-GA model has the potential to be used for predicting aims on other fields.
Author Zhou, Jian
Li, Chuanqi
Bakhshandeh Amnieh, Hassan
Hasanipanah, Mahdi
Arslan, Chelang A.
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: School of Resources and Safety Engineering, Central South University, State Key Laboratory of Safety and Health for Metal Mines
– sequence: 2
  givenname: Chuanqi
  surname: Li
  fullname: Li, Chuanqi
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 3
  givenname: Chelang A.
  surname: Arslan
  fullname: Arslan, Chelang A.
  organization: College of Engineering, Civil Engineering Department, Kirkuk University
– sequence: 4
  givenname: Mahdi
  orcidid: 0000-0001-7582-6745
  surname: Hasanipanah
  fullname: Hasanipanah, Mahdi
  email: Hasanipanah.m@gmail.com, Hasanipanahmahdi@duytan.edu.vn
  organization: Institute of Research and Development, Duy Tan University
– sequence: 5
  givenname: Hassan
  surname: Bakhshandeh Amnieh
  fullname: Bakhshandeh Amnieh, Hassan
  organization: School of Mining, College of Engineering, University of Tehran
BookMark eNp9kc9LHTEQx0NR8Kn9BzwFPMdOfmySPT6kzwqiBe05ZLOJjd232SZZwR77l3frqwg9vNMw8PnMDPM9RgdjGj1CZxQuKID6VAC4lARoSwA0YwQ-oBUVvCGNlPwArYAqRUBKdYSOS3kCoBygXaHfX30OKW_t6Dz2z3aYbY1pxCng7y9djj3ebNZkfbu5vsd27PHVW7NNvR8KrglP2ffRVTzZXKMbPC7xl8d9LDXHbn6bZvF2dj_IFBfAhuoz7gZbahwfT9FhsEPxH__VE_Rt8_nh8gu5ubu6vlzfEMeFqqQXnjnZBeclV8KF3ragfSMp2B4oKAaCcU0DbQXTTWCyAaslZZ0WHZPK8xN0vps75fRz9qWapzTncVlpmFBto2TLxF6KNVpooVS7UHpHuZxKyT4YF-vr52q2cTAUzN9czC4Xs-RiXnMxsKjsP3XKcWvzy36J76SywOOjz-9X7bH-AEYSoDQ
CitedBy_id crossref_primary_10_1038_s41598_021_00279_6
crossref_primary_10_1007_s11053_019_09603_4
crossref_primary_10_1007_s00366_020_01105_9
crossref_primary_10_3390_app11041922
crossref_primary_10_1007_s11053_020_09623_5
crossref_primary_10_1007_s10462_023_10636_8
crossref_primary_10_1016_j_jocs_2024_102266
crossref_primary_10_1017_S089006042400009X
crossref_primary_10_1007_s10064_021_02460_7
crossref_primary_10_3390_w16202946
crossref_primary_10_1007_s00366_020_01131_7
crossref_primary_10_1016_j_asoc_2024_112334
crossref_primary_10_3390_su16124930
crossref_primary_10_1007_s11004_024_10174_1
crossref_primary_10_1007_s00170_024_13681_x
crossref_primary_10_1007_s42965_025_00367_y
crossref_primary_10_1515_eng_2022_0566
crossref_primary_10_1007_s00521_021_06162_9
crossref_primary_10_1038_s41598_020_80207_2
crossref_primary_10_1007_s00366_019_00868_0
crossref_primary_10_1177_03093247241240832
crossref_primary_10_1016_j_asoc_2023_110808
crossref_primary_10_1007_s00366_020_01014_x
crossref_primary_10_1007_s00521_020_04822_w
crossref_primary_10_1038_s41598_020_79913_8
crossref_primary_10_1007_s12517_024_11979_4
crossref_primary_10_1007_s41660_023_00313_2
crossref_primary_10_1080_15623599_2023_2266676
crossref_primary_10_1007_s10462_022_10140_5
crossref_primary_10_1007_s11356_022_19683_0
crossref_primary_10_3390_su15054230
crossref_primary_10_1007_s00366_021_01329_3
crossref_primary_10_1016_j_engstruct_2024_118756
crossref_primary_10_3390_en16072958
crossref_primary_10_1007_s10706_023_02594_3
crossref_primary_10_3390_en17051138
crossref_primary_10_1016_j_jer_2023_09_016
crossref_primary_10_3390_min11060601
crossref_primary_10_1007_s11053_022_10082_3
crossref_primary_10_1007_s00366_019_00895_x
crossref_primary_10_1007_s00366_020_00977_1
crossref_primary_10_1016_j_ecoinf_2022_101780
crossref_primary_10_1080_10255842_2024_2362863
crossref_primary_10_1155_2021_5599624
crossref_primary_10_1007_s12517_022_09568_4
crossref_primary_10_1007_s13369_020_04587_3
crossref_primary_10_1007_s11771_021_4619_8
crossref_primary_10_1007_s11053_021_09914_5
crossref_primary_10_1177_16878132231196408
crossref_primary_10_1007_s00521_020_05197_8
crossref_primary_10_1016_j_jmsy_2024_04_025
crossref_primary_10_5937_tehnika2204439V
crossref_primary_10_1007_s00366_020_01085_w
crossref_primary_10_3390_ma13143137
crossref_primary_10_1007_s12665_021_10049_2
crossref_primary_10_1007_s00366_020_00937_9
crossref_primary_10_1007_s42461_022_00713_x
crossref_primary_10_1088_1402_4896_ad05ae
crossref_primary_10_1140_epjp_s13360_022_02518_9
crossref_primary_10_1007_s00366_020_01230_5
crossref_primary_10_1016_j_jrmge_2021_07_013
crossref_primary_10_1007_s42461_024_01064_5
crossref_primary_10_1108_EC_03_2020_0150
crossref_primary_10_1016_j_trgeo_2024_101288
crossref_primary_10_1007_s00366_021_01381_z
crossref_primary_10_1016_j_chemosphere_2019_125450
crossref_primary_10_4028_p_4q7MQr
crossref_primary_10_1007_s00366_021_01552_y
crossref_primary_10_1016_j_measurement_2021_110552
crossref_primary_10_1007_s00366_021_01418_3
crossref_primary_10_1007_s00366_020_01173_x
crossref_primary_10_1016_j_chemolab_2024_105093
crossref_primary_10_1021_acsomega_0c03225
crossref_primary_10_3390_app13116655
crossref_primary_10_1007_s13202_021_01405_w
crossref_primary_10_1016_j_asoc_2020_106486
crossref_primary_10_1007_s00366_020_01059_y
crossref_primary_10_1038_s41598_020_79689_x
crossref_primary_10_1007_s00366_020_00963_7
crossref_primary_10_1007_s00366_020_01207_4
crossref_primary_10_1007_s12524_024_02027_5
crossref_primary_10_1080_07373937_2023_2271557
crossref_primary_10_3897_aiep_55_140634
crossref_primary_10_1007_s00366_020_01241_2
crossref_primary_10_1016_j_mlwa_2023_100517
crossref_primary_10_3390_machines10070567
crossref_primary_10_1007_s00366_021_01374_y
crossref_primary_10_1155_2020_3418904
crossref_primary_10_1155_2022_3345368
crossref_primary_10_1080_15376494_2022_2051780
crossref_primary_10_3390_ma16031286
crossref_primary_10_1007_s00521_021_05717_0
crossref_primary_10_1016_j_jnoncrysol_2021_121175
crossref_primary_10_1016_j_displa_2024_102905
Cites_doi 10.1061/(ASCE)CF.1943-5509.0001292
10.1007/s10845-017-1306-6
10.1007/s00366-018-0677-4
10.1007/s10845-016-1217-y
10.1109/access.2019.2918177
10.1007/s12665-014-3711-x
10.1007/s00366-016-0447-0
10.1007/s00366-017-0535-9
10.1007/s00366-016-0462-1
10.1007/s13762-017-1395-y
10.12989/scs.2014.17.5.623
10.1016/j.jclepro.2018.06.054
10.1177/1077546314568172
10.1016/j.measurement.2018.08.052
10.1016/S1003-6326(11)61195-3
10.1007/s00366-016-0453-2
10.1016/j.ijrmms.2009.09.008
10.1007/s00521-012-0856-y
10.1061/(ASCE)GM.1943-5622.0000817
10.1007/s12665-016-5503-y
10.1007/s00366-017-0508-z
10.1007/s12665-016-6335-5
10.1016/j.ssci.2011.08.065
10.1016/j.ssci.2019.05.046
10.1007/s00521-016-2471-9
10.1016/0893-6080(89)90020-8
10.1007/s00366-017-0568-0
10.1007/BF01045717
10.1061/(ASCE)CP.1943-5487.0000553
10.1016/j.ijrmms.2009.05.005
10.1007/s11069-015-1842-3
10.1007/s00366-016-0475-9
10.1007/s00521-016-2746-1
10.7763/IJFCC.2013.V2.165
10.1007/978-1-4757-2440-0
10.1007/s00366-016-0477-7
10.1007/s00500-017-2617-4
10.1007/s00366-016-0497-3
10.1007/s00521-016-2434-1
10.1016/j.mineng.2019.01.004
10.1007/s10064-015-0720-2
10.12989/sem.2016.60.3.471
10.1007/s00366-015-0425-y
10.1016/j.compgeo.2011.04.005
10.1016/j.ijrmms.2018.08.004
10.1007/s00366-017-0544-8
10.1007/s12665-016-6306-x
10.1080/0305215X.2018.1439943
10.1016/j.ijmst.2013.10.005
10.12989/scs.2016.21.3.679
10.1016/j.tust.2018.08.029
10.1007/s12517-013-1261-2
10.12989/sss.2014.14.5.785
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved.
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00366-019-00822-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 274
ExternalDocumentID 10_1007_s00366_019_00822_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c347t-d4e2c6bfce6374cfda908e5610ad01072042381f194285f2650a8612b84b267e3
IEDL.DBID U2A
ISSN 0177-0667
IngestDate Wed Aug 13 10:48:51 EDT 2025
Wed Aug 13 09:39:55 EDT 2025
Tue Jul 01 04:18:14 EDT 2025
Thu Apr 24 22:55:30 EDT 2025
Fri Feb 21 02:49:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ANFIS
Blasting
Genetic algorithm
Firefly algorithm
Rock fragmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-d4e2c6bfce6374cfda908e5610ad01072042381f194285f2650a8612b84b267e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7582-6745
PQID 2258484779
PQPubID 326339
PageCount 10
ParticipantIDs proquest_journals_2479576924
proquest_journals_2258484779
crossref_citationtrail_10_1007_s00366_019_00822_0
crossref_primary_10_1007_s00366_019_00822_0
springer_journals_10_1007_s00366_019_00822_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Ebrahimi, Monjezi, Khalesi, Armaghani (CR21) 2016; 75
Karami, Afiuni-Zadeh (CR20) 2013; 23
Wang, Shi, Zhou, Qiu (CR14) 2018; 50
Majumder, Das, Das (CR51) 2018; 29
Lu, Zhou, Ding, Shi, Luan, Li (CR66) 2019
Taheri, Hasanipanah, Bagheri Golzar, Majid (CR37) 2016; 33
CR39
Hasanipanah, Armaghani, Monjezi, Shams (CR4) 2016; 75
Samui, Kim, Viswanathan (CR42) 2015
CR34
Hasanipanah, Golzar, Larki, Maryaki, Ghahremanians (CR54) 2017; 33
Hasanipanah, Faradonbeh, Amnieh, Armaghani, Monjezi (CR58) 2017; 33
Vapnik (CR28) 1982
Hasanipanah (CR63) 2018; 15
Vapnik (CR29) 1995
Fattahi, Bayatzadehfard (CR49) 2017; 7
Yang, Zang (CR24) 1997; 30
Monjezi, Bahrami, Varjani (CR1) 2010; 47
Monjezi, Rezaei, Yazdian Varjani (CR19) 2009; 46
Vapnik, Golowich, Smola, Mozer, Jordan, Petsche (CR30) 1997
Vapnik, Chervonenkis (CR26) 1964; 25
Qi, Fourie, Chen, Tang, Zhang, Gao (CR64) 2018; 196
CR6
Zhou, Li, Yang, Wang, Shi, Yao, Mitri (CR17) 2019; 118
Monjezi, Hasanipanah, Khandelwal (CR36) 2013; 22
Wang, Shi, Zhou (CR61) 2018; 110
CR7
Mohammadhassani, Nezamabadi-Pour, Suhatril, Shariati (CR8) 2014; 14
Toghroli, Mohammadhassani, Shariati, Suhatril, Ibrahim, Sulong (CR41) 2014; 17
Koçaslan, Yüksek, Görgülü, Arpaz (CR46) 2017; 76
Jalalifar (CR48) 2011; 38
Vapnik, Lerner (CR25) 1963; 24
Hasanipanah, Armaghani, Khamesi, Amnieh, Ghoraba (CR44) 2016; 32
Keshtegar, Hasanipanah, Bakhshayeshi, Sarafraz (CR65) 2019; 131
Basak, Pal, Patranabis (CR31) 2007; 11
Bakhtavar, Khoshrou, Badroddin (CR3) 2015; 8
Hasanipanah, Naderi, Kashir, Noorani, Aaq Qaleh (CR55) 2017; 33
Zhou, Li, Mitri (CR9) 2015; 79
Zhou, Li, Mitri (CR53) 2016; 30
Qi, Tang, Dong, Chen, Fourie, Liu (CR68) 2019; 133
Kazemivash, Moghaddam (CR52) 2018; 22
Toghroli (CR10) 2016
Mansouri (CR45) 2017
Safa (CR43) 2016; 21
Yang (CR50) 2008; 20
Shi, Zhou, Wu, Huang, Wei (CR2) 2012; 22
Gao, Alqahtani, Mubarakali, Mavaluru, Khalafi (CR67) 2019; 35
Hasanipanah, Shahnazar, Amnieh, Armaghani (CR56) 2017; 33
Zhou, Li, Mitri (CR16) 2018; 81
Hasanipanah, Shahnazar, Arab, Golzar, Amiri (CR57) 2017; 33
Hasanipanah, Bakhshandeh Amnieh, Arab, Zamzam (CR5) 2018; 30
Toghroli (CR15) 2018; 21
Hasanipanah, Armaghani, Amnieh, Majid, Tahir (CR60) 2017; 28
Hornik, Stinchcombe, White (CR40) 1989; 2
Mansouri (CR12) 2016; 60
Hasanipanah, Noorian-Bidgoli, Armaghani, Khamesi (CR38) 2016; 32
Sedghi (CR47) 2018; 22
Rad, Hasanipanah, Rezaei, Eghlim (CR62) 2018; 34
Zhou, Li, Shi (CR32) 2012; 50
Zhou, Shi, Du, Qiu, Li, Mitri (CR13) 2017; 17
Asl, Monjezi, Hamidi, Armaghani (CR23) 2018; 34
CR27
Zhou, Li, Wang, Chen, Shi, Jiang (CR18) 2019; 33
Sari (CR33) 2018
Gao, Karbasi, Hasanipanah, Zhang, Guo (CR22) 2018; 34
Hasanipanah, Faradonbeh, Armaghani, Amnieh, Khandelwal (CR59) 2017; 76
Zhou, Shi, Li (CR11) 2016; 22
Anandhi, Chezian (CR35) 2013; 2
M Hasanipanah (822_CR44) 2016; 32
M Hasanipanah (822_CR55) 2017; 33
J Zhou (822_CR11) 2016; 22
J Zhou (822_CR17) 2019; 118
P Samui (822_CR42) 2015
HN Rad (822_CR62) 2018; 34
A Majumder (822_CR51) 2018; 29
822_CR34
J Zhou (822_CR16) 2018; 81
D Basak (822_CR31) 2007; 11
V Vapnik (822_CR26) 1964; 25
J Zhou (822_CR18) 2019; 33
822_CR39
Toghroli (822_CR15) 2018; 21
M Hasanipanah (822_CR4) 2016; 75
A Karami (822_CR20) 2013; 23
J Zhou (822_CR9) 2015; 79
V Vapnik (822_CR29) 1995
M Hasanipanah (822_CR54) 2017; 33
J Zhou (822_CR13) 2017; 17
M Safa (822_CR43) 2016; 21
M Monjezi (822_CR1) 2010; 47
M Hasanipanah (822_CR58) 2017; 33
V Vapnik (822_CR30) 1997
A Koçaslan (822_CR46) 2017; 76
Y Sedghi (822_CR47) 2018; 22
B Kazemivash (822_CR52) 2018; 22
J Zhou (822_CR53) 2016; 30
XS Yang (822_CR50) 2008; 20
XZ Shi (822_CR2) 2012; 22
K Hornik (822_CR40) 1989; 2
B Keshtegar (822_CR65) 2019; 131
E Bakhtavar (822_CR3) 2015; 8
822_CR27
C Qi (822_CR68) 2019; 133
M Mohammadhassani (822_CR8) 2014; 14
H Jalalifar (822_CR48) 2011; 38
M Hasanipanah (822_CR60) 2017; 28
W Gao (822_CR67) 2019; 35
I Mansouri (822_CR45) 2017
V Vapnik (822_CR25) 1963; 24
K Taheri (822_CR37) 2016; 33
J Zhou (822_CR32) 2012; 50
M Hasanipanah (822_CR57) 2017; 33
PF Asl (822_CR23) 2018; 34
X Lu (822_CR66) 2019
M Hasanipanah (822_CR38) 2016; 32
M Hasanipanah (822_CR5) 2018; 30
C Qi (822_CR64) 2018; 196
E Ebrahimi (822_CR21) 2016; 75
M Wang (822_CR14) 2018; 50
Y Yang (822_CR24) 1997; 30
V Anandhi (822_CR35) 2013; 2
V Vapnik (822_CR28) 1982
M Hasanipanah (822_CR63) 2018; 15
A Toghroli (822_CR10) 2016
M Monjezi (822_CR19) 2009; 46
W Gao (822_CR22) 2018; 34
M Hasanipanah (822_CR59) 2017; 76
PA Sari (822_CR33) 2018
A Toghroli (822_CR41) 2014; 17
M Monjezi (822_CR36) 2013; 22
M Wang (822_CR61) 2018; 110
H Fattahi (822_CR49) 2017; 7
822_CR6
M Hasanipanah (822_CR56) 2017; 33
822_CR7
I Mansouri (822_CR12) 2016; 60
References_xml – volume: 33
  start-page: 173
  issue: 2
  year: 2017
  end-page: 179
  ident: CR55
  article-title: Prediction of blast produced ground vibration using particle swarm optimization
  publication-title: Eng Comput
– volume: 15
  start-page: 551
  issue: 3
  year: 2018
  end-page: 560
  ident: CR63
  article-title: Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system
  publication-title: Int J Environ Sci Technol
– volume: 79
  start-page: 291
  issue: 1
  year: 2015
  end-page: 316
  ident: CR9
  article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction
  publication-title: Nat Hazards
– volume: 76
  start-page: 57
  year: 2017
  ident: CR46
  article-title: Evaluation of blast-induced ground vibrations in open-pit mines by using adaptive neuro-fuzzy inference systems
  publication-title: Environ Earth Sci
– year: 1997
  ident: CR30
  article-title: Support vector method for function approximation, regression estimation, and signal processing
  publication-title: Neural information processing systems
– year: 1982
  ident: CR28
  publication-title: Estimation of dependences based on empirical data
– volume: 20
  start-page: 79
  year: 2008
  end-page: 90
  ident: CR50
  article-title: Firefly algorithm
  publication-title: Nat Inspired Metaheuristic Algorithms
– volume: 60
  start-page: 471
  issue: 3
  year: 2016
  end-page: 488
  ident: CR12
  article-title: Strength prediction of rotary brace damper using MLR and MARS
  publication-title: Struct Eng Mech
– ident: CR39
– volume: 110
  start-page: 199
  year: 2018
  end-page: 209
  ident: CR61
  article-title: Charge design scheme optimization for ring blasting based on the developed Scaled Heelan model
  publication-title: Int J Rock Mech Min Sci
– volume: 47
  start-page: 476
  issue: 3
  year: 2010
  end-page: 480
  ident: CR1
  article-title: Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks
  publication-title: Int J Rock Mech Min Sci
– volume: 22
  start-page: 4083
  issue: 12
  year: 2018
  end-page: 4098
  ident: CR52
  article-title: A predictive model-based image watermarking scheme using regression tree and firefly algorithm
  publication-title: Soft Comput
– volume: 34
  start-page: 339
  issue: 2
  year: 2018
  end-page: 345
  ident: CR22
  article-title: Developing GPR model for forecasting the rock fragmentation in surface mines
  publication-title: Eng Comput
– volume: 2
  start-page: 266
  issue: 3
  year: 2013
  ident: CR35
  article-title: Support vector regression to forecast demand and supply Pulpwood
  publication-title: Int J Future Commun
– volume: 33
  start-page: 04019024
  issue: 3
  year: 2019
  ident: CR18
  article-title: Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT Case histories
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001292
– volume: 14
  start-page: 785
  issue: 5
  year: 2014
  end-page: 809
  ident: CR8
  article-title: An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups
  publication-title: Smart Struct Syst Int J
– volume: 33
  start-page: 307
  issue: 2
  year: 2017
  end-page: 316
  ident: CR58
  article-title: Forecasting blast induced ground vibration developing a CART model
  publication-title: Eng Comput
– volume: 30
  start-page: 1015
  issue: 4
  year: 2018
  end-page: 1024
  ident: CR5
  article-title: Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting
  publication-title: Neural Comput Appl
– volume: 196
  start-page: 505
  year: 2018
  end-page: 516
  ident: CR64
  article-title: Data-driven modelling of the flocculation process on mineral processing tailings treatment
  publication-title: J Clean Prod
– year: 2017
  ident: CR45
  article-title: Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-017-1306-6
– volume: 34
  start-page: 241
  issue: 2
  year: 2018
  end-page: 251
  ident: CR23
  article-title: Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm
  publication-title: Eng Comput
– volume: 131
  start-page: 35
  year: 2019
  end-page: 41
  ident: CR65
  article-title: A novel nonlinear modeling for the prediction of blast-induced airblast using a modified conjugate FR method
  publication-title: Measurement
– year: 1995
  ident: CR29
  publication-title: The nature of statistical learning theory
– volume: 22
  start-page: 1637
  issue: 7–8
  year: 2013
  end-page: 1643
  ident: CR36
  article-title: Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network
  publication-title: Neural Comput Appl
– volume: 33
  start-page: 689
  issue: 3
  year: 2016
  end-page: 700
  ident: CR37
  article-title: A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration
  publication-title: Eng Comput
– volume: 38
  start-page: 783
  year: 2011
  end-page: 790
  ident: CR48
  article-title: Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system
  publication-title: Comput Geotech
– volume: 33
  start-page: 23
  issue: 1
  year: 2017
  end-page: 31
  ident: CR56
  article-title: Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model
  publication-title: Eng Comput
– volume: 76
  start-page: 27
  issue: 1
  year: 2017
  ident: CR59
  article-title: Development of a precise model for prediction of blast-induced flyrock using regression tree technique
  publication-title: Environ Earth Sci
– volume: 22
  start-page: 335
  issue: 3
  year: 2018
  end-page: 340
  ident: CR47
  article-title: Application of ANFIS technique on performance of C and L shaped angle shear connectors
  publication-title: Smart Struct Syst
– volume: 28
  start-page: 1043
  issue: 1
  year: 2017
  end-page: 1050
  ident: CR60
  article-title: Application of PSO to develop a powerful equation for prediction of flyrock due to blasting
  publication-title: Neural Comput Appl
– volume: 75
  start-page: 27
  issue: 1
  year: 2016
  end-page: 36
  ident: CR21
  article-title: Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm
  publication-title: Bull Eng Geol Environ
– volume: 33
  start-page: 349
  issue: 3
  year: 2017
  end-page: 359
  ident: CR57
  article-title: Developing a new hybrid-AI model to predict blast induced backbreak
  publication-title: Eng Comput
– volume: 50
  start-page: 2177
  issue: 12
  year: 2018
  end-page: 2191
  ident: CR14
  article-title: Multi-planar detection optimization algorithm for the interval charging structure of large-diameter longhole blasting design based on rock fragmentation aspects
  publication-title: Eng Optim
– volume: 46
  start-page: 1273
  year: 2009
  end-page: 1280
  ident: CR19
  article-title: Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic
  publication-title: Int J Rock Mech Min Sci
– volume: 32
  start-page: 705
  issue: 4
  year: 2016
  end-page: 715
  ident: CR38
  article-title: Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling
  publication-title: Eng Comput
– year: 2018
  ident: CR33
  article-title: An intelligent based-model role to simulate the factor of safe slope by support vector regression
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0677-4
– volume: 8
  start-page: 2111
  year: 2015
  end-page: 2120
  ident: CR3
  article-title: Using dimensional regression analysis to predict the mean particle size of fragmentation by blasting at the Sungun copper mine
  publication-title: Arab J Geosci
– volume: 118
  start-page: 505
  year: 2019
  end-page: 518
  ident: CR17
  article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories
  publication-title: Saf Sci
– volume: 50
  start-page: 629
  issue: 4
  year: 2012
  end-page: 644
  ident: CR32
  article-title: Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines
  publication-title: Saf Sci
– volume: 17
  start-page: 623
  issue: 5
  year: 2014
  end-page: 639
  ident: CR41
  article-title: Prediction of shear capacity of channel shear connectors using the ANFIS model
  publication-title: Steel Compos Struct J
– volume: 29
  start-page: 665
  issue: 3
  year: 2018
  end-page: 677
  ident: CR51
  article-title: A standard deviation based firefly algorithm for multi-objective optimization of WEDM process during machining of Indian RAFM steel
  publication-title: Neural Comput Appl
– volume: 30
  start-page: 207
  year: 1997
  end-page: 222
  ident: CR24
  article-title: A hierarchical analysis for rock engineering using artificial neural networks
  publication-title: Rock Mech Rock Eng
– ident: CR6
– year: 2016
  ident: CR10
  article-title: Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-016-1217-y
– ident: CR27
– volume: 24
  start-page: 774
  year: 1963
  end-page: 780
  ident: CR25
  article-title: Pattern recognition using generalized portrait method
  publication-title: Autom Remote Control
– volume: 23
  start-page: 809
  issue: 6
  year: 2013
  end-page: 813
  ident: CR20
  article-title: Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro fuzzy inference system (ANFIS)
  publication-title: Int J Min Sci Technol
– volume: 21
  start-page: 679
  issue: 3
  year: 2016
  end-page: 688
  ident: CR43
  article-title: Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength
  publication-title: Steel Compos Struct
– volume: 34
  start-page: 709
  issue: 4
  year: 2018
  end-page: 717
  ident: CR62
  article-title: Developing a least squares support vector machine for estimating the blast-induced flyrock
  publication-title: Eng Comput
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: CR40
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
– volume: 17
  start-page: 04016129
  issue: 6
  year: 2017
  ident: CR13
  article-title: Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel
  publication-title: Int J Geomech
– volume: 81
  start-page: 632
  year: 2018
  end-page: 659
  ident: CR16
  article-title: Evaluation method of rockburst: state-of-the-art literature review
  publication-title: Tunn Undergr Space Technol
– volume: 25
  start-page: 103
  year: 1964
  end-page: 109
  ident: CR26
  article-title: A note on one class of perceptrons
  publication-title: Autom Remote Control
– volume: 133
  start-page: 69
  year: 2019
  end-page: 79
  ident: CR68
  article-title: Towards intelligent mining for backfill: a genetic programming-based method for strength forecasting of cemented paste backfill
  publication-title: Miner Eng
– volume: 22
  start-page: 432
  year: 2012
  end-page: 441
  ident: CR2
  article-title: Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction
  publication-title: Trans Nonferrous Met Soc China
– volume: 11
  start-page: 203
  issue: 10
  year: 2007
  end-page: 224
  ident: CR31
  article-title: Support vector regression
  publication-title: Neural Inf Process Lett Rev
– volume: 33
  start-page: 951
  issue: 4
  year: 2017
  end-page: 959
  ident: CR54
  article-title: Estimation of blast-induced ground vibration through a soft computing framework
  publication-title: Eng Comput
– ident: CR34
– volume: 32
  start-page: 441
  issue: 3
  year: 2016
  end-page: 455
  ident: CR44
  article-title: Several non-linear models in estimating air-overpressure resulting from mine blasting
  publication-title: Eng Comput
– volume: 21
  start-page: 525
  year: 2018
  end-page: 530
  ident: CR15
  article-title: Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method
  publication-title: Comput Concrete
– volume: 7
  start-page: 45
  year: 2017
  end-page: 70
  ident: CR49
  article-title: A comparison of performance of several artificial intelligence methods for estimation of required rotational torque to operate horizontal directional drilling
  publication-title: Iran Univ Sci Technol
– ident: CR7
– volume: 30
  start-page: 04016003
  issue: 5
  year: 2016
  ident: CR53
  article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods
  publication-title: J Comput Civil Eng
– year: 2019
  ident: CR66
  article-title: Ensemble learning regression for estimating unconfined compressive strength of cemented paste backfill
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2918177
– volume: 75
  start-page: 808
  issue: 9
  year: 2016
  ident: CR4
  article-title: Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system
  publication-title: Environ Earth Sci
– year: 2015
  ident: CR42
  article-title: Spatial variability of rock depth using adaptive neuro-fuzzy inference system (ANFIS) and multivariate adaptive regression spline (MARS)
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3711-x
– volume: 35
  start-page: 1
  issue: 131
  year: 2019
  end-page: 8
  ident: CR67
  article-title: Developing an innovative soft computing scheme for prediction of air overpressure resulting from mine blasting using GMDH optimized by GA
  publication-title: Eng Comput
– volume: 22
  start-page: 3986
  issue: 19
  year: 2016
  end-page: 3997
  ident: CR11
  article-title: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining
  publication-title: J Vib Control
– volume: 32
  start-page: 705
  issue: 4
  year: 2016
  ident: 822_CR38
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0447-0
– volume: 34
  start-page: 241
  issue: 2
  year: 2018
  ident: 822_CR23
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0535-9
– volume: 33
  start-page: 173
  issue: 2
  year: 2017
  ident: 822_CR55
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0462-1
– volume: 15
  start-page: 551
  issue: 3
  year: 2018
  ident: 822_CR63
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-017-1395-y
– volume: 17
  start-page: 623
  issue: 5
  year: 2014
  ident: 822_CR41
  publication-title: Steel Compos Struct J
  doi: 10.12989/scs.2014.17.5.623
– volume-title: Estimation of dependences based on empirical data
  year: 1982
  ident: 822_CR28
– volume-title: Neural information processing systems
  year: 1997
  ident: 822_CR30
– year: 2016
  ident: 822_CR10
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-016-1217-y
– volume: 196
  start-page: 505
  year: 2018
  ident: 822_CR64
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.06.054
– volume: 22
  start-page: 3986
  issue: 19
  year: 2016
  ident: 822_CR11
  publication-title: J Vib Control
  doi: 10.1177/1077546314568172
– volume: 131
  start-page: 35
  year: 2019
  ident: 822_CR65
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.052
– volume: 22
  start-page: 432
  year: 2012
  ident: 822_CR2
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(11)61195-3
– volume: 20
  start-page: 79
  year: 2008
  ident: 822_CR50
  publication-title: Nat Inspired Metaheuristic Algorithms
– volume: 33
  start-page: 23
  issue: 1
  year: 2017
  ident: 822_CR56
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0453-2
– volume: 47
  start-page: 476
  issue: 3
  year: 2010
  ident: 822_CR1
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.09.008
– volume: 22
  start-page: 1637
  issue: 7–8
  year: 2013
  ident: 822_CR36
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0856-y
– ident: 822_CR39
– volume: 17
  start-page: 04016129
  issue: 6
  year: 2017
  ident: 822_CR13
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0000817
– volume: 75
  start-page: 808
  issue: 9
  year: 2016
  ident: 822_CR4
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5503-y
– volume: 7
  start-page: 45
  year: 2017
  ident: 822_CR49
  publication-title: Iran Univ Sci Technol
– year: 2019
  ident: 822_CR66
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2918177
– volume: 11
  start-page: 203
  issue: 10
  year: 2007
  ident: 822_CR31
  publication-title: Neural Inf Process Lett Rev
– volume: 33
  start-page: 951
  issue: 4
  year: 2017
  ident: 822_CR54
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0508-z
– volume: 76
  start-page: 27
  issue: 1
  year: 2017
  ident: 822_CR59
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-6335-5
– volume: 50
  start-page: 629
  issue: 4
  year: 2012
  ident: 822_CR32
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2011.08.065
– volume: 118
  start-page: 505
  year: 2019
  ident: 822_CR17
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2019.05.046
– volume: 29
  start-page: 665
  issue: 3
  year: 2018
  ident: 822_CR51
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2471-9
– volume: 2
  start-page: 359
  year: 1989
  ident: 822_CR40
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 34
  start-page: 709
  issue: 4
  year: 2018
  ident: 822_CR62
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0568-0
– volume: 30
  start-page: 207
  year: 1997
  ident: 822_CR24
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/BF01045717
– volume: 30
  start-page: 04016003
  issue: 5
  year: 2016
  ident: 822_CR53
  publication-title: J Comput Civil Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000553
– volume: 46
  start-page: 1273
  year: 2009
  ident: 822_CR19
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.05.005
– ident: 822_CR6
– volume: 79
  start-page: 291
  issue: 1
  year: 2015
  ident: 822_CR9
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1842-3
– year: 2018
  ident: 822_CR33
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0677-4
– volume: 33
  start-page: 307
  issue: 2
  year: 2017
  ident: 822_CR58
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0475-9
– volume: 30
  start-page: 1015
  issue: 4
  year: 2018
  ident: 822_CR5
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2746-1
– ident: 822_CR7
– volume: 25
  start-page: 103
  year: 1964
  ident: 822_CR26
  publication-title: Autom Remote Control
– year: 2015
  ident: 822_CR42
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3711-x
– volume: 2
  start-page: 266
  issue: 3
  year: 2013
  ident: 822_CR35
  publication-title: Int J Future Commun
  doi: 10.7763/IJFCC.2013.V2.165
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 822_CR29
  doi: 10.1007/978-1-4757-2440-0
– volume: 33
  start-page: 349
  issue: 3
  year: 2017
  ident: 822_CR57
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0477-7
– volume: 24
  start-page: 774
  year: 1963
  ident: 822_CR25
  publication-title: Autom Remote Control
– volume: 22
  start-page: 4083
  issue: 12
  year: 2018
  ident: 822_CR52
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2617-4
– ident: 822_CR27
– volume: 21
  start-page: 525
  year: 2018
  ident: 822_CR15
  publication-title: Comput Concrete
– volume: 33
  start-page: 689
  issue: 3
  year: 2016
  ident: 822_CR37
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0497-3
– volume: 28
  start-page: 1043
  issue: 1
  year: 2017
  ident: 822_CR60
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2434-1
– volume: 133
  start-page: 69
  year: 2019
  ident: 822_CR68
  publication-title: Miner Eng
  doi: 10.1016/j.mineng.2019.01.004
– volume: 75
  start-page: 27
  issue: 1
  year: 2016
  ident: 822_CR21
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0720-2
– volume: 60
  start-page: 471
  issue: 3
  year: 2016
  ident: 822_CR12
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2016.60.3.471
– volume: 33
  start-page: 04019024
  issue: 3
  year: 2019
  ident: 822_CR18
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001292
– volume: 32
  start-page: 441
  issue: 3
  year: 2016
  ident: 822_CR44
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0425-y
– year: 2017
  ident: 822_CR45
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-017-1306-6
– volume: 38
  start-page: 783
  year: 2011
  ident: 822_CR48
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2011.04.005
– volume: 110
  start-page: 199
  year: 2018
  ident: 822_CR61
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.08.004
– volume: 34
  start-page: 339
  issue: 2
  year: 2018
  ident: 822_CR22
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0544-8
– volume: 76
  start-page: 57
  year: 2017
  ident: 822_CR46
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-6306-x
– volume: 50
  start-page: 2177
  issue: 12
  year: 2018
  ident: 822_CR14
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2018.1439943
– volume: 23
  start-page: 809
  issue: 6
  year: 2013
  ident: 822_CR20
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2013.10.005
– volume: 35
  start-page: 1
  issue: 131
  year: 2019
  ident: 822_CR67
  publication-title: Eng Comput
– volume: 21
  start-page: 679
  issue: 3
  year: 2016
  ident: 822_CR43
  publication-title: Steel Compos Struct
  doi: 10.12989/scs.2016.21.3.679
– ident: 822_CR34
– volume: 81
  start-page: 632
  year: 2018
  ident: 822_CR16
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.08.029
– volume: 8
  start-page: 2111
  year: 2015
  ident: 822_CR3
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-013-1261-2
– volume: 22
  start-page: 335
  issue: 3
  year: 2018
  ident: 822_CR47
  publication-title: Smart Struct Syst
– volume: 14
  start-page: 785
  issue: 5
  year: 2014
  ident: 822_CR8
  publication-title: Smart Struct Syst Int J
  doi: 10.12989/sss.2014.14.5.785
SSID ssj0013009
Score 2.5285592
Snippet Accurately predicting the particle size distribution of a muck-pile after blasting is always an important subject for mining industry. Adaptive neuro-fuzzy...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 265
SubjectTerms Adaptive systems
Artificial neural networks
Blasting
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Fragmentation
Fuzzy logic
Fuzzy systems
Genetic algorithms
Heuristic methods
Math. Applications in Chemistry
Mathematical and Computational Engineering
Mining industry
Model accuracy
Original Article
Particle size
Particle size distribution
Performance evaluation
Prediction models
Root-mean-square errors
Support vector machines
Systems Theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHCgXE0oLmwA0skqw3dk7VghoKEqsKqNRbFH9ERcBuaNIDHPvLmfE6G0DQY-R8SBl75o098x7AMzu3MucWZZcXlKCYzAuTzL0gZEIprlXGK-4dfr_Mj0_lu7P5Wdxw62JZ5eATg6N2a8t75C8zqQrCxpQuHLbfBatG8elqlNC4CTvkgrWewM6ro-XJh_EcIdkUeaSKi7xyFdtmQvMcU7FwNl2IQHsukj9D04g3_zoiDZGnvAt3ImTExcbG9-CGX-3BboSPGBdntwe3f-MWvA9XJ2NLAI6c3rhu8PwHt2lhWS7EYlm-_Yj1yuGb4SJo43TYr7G94FOcHts4vbD7_NOjY6rdqJLFb6vx26X9IlpyLxgUx9EQIudq6gdwWh59en0souCCsDOpeuGkz2xuGuvzmZK2cXWRaM8Iq3aUt7GeDUf4Ji0oaZk3GaG7WhNEMpqMnCs_ewiT1XrlHwHqos6dVp5CsJHapoaQScpkZLVTtbR6Cunwrysb2chZFONrteVRDvapyD5VsE-VTOH59pl2w8Vx7d0HgwmruC67iryXlhSQVfHv4e0km8KLwerj8P8_9vj6t-3DrYxrYcLWzQFM-otL_4TATG-exhn7CzX87cM
  priority: 102
  providerName: ProQuest
Title Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting
URI https://link.springer.com/article/10.1007/s00366-019-00822-0
https://www.proquest.com/docview/2258484779
https://www.proquest.com/docview/2479576924
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB1Be4EDhQJiaVnNgRtY2mSd2DmmaLMFxKoCViqnKHYcFQG7qyY9wJEv74zX2QAqSJyixE4iZWzPe_HMG4DnNrEy5RTlOs2IoJjYCTNJnCBkQhTXKuMU5w6_W6SnS_nmPDkPSWFtH-3eb0n6lXqX7MbSKcx-M-FlygUR9f2EuDsHci3jfNg7mGwDOyLFgV2pCqkyNz_jd3c0YMw_tkW9tynuw70AEzHf2vUB3HKrQzgIkBHDhGzpUl-Vob92CHd_kRh8CD_PhswAHKS9cd3gxXfO1sKiyEW-KF5_wGpV47w_8SVyWuzWuLnkzZwON2GUYfv5h8OaFXdDsSx-WoXfruwXsaFVBn3hcTQEzDmo-hEsi9nHV6ci1F0QdipVJ2rpYpuaxrp0qqRt6iqbaMdAq6qJvnFZG3b0TZQRd0mamEBepQkpGU22TpWbPoa91XrlngDqrEprrRx5YiO1jQwBlIg1yapaVdLqEUT95y9tECXn2hhfy52csjdZSSYrvcnKyQhe7O7ZbCU5_tn7uLdqGaZnW9IipiX5ZZXd3CxVRjyMqOkIXvYDYWj--8ue_l_3I7gTc4iM_6NzDHvd5ZV7RhinM2O4rYv5GPbz-ae3MzqezBZn78d-oF8DpcPzfg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9RADLVKOQAHPgqIhQI-wAlGZLOzmckBoRWQ7tJ2hUQr9RYyk4lAwG5oUqFy5AfxG7FnJxtA0FuPUZKJEjv289h-Bnhkx1Ym3KJcJikFKCZ2wkRjJwiZUIhrlXGKe4f358n0UL45Gh9twM-uF4bLKjub6A11ubS8R_4sliolbEzhwov6q-CpUZxd7UZorNRi151-o5CteT57RfJ9HMfZ64OXUxGmCgg7kqoVpXSxTUxlXTJS0lZlkUbaMYwoSgpOeGgLu7GKovtYj6uYIEyhCQcYTW-SKDeidS_ARTkiT86d6dlOn7WIViUlQ8UlZYkKTTq-VY-JXzh2T4UnWRfRn46wR7d_JWS9n8uuw9UAUHGy0qgbsOEWW3AtgFUMpqDZgiu_MRnehB9v-wYE7BnEcVnhh1NuCsMsm4jJPJu9w2JR4k534CfxNNgusT7mnFGLdVBmbD5-d1gysW-YycWrFfjlxH4SNRkz9PPN0RD-59rtW3B4LoK4DZuL5cLdAdRpkZRaOXL4Rmo7NISDhkx9VpSqkFYPYNh969wG7nMewfE5X7M2e_nkJJ_cyyePBvBkfU-9Yv448-rtToR5sAJNTrZSS3L_Kv336bVKD-BpJ_X-9P8fdvfs1R7CpenB_l6-N5vv3oPLMVfh-E2jbdhsj0_cfYJRrXngdRfh_Xn_LL8ArvMnhA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVEJw4KOACBTYA5xgVcfZeNcHhAKtaShEEVCpN9f7YVEVElO7QuXIz-LXMbNZx4Cgtx4t22vZM559b3fmDcBjMzIioRJlm6RIUHTsuI5GjiMyQYprpHaSaoffTZPdffHmYHSwBj_bWhhKq2xjog_UdmFojXwrFjJFbIx0YasMaRGz7exF9ZVTBynaaW3baSxdZM-dfUP6Vj-fbKOtn8RxtvPx1S4PHQa4GQrZcCtcbBJdGpcMpTClLdJIOYIUhUWiQg1caEorkenHalTGCGcKhZhAK3yrRLohjnsJ1iWxoh6sv9yZzt53exjRMsFkICnBLJGhZMcX7pEMDDH5lHvJdR79OS12WPev7Vk_62U34FqAq2y89K-bsObmG3A9QFcWAkO9AVd_0zW8BT9mXTkC6_TE2aJkn86oRIxl2ZiPp9nkAyvmlr1uD3xfnpo1C1ad0A5Sw6rg2qw--u6YJZnf0KGLRivYl1NzzCsMbcx3O2ca2QBlct-G_QsxxR3ozRdzdxeYSovEKulw-tdCmYFGVDQgIbTCykIY1YdB-61zE5TQqSHH53yl4eztk6N9cm-fPOrD09U91VIH5NyrN1sT5iEm1DlGTiUQDMj036dXDt6HZ63Vu9P_f9i980d7BJfxR8nfTqZ79-FKTCk5fgVpE3rNyal7gJiq0Q-D8zI4vOj_5RfCaS0W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+hybrid+FFA-ANFIS+and+GA-ANFIS+models+to+predict+particle+size+distribution+of+a+muck-pile+after+blasting&rft.jtitle=Engineering+with+computers&rft.au=Zhou%2C+Jian&rft.au=Li%2C+Chuanqi&rft.au=Arslan%2C+Chelang+A.&rft.au=Hasanipanah%2C+Mahdi&rft.date=2021-01-01&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=37&rft.issue=1&rft.spage=265&rft.epage=274&rft_id=info:doi/10.1007%2Fs00366-019-00822-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00366_019_00822_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon