Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting
Accurately predicting the particle size distribution of a muck-pile after blasting is always an important subject for mining industry. Adaptive neuro-fuzzy inference system (ANFIS) has emerged as a synergic intelligent system. The main contribution of this paper is to optimize the premise and conseq...
Saved in:
Published in | Engineering with computers Vol. 37; no. 1; pp. 265 - 274 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.01.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurately predicting the particle size distribution of a muck-pile after blasting is always an important subject for mining industry. Adaptive neuro-fuzzy inference system (ANFIS) has emerged as a synergic intelligent system. The main contribution of this paper is to optimize the premise and consequent parameters of ANFIS by firefly algorithm (FFA) and genetic algorithm (GA). To the best of our knowledge, no research has been published that assesses FFA and GA with ANFIS for fragmentation prediction and no research has tested the efficiency of these models to predict the fragmentation in different time scales as of yet. To show the effectiveness of the proposed ANFIS-FFA and ANFIS-GA models, their modelling accuracy has been compared with ANFIS, support vector regression (SVR) and artificial neural network (ANN). Intelligence predictions of fragmentation by ANFIS-FFA, ANFIS-GA, ANFIS, SVR and ANN are compared with observed values of fragmentation available in 88 blasting event of two quarry mines, Iran. According to the results, both ANFIS-FFA and ANFIS-GA prediction models performed satisfactorily; however, the lowest root mean square error (RMSE) and the highest correlation of determination (
R
2
) values were obtained from ANFIS-GA model. The values of
R
2
and RMSE obtained from ANFIS-GA, ANFIS-FFA, ANFIS, SVR and ANN models were equal to (0.989, 0.974), (0.981, 1.249), (0.956, 1.591), (0.924, 2.016) and (0.948, 2.554), respectively. Consequently, the proposed ANFIS-GA model has the potential to be used for predicting aims on other fields. |
---|---|
AbstractList | Accurately predicting the particle size distribution of a muck-pile after blasting is always an important subject for mining industry. Adaptive neuro-fuzzy inference system (ANFIS) has emerged as a synergic intelligent system. The main contribution of this paper is to optimize the premise and consequent parameters of ANFIS by firefly algorithm (FFA) and genetic algorithm (GA). To the best of our knowledge, no research has been published that assesses FFA and GA with ANFIS for fragmentation prediction and no research has tested the efficiency of these models to predict the fragmentation in different time scales as of yet. To show the effectiveness of the proposed ANFIS-FFA and ANFIS-GA models, their modelling accuracy has been compared with ANFIS, support vector regression (SVR) and artificial neural network (ANN). Intelligence predictions of fragmentation by ANFIS-FFA, ANFIS-GA, ANFIS, SVR and ANN are compared with observed values of fragmentation available in 88 blasting event of two quarry mines, Iran. According to the results, both ANFIS-FFA and ANFIS-GA prediction models performed satisfactorily; however, the lowest root mean square error (RMSE) and the highest correlation of determination (R2) values were obtained from ANFIS-GA model. The values of R2 and RMSE obtained from ANFIS-GA, ANFIS-FFA, ANFIS, SVR and ANN models were equal to (0.989, 0.974), (0.981, 1.249), (0.956, 1.591), (0.924, 2.016) and (0.948, 2.554), respectively. Consequently, the proposed ANFIS-GA model has the potential to be used for predicting aims on other fields. Accurately predicting the particle size distribution of a muck-pile after blasting is always an important subject for mining industry. Adaptive neuro-fuzzy inference system (ANFIS) has emerged as a synergic intelligent system. The main contribution of this paper is to optimize the premise and consequent parameters of ANFIS by firefly algorithm (FFA) and genetic algorithm (GA). To the best of our knowledge, no research has been published that assesses FFA and GA with ANFIS for fragmentation prediction and no research has tested the efficiency of these models to predict the fragmentation in different time scales as of yet. To show the effectiveness of the proposed ANFIS-FFA and ANFIS-GA models, their modelling accuracy has been compared with ANFIS, support vector regression (SVR) and artificial neural network (ANN). Intelligence predictions of fragmentation by ANFIS-FFA, ANFIS-GA, ANFIS, SVR and ANN are compared with observed values of fragmentation available in 88 blasting event of two quarry mines, Iran. According to the results, both ANFIS-FFA and ANFIS-GA prediction models performed satisfactorily; however, the lowest root mean square error (RMSE) and the highest correlation of determination ( R 2 ) values were obtained from ANFIS-GA model. The values of R 2 and RMSE obtained from ANFIS-GA, ANFIS-FFA, ANFIS, SVR and ANN models were equal to (0.989, 0.974), (0.981, 1.249), (0.956, 1.591), (0.924, 2.016) and (0.948, 2.554), respectively. Consequently, the proposed ANFIS-GA model has the potential to be used for predicting aims on other fields. |
Author | Zhou, Jian Li, Chuanqi Bakhshandeh Amnieh, Hassan Hasanipanah, Mahdi Arslan, Chelang A. |
Author_xml | – sequence: 1 givenname: Jian surname: Zhou fullname: Zhou, Jian organization: School of Resources and Safety Engineering, Central South University, State Key Laboratory of Safety and Health for Metal Mines – sequence: 2 givenname: Chuanqi surname: Li fullname: Li, Chuanqi organization: School of Resources and Safety Engineering, Central South University – sequence: 3 givenname: Chelang A. surname: Arslan fullname: Arslan, Chelang A. organization: College of Engineering, Civil Engineering Department, Kirkuk University – sequence: 4 givenname: Mahdi orcidid: 0000-0001-7582-6745 surname: Hasanipanah fullname: Hasanipanah, Mahdi email: Hasanipanah.m@gmail.com, Hasanipanahmahdi@duytan.edu.vn organization: Institute of Research and Development, Duy Tan University – sequence: 5 givenname: Hassan surname: Bakhshandeh Amnieh fullname: Bakhshandeh Amnieh, Hassan organization: School of Mining, College of Engineering, University of Tehran |
BookMark | eNp9kc9LHTEQx0NR8Kn9BzwFPMdOfmySPT6kzwqiBe05ZLOJjd232SZZwR77l3frqwg9vNMw8PnMDPM9RgdjGj1CZxQuKID6VAC4lARoSwA0YwQ-oBUVvCGNlPwArYAqRUBKdYSOS3kCoBygXaHfX30OKW_t6Dz2z3aYbY1pxCng7y9djj3ebNZkfbu5vsd27PHVW7NNvR8KrglP2ffRVTzZXKMbPC7xl8d9LDXHbn6bZvF2dj_IFBfAhuoz7gZbahwfT9FhsEPxH__VE_Rt8_nh8gu5ubu6vlzfEMeFqqQXnjnZBeclV8KF3ragfSMp2B4oKAaCcU0DbQXTTWCyAaslZZ0WHZPK8xN0vps75fRz9qWapzTncVlpmFBto2TLxF6KNVpooVS7UHpHuZxKyT4YF-vr52q2cTAUzN9czC4Xs-RiXnMxsKjsP3XKcWvzy36J76SywOOjz-9X7bH-AEYSoDQ |
CitedBy_id | crossref_primary_10_1038_s41598_021_00279_6 crossref_primary_10_1007_s11053_019_09603_4 crossref_primary_10_1007_s00366_020_01105_9 crossref_primary_10_3390_app11041922 crossref_primary_10_1007_s11053_020_09623_5 crossref_primary_10_1007_s10462_023_10636_8 crossref_primary_10_1016_j_jocs_2024_102266 crossref_primary_10_1017_S089006042400009X crossref_primary_10_1007_s10064_021_02460_7 crossref_primary_10_3390_w16202946 crossref_primary_10_1007_s00366_020_01131_7 crossref_primary_10_1016_j_asoc_2024_112334 crossref_primary_10_3390_su16124930 crossref_primary_10_1007_s11004_024_10174_1 crossref_primary_10_1007_s00170_024_13681_x crossref_primary_10_1007_s42965_025_00367_y crossref_primary_10_1515_eng_2022_0566 crossref_primary_10_1007_s00521_021_06162_9 crossref_primary_10_1038_s41598_020_80207_2 crossref_primary_10_1007_s00366_019_00868_0 crossref_primary_10_1177_03093247241240832 crossref_primary_10_1016_j_asoc_2023_110808 crossref_primary_10_1007_s00366_020_01014_x crossref_primary_10_1007_s00521_020_04822_w crossref_primary_10_1038_s41598_020_79913_8 crossref_primary_10_1007_s12517_024_11979_4 crossref_primary_10_1007_s41660_023_00313_2 crossref_primary_10_1080_15623599_2023_2266676 crossref_primary_10_1007_s10462_022_10140_5 crossref_primary_10_1007_s11356_022_19683_0 crossref_primary_10_3390_su15054230 crossref_primary_10_1007_s00366_021_01329_3 crossref_primary_10_1016_j_engstruct_2024_118756 crossref_primary_10_3390_en16072958 crossref_primary_10_1007_s10706_023_02594_3 crossref_primary_10_3390_en17051138 crossref_primary_10_1016_j_jer_2023_09_016 crossref_primary_10_3390_min11060601 crossref_primary_10_1007_s11053_022_10082_3 crossref_primary_10_1007_s00366_019_00895_x crossref_primary_10_1007_s00366_020_00977_1 crossref_primary_10_1016_j_ecoinf_2022_101780 crossref_primary_10_1080_10255842_2024_2362863 crossref_primary_10_1155_2021_5599624 crossref_primary_10_1007_s12517_022_09568_4 crossref_primary_10_1007_s13369_020_04587_3 crossref_primary_10_1007_s11771_021_4619_8 crossref_primary_10_1007_s11053_021_09914_5 crossref_primary_10_1177_16878132231196408 crossref_primary_10_1007_s00521_020_05197_8 crossref_primary_10_1016_j_jmsy_2024_04_025 crossref_primary_10_5937_tehnika2204439V crossref_primary_10_1007_s00366_020_01085_w crossref_primary_10_3390_ma13143137 crossref_primary_10_1007_s12665_021_10049_2 crossref_primary_10_1007_s00366_020_00937_9 crossref_primary_10_1007_s42461_022_00713_x crossref_primary_10_1088_1402_4896_ad05ae crossref_primary_10_1140_epjp_s13360_022_02518_9 crossref_primary_10_1007_s00366_020_01230_5 crossref_primary_10_1016_j_jrmge_2021_07_013 crossref_primary_10_1007_s42461_024_01064_5 crossref_primary_10_1108_EC_03_2020_0150 crossref_primary_10_1016_j_trgeo_2024_101288 crossref_primary_10_1007_s00366_021_01381_z crossref_primary_10_1016_j_chemosphere_2019_125450 crossref_primary_10_4028_p_4q7MQr crossref_primary_10_1007_s00366_021_01552_y crossref_primary_10_1016_j_measurement_2021_110552 crossref_primary_10_1007_s00366_021_01418_3 crossref_primary_10_1007_s00366_020_01173_x crossref_primary_10_1016_j_chemolab_2024_105093 crossref_primary_10_1021_acsomega_0c03225 crossref_primary_10_3390_app13116655 crossref_primary_10_1007_s13202_021_01405_w crossref_primary_10_1016_j_asoc_2020_106486 crossref_primary_10_1007_s00366_020_01059_y crossref_primary_10_1038_s41598_020_79689_x crossref_primary_10_1007_s00366_020_00963_7 crossref_primary_10_1007_s00366_020_01207_4 crossref_primary_10_1007_s12524_024_02027_5 crossref_primary_10_1080_07373937_2023_2271557 crossref_primary_10_3897_aiep_55_140634 crossref_primary_10_1007_s00366_020_01241_2 crossref_primary_10_1016_j_mlwa_2023_100517 crossref_primary_10_3390_machines10070567 crossref_primary_10_1007_s00366_021_01374_y crossref_primary_10_1155_2020_3418904 crossref_primary_10_1155_2022_3345368 crossref_primary_10_1080_15376494_2022_2051780 crossref_primary_10_3390_ma16031286 crossref_primary_10_1007_s00521_021_05717_0 crossref_primary_10_1016_j_jnoncrysol_2021_121175 crossref_primary_10_1016_j_displa_2024_102905 |
Cites_doi | 10.1061/(ASCE)CF.1943-5509.0001292 10.1007/s10845-017-1306-6 10.1007/s00366-018-0677-4 10.1007/s10845-016-1217-y 10.1109/access.2019.2918177 10.1007/s12665-014-3711-x 10.1007/s00366-016-0447-0 10.1007/s00366-017-0535-9 10.1007/s00366-016-0462-1 10.1007/s13762-017-1395-y 10.12989/scs.2014.17.5.623 10.1016/j.jclepro.2018.06.054 10.1177/1077546314568172 10.1016/j.measurement.2018.08.052 10.1016/S1003-6326(11)61195-3 10.1007/s00366-016-0453-2 10.1016/j.ijrmms.2009.09.008 10.1007/s00521-012-0856-y 10.1061/(ASCE)GM.1943-5622.0000817 10.1007/s12665-016-5503-y 10.1007/s00366-017-0508-z 10.1007/s12665-016-6335-5 10.1016/j.ssci.2011.08.065 10.1016/j.ssci.2019.05.046 10.1007/s00521-016-2471-9 10.1016/0893-6080(89)90020-8 10.1007/s00366-017-0568-0 10.1007/BF01045717 10.1061/(ASCE)CP.1943-5487.0000553 10.1016/j.ijrmms.2009.05.005 10.1007/s11069-015-1842-3 10.1007/s00366-016-0475-9 10.1007/s00521-016-2746-1 10.7763/IJFCC.2013.V2.165 10.1007/978-1-4757-2440-0 10.1007/s00366-016-0477-7 10.1007/s00500-017-2617-4 10.1007/s00366-016-0497-3 10.1007/s00521-016-2434-1 10.1016/j.mineng.2019.01.004 10.1007/s10064-015-0720-2 10.12989/sem.2016.60.3.471 10.1007/s00366-015-0425-y 10.1016/j.compgeo.2011.04.005 10.1016/j.ijrmms.2018.08.004 10.1007/s00366-017-0544-8 10.1007/s12665-016-6306-x 10.1080/0305215X.2018.1439943 10.1016/j.ijmst.2013.10.005 10.12989/scs.2016.21.3.679 10.1016/j.tust.2018.08.029 10.1007/s12517-013-1261-2 10.12989/sss.2014.14.5.785 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved. Springer-Verlag London Ltd., part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved. – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s00366-019-00822-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1435-5663 |
EndPage | 274 |
ExternalDocumentID | 10_1007_s00366_019_00822_0 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c347t-d4e2c6bfce6374cfda908e5610ad01072042381f194285f2650a8612b84b267e3 |
IEDL.DBID | U2A |
ISSN | 0177-0667 |
IngestDate | Wed Aug 13 10:48:51 EDT 2025 Wed Aug 13 09:39:55 EDT 2025 Tue Jul 01 04:18:14 EDT 2025 Thu Apr 24 22:55:30 EDT 2025 Fri Feb 21 02:49:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ANFIS Blasting Genetic algorithm Firefly algorithm Rock fragmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-d4e2c6bfce6374cfda908e5610ad01072042381f194285f2650a8612b84b267e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7582-6745 |
PQID | 2258484779 |
PQPubID | 326339 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2479576924 proquest_journals_2258484779 crossref_citationtrail_10_1007_s00366_019_00822_0 crossref_primary_10_1007_s00366_019_00822_0 springer_journals_10_1007_s00366_019_00822_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationSubtitle | An International Journal for Simulation-Based Engineering |
PublicationTitle | Engineering with computers |
PublicationTitleAbbrev | Engineering with Computers |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Ebrahimi, Monjezi, Khalesi, Armaghani (CR21) 2016; 75 Karami, Afiuni-Zadeh (CR20) 2013; 23 Wang, Shi, Zhou, Qiu (CR14) 2018; 50 Majumder, Das, Das (CR51) 2018; 29 Lu, Zhou, Ding, Shi, Luan, Li (CR66) 2019 Taheri, Hasanipanah, Bagheri Golzar, Majid (CR37) 2016; 33 CR39 Hasanipanah, Armaghani, Monjezi, Shams (CR4) 2016; 75 Samui, Kim, Viswanathan (CR42) 2015 CR34 Hasanipanah, Golzar, Larki, Maryaki, Ghahremanians (CR54) 2017; 33 Hasanipanah, Faradonbeh, Amnieh, Armaghani, Monjezi (CR58) 2017; 33 Vapnik (CR28) 1982 Hasanipanah (CR63) 2018; 15 Vapnik (CR29) 1995 Fattahi, Bayatzadehfard (CR49) 2017; 7 Yang, Zang (CR24) 1997; 30 Monjezi, Bahrami, Varjani (CR1) 2010; 47 Monjezi, Rezaei, Yazdian Varjani (CR19) 2009; 46 Vapnik, Golowich, Smola, Mozer, Jordan, Petsche (CR30) 1997 Vapnik, Chervonenkis (CR26) 1964; 25 Qi, Fourie, Chen, Tang, Zhang, Gao (CR64) 2018; 196 CR6 Zhou, Li, Yang, Wang, Shi, Yao, Mitri (CR17) 2019; 118 Monjezi, Hasanipanah, Khandelwal (CR36) 2013; 22 Wang, Shi, Zhou (CR61) 2018; 110 CR7 Mohammadhassani, Nezamabadi-Pour, Suhatril, Shariati (CR8) 2014; 14 Toghroli, Mohammadhassani, Shariati, Suhatril, Ibrahim, Sulong (CR41) 2014; 17 Koçaslan, Yüksek, Görgülü, Arpaz (CR46) 2017; 76 Jalalifar (CR48) 2011; 38 Vapnik, Lerner (CR25) 1963; 24 Hasanipanah, Armaghani, Khamesi, Amnieh, Ghoraba (CR44) 2016; 32 Keshtegar, Hasanipanah, Bakhshayeshi, Sarafraz (CR65) 2019; 131 Basak, Pal, Patranabis (CR31) 2007; 11 Bakhtavar, Khoshrou, Badroddin (CR3) 2015; 8 Hasanipanah, Naderi, Kashir, Noorani, Aaq Qaleh (CR55) 2017; 33 Zhou, Li, Mitri (CR9) 2015; 79 Zhou, Li, Mitri (CR53) 2016; 30 Qi, Tang, Dong, Chen, Fourie, Liu (CR68) 2019; 133 Kazemivash, Moghaddam (CR52) 2018; 22 Toghroli (CR10) 2016 Mansouri (CR45) 2017 Safa (CR43) 2016; 21 Yang (CR50) 2008; 20 Shi, Zhou, Wu, Huang, Wei (CR2) 2012; 22 Gao, Alqahtani, Mubarakali, Mavaluru, Khalafi (CR67) 2019; 35 Hasanipanah, Shahnazar, Amnieh, Armaghani (CR56) 2017; 33 Zhou, Li, Mitri (CR16) 2018; 81 Hasanipanah, Shahnazar, Arab, Golzar, Amiri (CR57) 2017; 33 Hasanipanah, Bakhshandeh Amnieh, Arab, Zamzam (CR5) 2018; 30 Toghroli (CR15) 2018; 21 Hasanipanah, Armaghani, Amnieh, Majid, Tahir (CR60) 2017; 28 Hornik, Stinchcombe, White (CR40) 1989; 2 Mansouri (CR12) 2016; 60 Hasanipanah, Noorian-Bidgoli, Armaghani, Khamesi (CR38) 2016; 32 Sedghi (CR47) 2018; 22 Rad, Hasanipanah, Rezaei, Eghlim (CR62) 2018; 34 Zhou, Li, Shi (CR32) 2012; 50 Zhou, Shi, Du, Qiu, Li, Mitri (CR13) 2017; 17 Asl, Monjezi, Hamidi, Armaghani (CR23) 2018; 34 CR27 Zhou, Li, Wang, Chen, Shi, Jiang (CR18) 2019; 33 Sari (CR33) 2018 Gao, Karbasi, Hasanipanah, Zhang, Guo (CR22) 2018; 34 Hasanipanah, Faradonbeh, Armaghani, Amnieh, Khandelwal (CR59) 2017; 76 Zhou, Shi, Li (CR11) 2016; 22 Anandhi, Chezian (CR35) 2013; 2 M Hasanipanah (822_CR44) 2016; 32 M Hasanipanah (822_CR55) 2017; 33 J Zhou (822_CR11) 2016; 22 J Zhou (822_CR17) 2019; 118 P Samui (822_CR42) 2015 HN Rad (822_CR62) 2018; 34 A Majumder (822_CR51) 2018; 29 822_CR34 J Zhou (822_CR16) 2018; 81 D Basak (822_CR31) 2007; 11 V Vapnik (822_CR26) 1964; 25 J Zhou (822_CR18) 2019; 33 822_CR39 Toghroli (822_CR15) 2018; 21 M Hasanipanah (822_CR4) 2016; 75 A Karami (822_CR20) 2013; 23 J Zhou (822_CR9) 2015; 79 V Vapnik (822_CR29) 1995 M Hasanipanah (822_CR54) 2017; 33 J Zhou (822_CR13) 2017; 17 M Safa (822_CR43) 2016; 21 M Monjezi (822_CR1) 2010; 47 M Hasanipanah (822_CR58) 2017; 33 V Vapnik (822_CR30) 1997 A Koçaslan (822_CR46) 2017; 76 Y Sedghi (822_CR47) 2018; 22 B Kazemivash (822_CR52) 2018; 22 J Zhou (822_CR53) 2016; 30 XS Yang (822_CR50) 2008; 20 XZ Shi (822_CR2) 2012; 22 K Hornik (822_CR40) 1989; 2 B Keshtegar (822_CR65) 2019; 131 E Bakhtavar (822_CR3) 2015; 8 822_CR27 C Qi (822_CR68) 2019; 133 M Mohammadhassani (822_CR8) 2014; 14 H Jalalifar (822_CR48) 2011; 38 M Hasanipanah (822_CR60) 2017; 28 W Gao (822_CR67) 2019; 35 I Mansouri (822_CR45) 2017 V Vapnik (822_CR25) 1963; 24 K Taheri (822_CR37) 2016; 33 J Zhou (822_CR32) 2012; 50 M Hasanipanah (822_CR57) 2017; 33 PF Asl (822_CR23) 2018; 34 X Lu (822_CR66) 2019 M Hasanipanah (822_CR38) 2016; 32 M Hasanipanah (822_CR5) 2018; 30 C Qi (822_CR64) 2018; 196 E Ebrahimi (822_CR21) 2016; 75 M Wang (822_CR14) 2018; 50 Y Yang (822_CR24) 1997; 30 V Anandhi (822_CR35) 2013; 2 V Vapnik (822_CR28) 1982 M Hasanipanah (822_CR63) 2018; 15 A Toghroli (822_CR10) 2016 M Monjezi (822_CR19) 2009; 46 W Gao (822_CR22) 2018; 34 M Hasanipanah (822_CR59) 2017; 76 PA Sari (822_CR33) 2018 A Toghroli (822_CR41) 2014; 17 M Monjezi (822_CR36) 2013; 22 M Wang (822_CR61) 2018; 110 H Fattahi (822_CR49) 2017; 7 822_CR6 M Hasanipanah (822_CR56) 2017; 33 822_CR7 I Mansouri (822_CR12) 2016; 60 |
References_xml | – volume: 33 start-page: 173 issue: 2 year: 2017 end-page: 179 ident: CR55 article-title: Prediction of blast produced ground vibration using particle swarm optimization publication-title: Eng Comput – volume: 15 start-page: 551 issue: 3 year: 2018 end-page: 560 ident: CR63 article-title: Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system publication-title: Int J Environ Sci Technol – volume: 79 start-page: 291 issue: 1 year: 2015 end-page: 316 ident: CR9 article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction publication-title: Nat Hazards – volume: 76 start-page: 57 year: 2017 ident: CR46 article-title: Evaluation of blast-induced ground vibrations in open-pit mines by using adaptive neuro-fuzzy inference systems publication-title: Environ Earth Sci – year: 1997 ident: CR30 article-title: Support vector method for function approximation, regression estimation, and signal processing publication-title: Neural information processing systems – year: 1982 ident: CR28 publication-title: Estimation of dependences based on empirical data – volume: 20 start-page: 79 year: 2008 end-page: 90 ident: CR50 article-title: Firefly algorithm publication-title: Nat Inspired Metaheuristic Algorithms – volume: 60 start-page: 471 issue: 3 year: 2016 end-page: 488 ident: CR12 article-title: Strength prediction of rotary brace damper using MLR and MARS publication-title: Struct Eng Mech – ident: CR39 – volume: 110 start-page: 199 year: 2018 end-page: 209 ident: CR61 article-title: Charge design scheme optimization for ring blasting based on the developed Scaled Heelan model publication-title: Int J Rock Mech Min Sci – volume: 47 start-page: 476 issue: 3 year: 2010 end-page: 480 ident: CR1 article-title: Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks publication-title: Int J Rock Mech Min Sci – volume: 22 start-page: 4083 issue: 12 year: 2018 end-page: 4098 ident: CR52 article-title: A predictive model-based image watermarking scheme using regression tree and firefly algorithm publication-title: Soft Comput – volume: 34 start-page: 339 issue: 2 year: 2018 end-page: 345 ident: CR22 article-title: Developing GPR model for forecasting the rock fragmentation in surface mines publication-title: Eng Comput – volume: 2 start-page: 266 issue: 3 year: 2013 ident: CR35 article-title: Support vector regression to forecast demand and supply Pulpwood publication-title: Int J Future Commun – volume: 33 start-page: 04019024 issue: 3 year: 2019 ident: CR18 article-title: Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT Case histories publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0001292 – volume: 14 start-page: 785 issue: 5 year: 2014 end-page: 809 ident: CR8 article-title: An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups publication-title: Smart Struct Syst Int J – volume: 33 start-page: 307 issue: 2 year: 2017 end-page: 316 ident: CR58 article-title: Forecasting blast induced ground vibration developing a CART model publication-title: Eng Comput – volume: 30 start-page: 1015 issue: 4 year: 2018 end-page: 1024 ident: CR5 article-title: Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting publication-title: Neural Comput Appl – volume: 196 start-page: 505 year: 2018 end-page: 516 ident: CR64 article-title: Data-driven modelling of the flocculation process on mineral processing tailings treatment publication-title: J Clean Prod – year: 2017 ident: CR45 article-title: Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique publication-title: J Intell Manuf doi: 10.1007/s10845-017-1306-6 – volume: 34 start-page: 241 issue: 2 year: 2018 end-page: 251 ident: CR23 article-title: Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm publication-title: Eng Comput – volume: 131 start-page: 35 year: 2019 end-page: 41 ident: CR65 article-title: A novel nonlinear modeling for the prediction of blast-induced airblast using a modified conjugate FR method publication-title: Measurement – year: 1995 ident: CR29 publication-title: The nature of statistical learning theory – volume: 22 start-page: 1637 issue: 7–8 year: 2013 end-page: 1643 ident: CR36 article-title: Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network publication-title: Neural Comput Appl – volume: 33 start-page: 689 issue: 3 year: 2016 end-page: 700 ident: CR37 article-title: A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration publication-title: Eng Comput – volume: 38 start-page: 783 year: 2011 end-page: 790 ident: CR48 article-title: Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system publication-title: Comput Geotech – volume: 33 start-page: 23 issue: 1 year: 2017 end-page: 31 ident: CR56 article-title: Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model publication-title: Eng Comput – volume: 76 start-page: 27 issue: 1 year: 2017 ident: CR59 article-title: Development of a precise model for prediction of blast-induced flyrock using regression tree technique publication-title: Environ Earth Sci – volume: 22 start-page: 335 issue: 3 year: 2018 end-page: 340 ident: CR47 article-title: Application of ANFIS technique on performance of C and L shaped angle shear connectors publication-title: Smart Struct Syst – volume: 28 start-page: 1043 issue: 1 year: 2017 end-page: 1050 ident: CR60 article-title: Application of PSO to develop a powerful equation for prediction of flyrock due to blasting publication-title: Neural Comput Appl – volume: 75 start-page: 27 issue: 1 year: 2016 end-page: 36 ident: CR21 article-title: Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm publication-title: Bull Eng Geol Environ – volume: 33 start-page: 349 issue: 3 year: 2017 end-page: 359 ident: CR57 article-title: Developing a new hybrid-AI model to predict blast induced backbreak publication-title: Eng Comput – volume: 50 start-page: 2177 issue: 12 year: 2018 end-page: 2191 ident: CR14 article-title: Multi-planar detection optimization algorithm for the interval charging structure of large-diameter longhole blasting design based on rock fragmentation aspects publication-title: Eng Optim – volume: 46 start-page: 1273 year: 2009 end-page: 1280 ident: CR19 article-title: Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic publication-title: Int J Rock Mech Min Sci – volume: 32 start-page: 705 issue: 4 year: 2016 end-page: 715 ident: CR38 article-title: Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling publication-title: Eng Comput – year: 2018 ident: CR33 article-title: An intelligent based-model role to simulate the factor of safe slope by support vector regression publication-title: Eng Comput doi: 10.1007/s00366-018-0677-4 – volume: 8 start-page: 2111 year: 2015 end-page: 2120 ident: CR3 article-title: Using dimensional regression analysis to predict the mean particle size of fragmentation by blasting at the Sungun copper mine publication-title: Arab J Geosci – volume: 118 start-page: 505 year: 2019 end-page: 518 ident: CR17 article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories publication-title: Saf Sci – volume: 50 start-page: 629 issue: 4 year: 2012 end-page: 644 ident: CR32 article-title: Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines publication-title: Saf Sci – volume: 17 start-page: 623 issue: 5 year: 2014 end-page: 639 ident: CR41 article-title: Prediction of shear capacity of channel shear connectors using the ANFIS model publication-title: Steel Compos Struct J – volume: 29 start-page: 665 issue: 3 year: 2018 end-page: 677 ident: CR51 article-title: A standard deviation based firefly algorithm for multi-objective optimization of WEDM process during machining of Indian RAFM steel publication-title: Neural Comput Appl – volume: 30 start-page: 207 year: 1997 end-page: 222 ident: CR24 article-title: A hierarchical analysis for rock engineering using artificial neural networks publication-title: Rock Mech Rock Eng – ident: CR6 – year: 2016 ident: CR10 article-title: Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam publication-title: J Intell Manuf doi: 10.1007/s10845-016-1217-y – ident: CR27 – volume: 24 start-page: 774 year: 1963 end-page: 780 ident: CR25 article-title: Pattern recognition using generalized portrait method publication-title: Autom Remote Control – volume: 23 start-page: 809 issue: 6 year: 2013 end-page: 813 ident: CR20 article-title: Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro fuzzy inference system (ANFIS) publication-title: Int J Min Sci Technol – volume: 21 start-page: 679 issue: 3 year: 2016 end-page: 688 ident: CR43 article-title: Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength publication-title: Steel Compos Struct – volume: 34 start-page: 709 issue: 4 year: 2018 end-page: 717 ident: CR62 article-title: Developing a least squares support vector machine for estimating the blast-induced flyrock publication-title: Eng Comput – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: CR40 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw – volume: 17 start-page: 04016129 issue: 6 year: 2017 ident: CR13 article-title: Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel publication-title: Int J Geomech – volume: 81 start-page: 632 year: 2018 end-page: 659 ident: CR16 article-title: Evaluation method of rockburst: state-of-the-art literature review publication-title: Tunn Undergr Space Technol – volume: 25 start-page: 103 year: 1964 end-page: 109 ident: CR26 article-title: A note on one class of perceptrons publication-title: Autom Remote Control – volume: 133 start-page: 69 year: 2019 end-page: 79 ident: CR68 article-title: Towards intelligent mining for backfill: a genetic programming-based method for strength forecasting of cemented paste backfill publication-title: Miner Eng – volume: 22 start-page: 432 year: 2012 end-page: 441 ident: CR2 article-title: Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction publication-title: Trans Nonferrous Met Soc China – volume: 11 start-page: 203 issue: 10 year: 2007 end-page: 224 ident: CR31 article-title: Support vector regression publication-title: Neural Inf Process Lett Rev – volume: 33 start-page: 951 issue: 4 year: 2017 end-page: 959 ident: CR54 article-title: Estimation of blast-induced ground vibration through a soft computing framework publication-title: Eng Comput – ident: CR34 – volume: 32 start-page: 441 issue: 3 year: 2016 end-page: 455 ident: CR44 article-title: Several non-linear models in estimating air-overpressure resulting from mine blasting publication-title: Eng Comput – volume: 21 start-page: 525 year: 2018 end-page: 530 ident: CR15 article-title: Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method publication-title: Comput Concrete – volume: 7 start-page: 45 year: 2017 end-page: 70 ident: CR49 article-title: A comparison of performance of several artificial intelligence methods for estimation of required rotational torque to operate horizontal directional drilling publication-title: Iran Univ Sci Technol – ident: CR7 – volume: 30 start-page: 04016003 issue: 5 year: 2016 ident: CR53 article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods publication-title: J Comput Civil Eng – year: 2019 ident: CR66 article-title: Ensemble learning regression for estimating unconfined compressive strength of cemented paste backfill publication-title: IEEE Access doi: 10.1109/access.2019.2918177 – volume: 75 start-page: 808 issue: 9 year: 2016 ident: CR4 article-title: Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system publication-title: Environ Earth Sci – year: 2015 ident: CR42 article-title: Spatial variability of rock depth using adaptive neuro-fuzzy inference system (ANFIS) and multivariate adaptive regression spline (MARS) publication-title: Environ Earth Sci doi: 10.1007/s12665-014-3711-x – volume: 35 start-page: 1 issue: 131 year: 2019 end-page: 8 ident: CR67 article-title: Developing an innovative soft computing scheme for prediction of air overpressure resulting from mine blasting using GMDH optimized by GA publication-title: Eng Comput – volume: 22 start-page: 3986 issue: 19 year: 2016 end-page: 3997 ident: CR11 article-title: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining publication-title: J Vib Control – volume: 32 start-page: 705 issue: 4 year: 2016 ident: 822_CR38 publication-title: Eng Comput doi: 10.1007/s00366-016-0447-0 – volume: 34 start-page: 241 issue: 2 year: 2018 ident: 822_CR23 publication-title: Eng Comput doi: 10.1007/s00366-017-0535-9 – volume: 33 start-page: 173 issue: 2 year: 2017 ident: 822_CR55 publication-title: Eng Comput doi: 10.1007/s00366-016-0462-1 – volume: 15 start-page: 551 issue: 3 year: 2018 ident: 822_CR63 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-017-1395-y – volume: 17 start-page: 623 issue: 5 year: 2014 ident: 822_CR41 publication-title: Steel Compos Struct J doi: 10.12989/scs.2014.17.5.623 – volume-title: Estimation of dependences based on empirical data year: 1982 ident: 822_CR28 – volume-title: Neural information processing systems year: 1997 ident: 822_CR30 – year: 2016 ident: 822_CR10 publication-title: J Intell Manuf doi: 10.1007/s10845-016-1217-y – volume: 196 start-page: 505 year: 2018 ident: 822_CR64 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.06.054 – volume: 22 start-page: 3986 issue: 19 year: 2016 ident: 822_CR11 publication-title: J Vib Control doi: 10.1177/1077546314568172 – volume: 131 start-page: 35 year: 2019 ident: 822_CR65 publication-title: Measurement doi: 10.1016/j.measurement.2018.08.052 – volume: 22 start-page: 432 year: 2012 ident: 822_CR2 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(11)61195-3 – volume: 20 start-page: 79 year: 2008 ident: 822_CR50 publication-title: Nat Inspired Metaheuristic Algorithms – volume: 33 start-page: 23 issue: 1 year: 2017 ident: 822_CR56 publication-title: Eng Comput doi: 10.1007/s00366-016-0453-2 – volume: 47 start-page: 476 issue: 3 year: 2010 ident: 822_CR1 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2009.09.008 – volume: 22 start-page: 1637 issue: 7–8 year: 2013 ident: 822_CR36 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0856-y – ident: 822_CR39 – volume: 17 start-page: 04016129 issue: 6 year: 2017 ident: 822_CR13 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0000817 – volume: 75 start-page: 808 issue: 9 year: 2016 ident: 822_CR4 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5503-y – volume: 7 start-page: 45 year: 2017 ident: 822_CR49 publication-title: Iran Univ Sci Technol – year: 2019 ident: 822_CR66 publication-title: IEEE Access doi: 10.1109/access.2019.2918177 – volume: 11 start-page: 203 issue: 10 year: 2007 ident: 822_CR31 publication-title: Neural Inf Process Lett Rev – volume: 33 start-page: 951 issue: 4 year: 2017 ident: 822_CR54 publication-title: Eng Comput doi: 10.1007/s00366-017-0508-z – volume: 76 start-page: 27 issue: 1 year: 2017 ident: 822_CR59 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-6335-5 – volume: 50 start-page: 629 issue: 4 year: 2012 ident: 822_CR32 publication-title: Saf Sci doi: 10.1016/j.ssci.2011.08.065 – volume: 118 start-page: 505 year: 2019 ident: 822_CR17 publication-title: Saf Sci doi: 10.1016/j.ssci.2019.05.046 – volume: 29 start-page: 665 issue: 3 year: 2018 ident: 822_CR51 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2471-9 – volume: 2 start-page: 359 year: 1989 ident: 822_CR40 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 34 start-page: 709 issue: 4 year: 2018 ident: 822_CR62 publication-title: Eng Comput doi: 10.1007/s00366-017-0568-0 – volume: 30 start-page: 207 year: 1997 ident: 822_CR24 publication-title: Rock Mech Rock Eng doi: 10.1007/BF01045717 – volume: 30 start-page: 04016003 issue: 5 year: 2016 ident: 822_CR53 publication-title: J Comput Civil Eng doi: 10.1061/(ASCE)CP.1943-5487.0000553 – volume: 46 start-page: 1273 year: 2009 ident: 822_CR19 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2009.05.005 – ident: 822_CR6 – volume: 79 start-page: 291 issue: 1 year: 2015 ident: 822_CR9 publication-title: Nat Hazards doi: 10.1007/s11069-015-1842-3 – year: 2018 ident: 822_CR33 publication-title: Eng Comput doi: 10.1007/s00366-018-0677-4 – volume: 33 start-page: 307 issue: 2 year: 2017 ident: 822_CR58 publication-title: Eng Comput doi: 10.1007/s00366-016-0475-9 – volume: 30 start-page: 1015 issue: 4 year: 2018 ident: 822_CR5 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2746-1 – ident: 822_CR7 – volume: 25 start-page: 103 year: 1964 ident: 822_CR26 publication-title: Autom Remote Control – year: 2015 ident: 822_CR42 publication-title: Environ Earth Sci doi: 10.1007/s12665-014-3711-x – volume: 2 start-page: 266 issue: 3 year: 2013 ident: 822_CR35 publication-title: Int J Future Commun doi: 10.7763/IJFCC.2013.V2.165 – volume-title: The nature of statistical learning theory year: 1995 ident: 822_CR29 doi: 10.1007/978-1-4757-2440-0 – volume: 33 start-page: 349 issue: 3 year: 2017 ident: 822_CR57 publication-title: Eng Comput doi: 10.1007/s00366-016-0477-7 – volume: 24 start-page: 774 year: 1963 ident: 822_CR25 publication-title: Autom Remote Control – volume: 22 start-page: 4083 issue: 12 year: 2018 ident: 822_CR52 publication-title: Soft Comput doi: 10.1007/s00500-017-2617-4 – ident: 822_CR27 – volume: 21 start-page: 525 year: 2018 ident: 822_CR15 publication-title: Comput Concrete – volume: 33 start-page: 689 issue: 3 year: 2016 ident: 822_CR37 publication-title: Eng Comput doi: 10.1007/s00366-016-0497-3 – volume: 28 start-page: 1043 issue: 1 year: 2017 ident: 822_CR60 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2434-1 – volume: 133 start-page: 69 year: 2019 ident: 822_CR68 publication-title: Miner Eng doi: 10.1016/j.mineng.2019.01.004 – volume: 75 start-page: 27 issue: 1 year: 2016 ident: 822_CR21 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0720-2 – volume: 60 start-page: 471 issue: 3 year: 2016 ident: 822_CR12 publication-title: Struct Eng Mech doi: 10.12989/sem.2016.60.3.471 – volume: 33 start-page: 04019024 issue: 3 year: 2019 ident: 822_CR18 publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0001292 – volume: 32 start-page: 441 issue: 3 year: 2016 ident: 822_CR44 publication-title: Eng Comput doi: 10.1007/s00366-015-0425-y – year: 2017 ident: 822_CR45 publication-title: J Intell Manuf doi: 10.1007/s10845-017-1306-6 – volume: 38 start-page: 783 year: 2011 ident: 822_CR48 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2011.04.005 – volume: 110 start-page: 199 year: 2018 ident: 822_CR61 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.08.004 – volume: 34 start-page: 339 issue: 2 year: 2018 ident: 822_CR22 publication-title: Eng Comput doi: 10.1007/s00366-017-0544-8 – volume: 76 start-page: 57 year: 2017 ident: 822_CR46 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-6306-x – volume: 50 start-page: 2177 issue: 12 year: 2018 ident: 822_CR14 publication-title: Eng Optim doi: 10.1080/0305215X.2018.1439943 – volume: 23 start-page: 809 issue: 6 year: 2013 ident: 822_CR20 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2013.10.005 – volume: 35 start-page: 1 issue: 131 year: 2019 ident: 822_CR67 publication-title: Eng Comput – volume: 21 start-page: 679 issue: 3 year: 2016 ident: 822_CR43 publication-title: Steel Compos Struct doi: 10.12989/scs.2016.21.3.679 – ident: 822_CR34 – volume: 81 start-page: 632 year: 2018 ident: 822_CR16 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.08.029 – volume: 8 start-page: 2111 year: 2015 ident: 822_CR3 publication-title: Arab J Geosci doi: 10.1007/s12517-013-1261-2 – volume: 22 start-page: 335 issue: 3 year: 2018 ident: 822_CR47 publication-title: Smart Struct Syst – volume: 14 start-page: 785 issue: 5 year: 2014 ident: 822_CR8 publication-title: Smart Struct Syst Int J doi: 10.12989/sss.2014.14.5.785 |
SSID | ssj0013009 |
Score | 2.5285592 |
Snippet | Accurately predicting the particle size distribution of a muck-pile after blasting is always an important subject for mining industry. Adaptive neuro-fuzzy... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 265 |
SubjectTerms | Adaptive systems Artificial neural networks Blasting CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Fragmentation Fuzzy logic Fuzzy systems Genetic algorithms Heuristic methods Math. Applications in Chemistry Mathematical and Computational Engineering Mining industry Model accuracy Original Article Particle size Particle size distribution Performance evaluation Prediction models Root-mean-square errors Support vector machines Systems Theory |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHCgXE0oLmwA0skqw3dk7VghoKEqsKqNRbFH9ERcBuaNIDHPvLmfE6G0DQY-R8SBl75o098x7AMzu3MucWZZcXlKCYzAuTzL0gZEIprlXGK-4dfr_Mj0_lu7P5Wdxw62JZ5eATg6N2a8t75C8zqQrCxpQuHLbfBatG8elqlNC4CTvkgrWewM6ro-XJh_EcIdkUeaSKi7xyFdtmQvMcU7FwNl2IQHsukj9D04g3_zoiDZGnvAt3ImTExcbG9-CGX-3BboSPGBdntwe3f-MWvA9XJ2NLAI6c3rhu8PwHt2lhWS7EYlm-_Yj1yuGb4SJo43TYr7G94FOcHts4vbD7_NOjY6rdqJLFb6vx26X9IlpyLxgUx9EQIudq6gdwWh59en0souCCsDOpeuGkz2xuGuvzmZK2cXWRaM8Iq3aUt7GeDUf4Ji0oaZk3GaG7WhNEMpqMnCs_ewiT1XrlHwHqos6dVp5CsJHapoaQScpkZLVTtbR6Cunwrysb2chZFONrteVRDvapyD5VsE-VTOH59pl2w8Vx7d0HgwmruC67iryXlhSQVfHv4e0km8KLwerj8P8_9vj6t-3DrYxrYcLWzQFM-otL_4TATG-exhn7CzX87cM priority: 102 providerName: ProQuest |
Title | Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting |
URI | https://link.springer.com/article/10.1007/s00366-019-00822-0 https://www.proquest.com/docview/2258484779 https://www.proquest.com/docview/2479576924 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB1Be4EDhQJiaVnNgRtY2mSd2DmmaLMFxKoCViqnKHYcFQG7qyY9wJEv74zX2QAqSJyixE4iZWzPe_HMG4DnNrEy5RTlOs2IoJjYCTNJnCBkQhTXKuMU5w6_W6SnS_nmPDkPSWFtH-3eb0n6lXqX7MbSKcx-M-FlygUR9f2EuDsHci3jfNg7mGwDOyLFgV2pCqkyNz_jd3c0YMw_tkW9tynuw70AEzHf2vUB3HKrQzgIkBHDhGzpUl-Vob92CHd_kRh8CD_PhswAHKS9cd3gxXfO1sKiyEW-KF5_wGpV47w_8SVyWuzWuLnkzZwON2GUYfv5h8OaFXdDsSx-WoXfruwXsaFVBn3hcTQEzDmo-hEsi9nHV6ci1F0QdipVJ2rpYpuaxrp0qqRt6iqbaMdAq6qJvnFZG3b0TZQRd0mamEBepQkpGU22TpWbPoa91XrlngDqrEprrRx5YiO1jQwBlIg1yapaVdLqEUT95y9tECXn2hhfy52csjdZSSYrvcnKyQhe7O7ZbCU5_tn7uLdqGaZnW9IipiX5ZZXd3CxVRjyMqOkIXvYDYWj--8ue_l_3I7gTc4iM_6NzDHvd5ZV7RhinM2O4rYv5GPbz-ae3MzqezBZn78d-oF8DpcPzfg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9RADLVKOQAHPgqIhQI-wAlGZLOzmckBoRWQ7tJ2hUQr9RYyk4lAwG5oUqFy5AfxG7FnJxtA0FuPUZKJEjv289h-Bnhkx1Ym3KJcJikFKCZ2wkRjJwiZUIhrlXGKe4f358n0UL45Gh9twM-uF4bLKjub6A11ubS8R_4sliolbEzhwov6q-CpUZxd7UZorNRi151-o5CteT57RfJ9HMfZ64OXUxGmCgg7kqoVpXSxTUxlXTJS0lZlkUbaMYwoSgpOeGgLu7GKovtYj6uYIEyhCQcYTW-SKDeidS_ARTkiT86d6dlOn7WIViUlQ8UlZYkKTTq-VY-JXzh2T4UnWRfRn46wR7d_JWS9n8uuw9UAUHGy0qgbsOEWW3AtgFUMpqDZgiu_MRnehB9v-wYE7BnEcVnhh1NuCsMsm4jJPJu9w2JR4k534CfxNNgusT7mnFGLdVBmbD5-d1gysW-YycWrFfjlxH4SNRkz9PPN0RD-59rtW3B4LoK4DZuL5cLdAdRpkZRaOXL4Rmo7NISDhkx9VpSqkFYPYNh969wG7nMewfE5X7M2e_nkJJ_cyyePBvBkfU-9Yv448-rtToR5sAJNTrZSS3L_Kv336bVKD-BpJ_X-9P8fdvfs1R7CpenB_l6-N5vv3oPLMVfh-E2jbdhsj0_cfYJRrXngdRfh_Xn_LL8ArvMnhA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVEJw4KOACBTYA5xgVcfZeNcHhAKtaShEEVCpN9f7YVEVElO7QuXIz-LXMbNZx4Cgtx4t22vZM559b3fmDcBjMzIioRJlm6RIUHTsuI5GjiMyQYprpHaSaoffTZPdffHmYHSwBj_bWhhKq2xjog_UdmFojXwrFjJFbIx0YasMaRGz7exF9ZVTBynaaW3baSxdZM-dfUP6Vj-fbKOtn8RxtvPx1S4PHQa4GQrZcCtcbBJdGpcMpTClLdJIOYIUhUWiQg1caEorkenHalTGCGcKhZhAK3yrRLohjnsJ1iWxoh6sv9yZzt53exjRMsFkICnBLJGhZMcX7pEMDDH5lHvJdR79OS12WPev7Vk_62U34FqAq2y89K-bsObmG3A9QFcWAkO9AVd_0zW8BT9mXTkC6_TE2aJkn86oRIxl2ZiPp9nkAyvmlr1uD3xfnpo1C1ad0A5Sw6rg2qw--u6YJZnf0KGLRivYl1NzzCsMbcx3O2ca2QBlct-G_QsxxR3ozRdzdxeYSovEKulw-tdCmYFGVDQgIbTCykIY1YdB-61zE5TQqSHH53yl4eztk6N9cm-fPOrD09U91VIH5NyrN1sT5iEm1DlGTiUQDMj036dXDt6HZ63Vu9P_f9i980d7BJfxR8nfTqZ79-FKTCk5fgVpE3rNyal7gJiq0Q-D8zI4vOj_5RfCaS0W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+hybrid+FFA-ANFIS+and+GA-ANFIS+models+to+predict+particle+size+distribution+of+a+muck-pile+after+blasting&rft.jtitle=Engineering+with+computers&rft.au=Zhou%2C+Jian&rft.au=Li%2C+Chuanqi&rft.au=Arslan%2C+Chelang+A.&rft.au=Hasanipanah%2C+Mahdi&rft.date=2021-01-01&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=37&rft.issue=1&rft.spage=265&rft.epage=274&rft_id=info:doi/10.1007%2Fs00366-019-00822-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00366_019_00822_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |