Geodesic Invariant Feature: A Local Descriptor in Depth
Different from the photometric images, depth images resolve the distance ambiguity of the scene, while the properties, such as weak texture, high noise, and low resolution, may limit the representation ability of the well-developed descriptors, which are elaborately designed for the photometric imag...
Saved in:
Published in | IEEE transactions on image processing Vol. 24; no. 1; pp. 236 - 248 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different from the photometric images, depth images resolve the distance ambiguity of the scene, while the properties, such as weak texture, high noise, and low resolution, may limit the representation ability of the well-developed descriptors, which are elaborately designed for the photometric images. In this paper, a novel depth descriptor, geodesic invariant feature (GIF), is presented for representing the parts of the articulate objects in depth images. GIF is a multilevel feature representation framework, which is proposed based on the nature of depth images. Low-level, geodesic gradient is introduced to obtain the invariance to the articulate motion, such as scale and rotation variation. Midlevel, superpixel clustering is applied to reduce depth image redundancy, resulting in faster processing speed and better robustness to noise. High-level, deep network is used to exploit the nonlinearity of the data, which further improves the classification accuracy. The proposed descriptor is capable of encoding the local structures in the depth data effectively and efficiently. Comparisons with the state-of-the-art methods reveal the superiority of the proposed method. |
---|---|
AbstractList | Different from the photometric images, depth images resolve the distance ambiguity of the scene, while the properties, such as weak texture, high noise, and low resolution, may limit the representation ability of the well-developed descriptors, which are elaborately designed for the photometric images. In this paper, a novel depth descriptor, geodesic invariant feature (GIF), is presented for representing the parts of the articulate objects in depth images. GIF is a multilevel feature representation framework, which is proposed based on the nature of depth images. Low-level, geodesic gradient is introduced to obtain the invariance to the articulate motion, such as scale and rotation variation. Midlevel, superpixel clustering is applied to reduce depth image redundancy, resulting in faster processing speed and better robustness to noise. High-level, deep network is used to exploit the nonlinearity of the data, which further improves the classification accuracy. The proposed descriptor is capable of encoding the local structures in the depth data effectively and efficiently. Comparisons with the state-of-the-art methods reveal the superiority of the proposed method. |
Author | Lasang, Pongsak Siegel, Mel Yazhou Liu Quansen Sun |
Author_xml | – sequence: 1 surname: Yazhou Liu fullname: Yazhou Liu email: yazhouliu@njust.edu.cn organization: Dept. of Comput. Sci. & Eng., Nanjing Inst. of Sci. & Technol., Nanjing, China – sequence: 2 givenname: Pongsak surname: Lasang fullname: Lasang, Pongsak email: pongsak.lasang@sg.panasoni.com organization: R&D Center Singapore, Panasonic, Singapore, Singapore – sequence: 3 givenname: Mel surname: Siegel fullname: Siegel, Mel email: mws@andew.edu organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 4 surname: Quansen Sun fullname: Quansen Sun email: sunquansen@nust.edu.cn organization: Dept. of Comput. Sci. & Eng., Nanjing Inst. of Sci. & Technol., Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25494504$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkM1LwzAUwINM3IfeBUEKXrx0vrRJ03gb083BQA-7h6x5xY6uqUkr-N-bsbmDp_ce7_c--I3JoLENEnJLYUopyKfN6mOaAGXTJBU5UHlBRlQyGgOwZBBy4CIWlMkhGXu_g0Byml2RYcKZZBzYiIglWoO-KqJV861dpZsuWqDueofP0Sxa20LX0Qv6wlVtZ11UNaFqu89rclnq2uPNKU7IZvG6mb_F6_flaj5bx0XKRBeb8J0uQWdUYx5O5rLkjMtsu0VjUoACM11ynkoBMmW50UZyxmSCJgcTiAl5PK5tnf3q0XdqX_kC61o3aHuvaMYgTSQXNKAP_9Cd7V0TngtUmrPgIeeBgiNVOOu9w1K1rtpr96MoqINTFZyqg1N1chpG7k-L--0ezXngT2IA7o5AhYjndiYFT8LlX1w5eYg |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1109_TII_2015_2496140 crossref_primary_10_1007_s11042_019_08311_8 crossref_primary_10_1109_TIP_2015_2507445 crossref_primary_10_1109_TITS_2019_2921325 crossref_primary_10_1109_ACCESS_2018_2888856 crossref_primary_10_1109_TIP_2018_2834824 |
Cites_doi | 10.1109/CVPR.2005.177 10.1109/TPAMI.2005.188 10.1016/j.cviu.2007.09.014 10.1109/ICCV.2011.6126270 10.1109/CVPR.2014.301 10.1016/j.imavis.2003.08.010 10.1109/TPAMI.2012.231 10.1109/TIP.2012.2210234 10.1109/3DV.2013.43 10.1109/ISMAR.2011.6092378 10.1109/TPAMI.2009.23 10.1016/j.sigpro.2011.12.005 10.1109/ICCV.2011.6126544 10.1109/NNSP.1999.788121 10.1016/j.patcog.2006.07.009 10.1109/TPAMI.2008.112 10.1016/0166-2236(92)90344-8 10.1016/j.cviu.2009.06.005 10.1109/ROBOT.2010.5509559 10.1109/ICCV.2011.6126356 10.1109/TPAMI.2006.188 10.1109/ICCV.2005.147 10.1109/TPAMI.2006.244 10.1145/1390156.1390294 10.1109/TPAMI.2011.222 10.1109/CVPR.2010.5540141 10.1109/TPAMI.2009.167 10.1109/MCI.2010.938364 10.1109/CVPR.2013.444 10.1109/TIP.2014.2316640 10.1162/089976698300017467 10.1109/FG.2013.6553754 10.1109/TPAMI.2007.1110 10.1109/CVPR.2004.1315241 10.1109/TPAMI.2012.241 10.1109/3DV.2013.44 10.1145/2047196.2047270 10.1109/TPAMI.2013.50 10.1109/ICCV.2005.41 10.1561/2200000006 10.1016/j.patrec.2013.09.021 10.1109/ICPR.2010.95 10.1145/2393347.2396382 10.1109/TPAMI.2009.155 10.1109/ICCV.2009.5459207 10.1109/TPAMI.2002.1017623 10.1109/CVPR.2011.5995316 10.1023/B:VISI.0000029664.99615.94 10.1109/TPAMI.2012.120 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2014.2378019 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) PubMed CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 248 |
ExternalDocumentID | 3532201081 10_1109_TIP_2014_2378019 25494504 6975216 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Doctoral Fund through the Ministry of Education, China grantid: 20133219120033 – fundername: Open Project Program through the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety grantid: JSKL201306 – fundername: National Natural Science Foundation of China grantid: 61273251; 61300161; 61371168 funderid: 10.13039/501100001809 – fundername: Program of Introducing Talents of Discipline to Universities grantid: B13022 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 VH1 XFK NPM AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c347t-d201af0a61ae894589f54596bbedd300ce6af5539709348dad954492ed80ddd3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 |
IngestDate | Wed Jul 24 14:10:55 EDT 2024 Thu Oct 10 16:44:23 EDT 2024 Fri Aug 23 01:07:30 EDT 2024 Sat Sep 28 07:55:52 EDT 2024 Wed Jun 26 19:22:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | depth image deep learning Body parts recognition superpixel pose recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-d201af0a61ae894589f54596bbedd300ce6af5539709348dad954492ed80ddd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25494504 |
PQID | 1638471485 |
PQPubID | 85429 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_25494504 crossref_primary_10_1109_TIP_2014_2378019 proquest_journals_1638471485 proquest_miscellaneous_1640329571 ieee_primary_6975216 |
PublicationCentury | 2000 |
PublicationDate | 2015-Jan. 2015-Jan 2015-1-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-Jan. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref19 socher (ref37) 2011 ref50 ref46 ref45 huynh (ref48) 2012 ref47 ref42 ref41 ref44 ta (ref16) 2009 calonder (ref5) 2010 krizhevsky (ref33) 2012 bengio (ref60) 2007 ref49 zhang (ref18) 2005 ref7 ref9 ref4 ref6 ref40 kavukcuoglu (ref35) 2010 ref34 vincent (ref62) 2010; 11 ref31 ref30 ref2 ref1 ke (ref3) 2004 ref39 glorot (ref64) 2010 bordes (ref36) 2012 ref24 ref23 ref26 socher (ref38) 2011 ref25 ref20 ref63 ref22 ref65 ref21 valle (ref8) 2008 ref28 bergstra (ref32) 2010 ref27 ref29 rosten (ref43) 2006 ref61 ganapathi (ref51) 2012 |
References_xml | – start-page: ii-506 year: 2004 ident: ref3 article-title: PCA-SIFT: A more distinctive representation for local image descriptors publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit contributor: fullname: ke – ident: ref9 doi: 10.1109/CVPR.2005.177 – start-page: 430 year: 2006 ident: ref43 article-title: Machine learning for high-speed corner detection publication-title: Proc 9th Eur Conf Comput Vis contributor: fullname: rosten – ident: ref1 doi: 10.1109/TPAMI.2005.188 – ident: ref4 doi: 10.1016/j.cviu.2007.09.014 – start-page: 151 year: 2011 ident: ref38 article-title: Semi-supervised recursive autoencoders for predicting sentiment distributions publication-title: Proc Conf Empirical Methods Natural Lang Process contributor: fullname: socher – start-page: 133 year: 2012 ident: ref48 article-title: An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data publication-title: Proc ACCV Workshop contributor: fullname: huynh – ident: ref55 doi: 10.1109/ICCV.2011.6126270 – ident: ref22 doi: 10.1109/CVPR.2014.301 – ident: ref57 doi: 10.1016/j.imavis.2003.08.010 – ident: ref34 doi: 10.1109/TPAMI.2012.231 – ident: ref12 doi: 10.1109/TIP.2012.2210234 – ident: ref24 doi: 10.1109/3DV.2013.43 – ident: ref21 doi: 10.1109/ISMAR.2011.6092378 – ident: ref41 doi: 10.1109/TPAMI.2009.23 – ident: ref17 doi: 10.1016/j.sigpro.2011.12.005 – start-page: 127 year: 2012 ident: ref36 article-title: Joint learning of words and meaning representations for open-text semantic parsing publication-title: Proc Int Conf Artif Intell Statist contributor: fullname: bordes – ident: ref42 doi: 10.1109/ICCV.2011.6126544 – year: 2010 ident: ref35 article-title: Learning convolutional feature hierarchies for visual recognition publication-title: Advances in neural information processing systems contributor: fullname: kavukcuoglu – ident: ref58 doi: 10.1109/NNSP.1999.788121 – ident: ref56 doi: 10.1016/j.patcog.2006.07.009 – ident: ref14 doi: 10.1109/TPAMI.2008.112 – start-page: 1 year: 2010 ident: ref32 article-title: Theano: A CPU and GPU math compiler in Python publication-title: Proc Python Sci Comput Conf contributor: fullname: bergstra – ident: ref63 doi: 10.1016/0166-2236(92)90344-8 – ident: ref46 doi: 10.1016/j.cviu.2009.06.005 – ident: ref49 doi: 10.1109/ROBOT.2010.5509559 – ident: ref53 doi: 10.1109/ICCV.2011.6126356 – ident: ref40 doi: 10.1109/TPAMI.2006.188 – start-page: 786 year: 2005 ident: ref18 article-title: Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition publication-title: Proc 10th IEEE Int Conf Comput Vis doi: 10.1109/ICCV.2005.147 contributor: fullname: zhang – year: 2007 ident: ref60 article-title: Greedy layer-wise training of deep networks publication-title: Advances in neural information processing systems contributor: fullname: bengio – ident: ref19 doi: 10.1109/TPAMI.2006.244 – ident: ref61 doi: 10.1145/1390156.1390294 – ident: ref7 doi: 10.1109/TPAMI.2011.222 – year: 2011 ident: ref37 article-title: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection publication-title: Advances in neural information processing systems contributor: fullname: socher – ident: ref50 doi: 10.1109/CVPR.2010.5540141 – ident: ref10 doi: 10.1109/TPAMI.2009.167 – ident: ref30 doi: 10.1109/MCI.2010.938364 – ident: ref15 doi: 10.1109/CVPR.2013.444 – ident: ref13 doi: 10.1109/TIP.2014.2316640 – start-page: 249 year: 2010 ident: ref64 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf on Artificial Intell contributor: fullname: glorot – start-page: 2937 year: 2009 ident: ref16 article-title: SURFTrac: Efficient tracking and continuous object recognition using local feature descriptors publication-title: Proc IEEE Comput Vis Pattern Recognit contributor: fullname: ta – ident: ref59 doi: 10.1162/089976698300017467 – start-page: 738 year: 2012 ident: ref51 article-title: Real-time human pose tracking from range data publication-title: Proc 12th Eur Conf Comput Vis contributor: fullname: ganapathi – start-page: 778 year: 2010 ident: ref5 article-title: BRIEF: Binary robust independent elementary features publication-title: Proc Eur Conf Comput Vis contributor: fullname: calonder – ident: ref45 doi: 10.1109/FG.2013.6553754 – ident: ref11 doi: 10.1109/TPAMI.2007.1110 – year: 2008 ident: ref8 article-title: Local descriptor matching for image identification systems contributor: fullname: valle – ident: ref65 doi: 10.1109/CVPR.2004.1315241 – ident: ref23 doi: 10.1109/TPAMI.2012.241 – ident: ref25 doi: 10.1109/3DV.2013.44 – volume: 11 start-page: 3371 year: 2010 ident: ref62 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res contributor: fullname: vincent – ident: ref20 doi: 10.1145/2047196.2047270 – ident: ref29 doi: 10.1109/TPAMI.2013.50 – ident: ref52 doi: 10.1109/ICCV.2005.41 – ident: ref31 doi: 10.1561/2200000006 – ident: ref54 doi: 10.1016/j.patrec.2013.09.021 – ident: ref47 doi: 10.1109/ICPR.2010.95 – ident: ref44 doi: 10.1145/2393347.2396382 – ident: ref6 doi: 10.1109/TPAMI.2009.155 – ident: ref39 doi: 10.1109/ICCV.2009.5459207 – ident: ref27 doi: 10.1109/TPAMI.2002.1017623 – ident: ref26 doi: 10.1109/CVPR.2011.5995316 – ident: ref2 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref28 doi: 10.1109/TPAMI.2012.120 – year: 2012 ident: ref33 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems contributor: fullname: krizhevsky |
SSID | ssj0014516 |
Score | 2.2268987 |
Snippet | Different from the photometric images, depth images resolve the distance ambiguity of the scene, while the properties, such as weak texture, high noise, and... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 236 |
SubjectTerms | Body parts recognition deep learning depth image Feature extraction Image color analysis Image recognition Image resolution Noise pose recognition Robustness Sensors superpixel |
Title | Geodesic Invariant Feature: A Local Descriptor in Depth |
URI | https://ieeexplore.ieee.org/document/6975216 https://www.ncbi.nlm.nih.gov/pubmed/25494504 https://www.proquest.com/docview/1638471485 https://search.proquest.com/docview/1640329571 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-UwEB_0ndyDn7tafUoWvAjbZ55NmsabiJ-s4uEJ3krTTFGEVp6tB_96J-kHIrvgraWhTWcm-f0mk8wA7BtCARurKJyaOApFjjo0NBWHGUGxNAnywpdkubmNL-_F9YN8WIA_w1kYRPSbz3DiLn0s31Z545bKDmOtCG3iRVhUWrdntYaIgSs46yObUoWKaH8fkuT6cHZ15_ZwiclRpGhCdolCnVskZFedrUcjX17l_0zTI875Ctz0fW03mjxPmtpM8vcvaRy_-zOrsNxRT3bS2soaLGC5DisdDWXdIH9dhx-fchRugLrAyiLpkl2Vb-RYkyaY443NHI_ZCfvrsJCR9-pnn2rOnkq6e6kff8Ls_Gx2ehl21RbCPBKqDi2JKCt4Fk8zTEg4iS6IXenYGLQ24jzHOCukJP7CdSQSm1kthdBHaBNuqcUvGJVViVvAuOWJNpYcRSIAxAe0mRbEOxKDrhyg0AEc9EJPX9qcGqn3RbhOSVep01Xa6SqADSe6oV0ntQDGvZbSbtC9po5aEtaKRAbwe3hMw8XFQLISq8a1ETwiM1TTADZb7Q7v7o1i-9_f3IEl6pls11_GMKrnDe4SI6nNnjfFD7Dg17U |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remh7KAX6SKGtkXqp1CxeYjs2N4Sgu7CLethK3KI4nqgIKUFL0kN_fcfOQ1UFUm-JYiXOzNjfNx57BuCzJRRwKk3iqVVJLAo0saWpOM4JiqXVyMtQkmV5pWY_xMW1vN6Ar-NZGEQMm89w4i9DLN_VReuXyg6VSQlt1BN4Srxaq-601hgz8CVnQ2xTpnFKxH8ISnJzuJp_97u4xOQoSWlK9qlCvWMkZF-fbcCjUGDlca4ZMOd8C5ZDb7utJreTtrGT4vc_iRz_93dewcuefLKTzlq2YQOrHdjqiSjrh_n9Drz4K0vhLqTfsHZI2mTz6he51qQL5plju8ZjdsIWHg0Z-a9h_qnX7Kaiu7vm52tYnZ-tTmdxX28hLhKRNrEjEeUlz9U0R03C0aYkfmWUtehcwnmBKi-lJAbDTSK0y52RQpgjdJo7avEGNqu6wnfAuOPaWEeuIlEAYgTGTktiHtqiLwgoTARfBqFnd11WjSx4I9xkpKvM6yrrdRXBrhfd2K6XWgT7g5ayftjdZ55cEtoKLSM4GB_TgPFRkLzCuvVtBE_IENNpBG877Y7vHozi_cPf_ATPZqvlIlvMry734Dn1UnarMfuw2axb_ED8pLEfg1n-ASbo2wA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geodesic+Invariant+Feature%3A+A+Local+Descriptor+in+Depth&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Liu%2C+Yazhou&rft.au=Lasang%2C+Pongsak&rft.au=Siegel%2C+Mel&rft.au=Sun%2C+Quansen&rft.date=2015-01-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=24&rft.issue=1&rft.spage=236&rft.epage=248&rft_id=info:doi/10.1109%2FTIP.2014.2378019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2014_2378019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |