Geodesic Invariant Feature: A Local Descriptor in Depth

Different from the photometric images, depth images resolve the distance ambiguity of the scene, while the properties, such as weak texture, high noise, and low resolution, may limit the representation ability of the well-developed descriptors, which are elaborately designed for the photometric imag...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 24; no. 1; pp. 236 - 248
Main Authors Yazhou Liu, Lasang, Pongsak, Siegel, Mel, Quansen Sun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different from the photometric images, depth images resolve the distance ambiguity of the scene, while the properties, such as weak texture, high noise, and low resolution, may limit the representation ability of the well-developed descriptors, which are elaborately designed for the photometric images. In this paper, a novel depth descriptor, geodesic invariant feature (GIF), is presented for representing the parts of the articulate objects in depth images. GIF is a multilevel feature representation framework, which is proposed based on the nature of depth images. Low-level, geodesic gradient is introduced to obtain the invariance to the articulate motion, such as scale and rotation variation. Midlevel, superpixel clustering is applied to reduce depth image redundancy, resulting in faster processing speed and better robustness to noise. High-level, deep network is used to exploit the nonlinearity of the data, which further improves the classification accuracy. The proposed descriptor is capable of encoding the local structures in the depth data effectively and efficiently. Comparisons with the state-of-the-art methods reveal the superiority of the proposed method.
AbstractList Different from the photometric images, depth images resolve the distance ambiguity of the scene, while the properties, such as weak texture, high noise, and low resolution, may limit the representation ability of the well-developed descriptors, which are elaborately designed for the photometric images. In this paper, a novel depth descriptor, geodesic invariant feature (GIF), is presented for representing the parts of the articulate objects in depth images. GIF is a multilevel feature representation framework, which is proposed based on the nature of depth images. Low-level, geodesic gradient is introduced to obtain the invariance to the articulate motion, such as scale and rotation variation. Midlevel, superpixel clustering is applied to reduce depth image redundancy, resulting in faster processing speed and better robustness to noise. High-level, deep network is used to exploit the nonlinearity of the data, which further improves the classification accuracy. The proposed descriptor is capable of encoding the local structures in the depth data effectively and efficiently. Comparisons with the state-of-the-art methods reveal the superiority of the proposed method.
Author Lasang, Pongsak
Siegel, Mel
Yazhou Liu
Quansen Sun
Author_xml – sequence: 1
  surname: Yazhou Liu
  fullname: Yazhou Liu
  email: yazhouliu@njust.edu.cn
  organization: Dept. of Comput. Sci. & Eng., Nanjing Inst. of Sci. & Technol., Nanjing, China
– sequence: 2
  givenname: Pongsak
  surname: Lasang
  fullname: Lasang, Pongsak
  email: pongsak.lasang@sg.panasoni.com
  organization: R&D Center Singapore, Panasonic, Singapore, Singapore
– sequence: 3
  givenname: Mel
  surname: Siegel
  fullname: Siegel, Mel
  email: mws@andew.edu
  organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 4
  surname: Quansen Sun
  fullname: Quansen Sun
  email: sunquansen@nust.edu.cn
  organization: Dept. of Comput. Sci. & Eng., Nanjing Inst. of Sci. & Technol., Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25494504$$D View this record in MEDLINE/PubMed
BookMark eNpdkM1LwzAUwINM3IfeBUEKXrx0vrRJ03gb083BQA-7h6x5xY6uqUkr-N-bsbmDp_ce7_c--I3JoLENEnJLYUopyKfN6mOaAGXTJBU5UHlBRlQyGgOwZBBy4CIWlMkhGXu_g0Byml2RYcKZZBzYiIglWoO-KqJV861dpZsuWqDueofP0Sxa20LX0Qv6wlVtZ11UNaFqu89rclnq2uPNKU7IZvG6mb_F6_flaj5bx0XKRBeb8J0uQWdUYx5O5rLkjMtsu0VjUoACM11ynkoBMmW50UZyxmSCJgcTiAl5PK5tnf3q0XdqX_kC61o3aHuvaMYgTSQXNKAP_9Cd7V0TngtUmrPgIeeBgiNVOOu9w1K1rtpr96MoqINTFZyqg1N1chpG7k-L--0ezXngT2IA7o5AhYjndiYFT8LlX1w5eYg
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TII_2015_2496140
crossref_primary_10_1007_s11042_019_08311_8
crossref_primary_10_1109_TIP_2015_2507445
crossref_primary_10_1109_TITS_2019_2921325
crossref_primary_10_1109_ACCESS_2018_2888856
crossref_primary_10_1109_TIP_2018_2834824
Cites_doi 10.1109/CVPR.2005.177
10.1109/TPAMI.2005.188
10.1016/j.cviu.2007.09.014
10.1109/ICCV.2011.6126270
10.1109/CVPR.2014.301
10.1016/j.imavis.2003.08.010
10.1109/TPAMI.2012.231
10.1109/TIP.2012.2210234
10.1109/3DV.2013.43
10.1109/ISMAR.2011.6092378
10.1109/TPAMI.2009.23
10.1016/j.sigpro.2011.12.005
10.1109/ICCV.2011.6126544
10.1109/NNSP.1999.788121
10.1016/j.patcog.2006.07.009
10.1109/TPAMI.2008.112
10.1016/0166-2236(92)90344-8
10.1016/j.cviu.2009.06.005
10.1109/ROBOT.2010.5509559
10.1109/ICCV.2011.6126356
10.1109/TPAMI.2006.188
10.1109/ICCV.2005.147
10.1109/TPAMI.2006.244
10.1145/1390156.1390294
10.1109/TPAMI.2011.222
10.1109/CVPR.2010.5540141
10.1109/TPAMI.2009.167
10.1109/MCI.2010.938364
10.1109/CVPR.2013.444
10.1109/TIP.2014.2316640
10.1162/089976698300017467
10.1109/FG.2013.6553754
10.1109/TPAMI.2007.1110
10.1109/CVPR.2004.1315241
10.1109/TPAMI.2012.241
10.1109/3DV.2013.44
10.1145/2047196.2047270
10.1109/TPAMI.2013.50
10.1109/ICCV.2005.41
10.1561/2200000006
10.1016/j.patrec.2013.09.021
10.1109/ICPR.2010.95
10.1145/2393347.2396382
10.1109/TPAMI.2009.155
10.1109/ICCV.2009.5459207
10.1109/TPAMI.2002.1017623
10.1109/CVPR.2011.5995316
10.1023/B:VISI.0000029664.99615.94
10.1109/TPAMI.2012.120
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2014.2378019
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 248
ExternalDocumentID 3532201081
10_1109_TIP_2014_2378019
25494504
6975216
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Doctoral Fund through the Ministry of Education, China
  grantid: 20133219120033
– fundername: Open Project Program through the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety
  grantid: JSKL201306
– fundername: National Natural Science Foundation of China
  grantid: 61273251; 61300161; 61371168
  funderid: 10.13039/501100001809
– fundername: Program of Introducing Talents of Discipline to Universities
  grantid: B13022
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
XFK
NPM
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-d201af0a61ae894589f54596bbedd300ce6af5539709348dad954492ed80ddd3
IEDL.DBID RIE
ISSN 1057-7149
IngestDate Wed Jul 24 14:10:55 EDT 2024
Thu Oct 10 16:44:23 EDT 2024
Fri Aug 23 01:07:30 EDT 2024
Sat Sep 28 07:55:52 EDT 2024
Wed Jun 26 19:22:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords depth image
deep learning
Body parts recognition
superpixel
pose recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-d201af0a61ae894589f54596bbedd300ce6af5539709348dad954492ed80ddd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25494504
PQID 1638471485
PQPubID 85429
PageCount 13
ParticipantIDs pubmed_primary_25494504
crossref_primary_10_1109_TIP_2014_2378019
proquest_journals_1638471485
proquest_miscellaneous_1640329571
ieee_primary_6975216
PublicationCentury 2000
PublicationDate 2015-Jan.
2015-Jan
2015-1-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref19
socher (ref37) 2011
ref50
ref46
ref45
huynh (ref48) 2012
ref47
ref42
ref41
ref44
ta (ref16) 2009
calonder (ref5) 2010
krizhevsky (ref33) 2012
bengio (ref60) 2007
ref49
zhang (ref18) 2005
ref7
ref9
ref4
ref6
ref40
kavukcuoglu (ref35) 2010
ref34
vincent (ref62) 2010; 11
ref31
ref30
ref2
ref1
ke (ref3) 2004
ref39
glorot (ref64) 2010
bordes (ref36) 2012
ref24
ref23
ref26
socher (ref38) 2011
ref25
ref20
ref63
ref22
ref65
ref21
valle (ref8) 2008
ref28
bergstra (ref32) 2010
ref27
ref29
rosten (ref43) 2006
ref61
ganapathi (ref51) 2012
References_xml – start-page: ii-506
  year: 2004
  ident: ref3
  article-title: PCA-SIFT: A more distinctive representation for local image descriptors
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
  contributor:
    fullname: ke
– ident: ref9
  doi: 10.1109/CVPR.2005.177
– start-page: 430
  year: 2006
  ident: ref43
  article-title: Machine learning for high-speed corner detection
  publication-title: Proc 9th Eur Conf Comput Vis
  contributor:
    fullname: rosten
– ident: ref1
  doi: 10.1109/TPAMI.2005.188
– ident: ref4
  doi: 10.1016/j.cviu.2007.09.014
– start-page: 151
  year: 2011
  ident: ref38
  article-title: Semi-supervised recursive autoencoders for predicting sentiment distributions
  publication-title: Proc Conf Empirical Methods Natural Lang Process
  contributor:
    fullname: socher
– start-page: 133
  year: 2012
  ident: ref48
  article-title: An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data
  publication-title: Proc ACCV Workshop
  contributor:
    fullname: huynh
– ident: ref55
  doi: 10.1109/ICCV.2011.6126270
– ident: ref22
  doi: 10.1109/CVPR.2014.301
– ident: ref57
  doi: 10.1016/j.imavis.2003.08.010
– ident: ref34
  doi: 10.1109/TPAMI.2012.231
– ident: ref12
  doi: 10.1109/TIP.2012.2210234
– ident: ref24
  doi: 10.1109/3DV.2013.43
– ident: ref21
  doi: 10.1109/ISMAR.2011.6092378
– ident: ref41
  doi: 10.1109/TPAMI.2009.23
– ident: ref17
  doi: 10.1016/j.sigpro.2011.12.005
– start-page: 127
  year: 2012
  ident: ref36
  article-title: Joint learning of words and meaning representations for open-text semantic parsing
  publication-title: Proc Int Conf Artif Intell Statist
  contributor:
    fullname: bordes
– ident: ref42
  doi: 10.1109/ICCV.2011.6126544
– year: 2010
  ident: ref35
  article-title: Learning convolutional feature hierarchies for visual recognition
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: kavukcuoglu
– ident: ref58
  doi: 10.1109/NNSP.1999.788121
– ident: ref56
  doi: 10.1016/j.patcog.2006.07.009
– ident: ref14
  doi: 10.1109/TPAMI.2008.112
– start-page: 1
  year: 2010
  ident: ref32
  article-title: Theano: A CPU and GPU math compiler in Python
  publication-title: Proc Python Sci Comput Conf
  contributor:
    fullname: bergstra
– ident: ref63
  doi: 10.1016/0166-2236(92)90344-8
– ident: ref46
  doi: 10.1016/j.cviu.2009.06.005
– ident: ref49
  doi: 10.1109/ROBOT.2010.5509559
– ident: ref53
  doi: 10.1109/ICCV.2011.6126356
– ident: ref40
  doi: 10.1109/TPAMI.2006.188
– start-page: 786
  year: 2005
  ident: ref18
  article-title: Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition
  publication-title: Proc 10th IEEE Int Conf Comput Vis
  doi: 10.1109/ICCV.2005.147
  contributor:
    fullname: zhang
– year: 2007
  ident: ref60
  article-title: Greedy layer-wise training of deep networks
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: bengio
– ident: ref19
  doi: 10.1109/TPAMI.2006.244
– ident: ref61
  doi: 10.1145/1390156.1390294
– ident: ref7
  doi: 10.1109/TPAMI.2011.222
– year: 2011
  ident: ref37
  article-title: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: socher
– ident: ref50
  doi: 10.1109/CVPR.2010.5540141
– ident: ref10
  doi: 10.1109/TPAMI.2009.167
– ident: ref30
  doi: 10.1109/MCI.2010.938364
– ident: ref15
  doi: 10.1109/CVPR.2013.444
– ident: ref13
  doi: 10.1109/TIP.2014.2316640
– start-page: 249
  year: 2010
  ident: ref64
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf on Artificial Intell
  contributor:
    fullname: glorot
– start-page: 2937
  year: 2009
  ident: ref16
  article-title: SURFTrac: Efficient tracking and continuous object recognition using local feature descriptors
  publication-title: Proc IEEE Comput Vis Pattern Recognit
  contributor:
    fullname: ta
– ident: ref59
  doi: 10.1162/089976698300017467
– start-page: 738
  year: 2012
  ident: ref51
  article-title: Real-time human pose tracking from range data
  publication-title: Proc 12th Eur Conf Comput Vis
  contributor:
    fullname: ganapathi
– start-page: 778
  year: 2010
  ident: ref5
  article-title: BRIEF: Binary robust independent elementary features
  publication-title: Proc Eur Conf Comput Vis
  contributor:
    fullname: calonder
– ident: ref45
  doi: 10.1109/FG.2013.6553754
– ident: ref11
  doi: 10.1109/TPAMI.2007.1110
– year: 2008
  ident: ref8
  article-title: Local descriptor matching for image identification systems
  contributor:
    fullname: valle
– ident: ref65
  doi: 10.1109/CVPR.2004.1315241
– ident: ref23
  doi: 10.1109/TPAMI.2012.241
– ident: ref25
  doi: 10.1109/3DV.2013.44
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref62
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
  contributor:
    fullname: vincent
– ident: ref20
  doi: 10.1145/2047196.2047270
– ident: ref29
  doi: 10.1109/TPAMI.2013.50
– ident: ref52
  doi: 10.1109/ICCV.2005.41
– ident: ref31
  doi: 10.1561/2200000006
– ident: ref54
  doi: 10.1016/j.patrec.2013.09.021
– ident: ref47
  doi: 10.1109/ICPR.2010.95
– ident: ref44
  doi: 10.1145/2393347.2396382
– ident: ref6
  doi: 10.1109/TPAMI.2009.155
– ident: ref39
  doi: 10.1109/ICCV.2009.5459207
– ident: ref27
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref26
  doi: 10.1109/CVPR.2011.5995316
– ident: ref2
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref28
  doi: 10.1109/TPAMI.2012.120
– year: 2012
  ident: ref33
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: krizhevsky
SSID ssj0014516
Score 2.2268987
Snippet Different from the photometric images, depth images resolve the distance ambiguity of the scene, while the properties, such as weak texture, high noise, and...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 236
SubjectTerms Body parts recognition
deep learning
depth image
Feature extraction
Image color analysis
Image recognition
Image resolution
Noise
pose recognition
Robustness
Sensors
superpixel
Title Geodesic Invariant Feature: A Local Descriptor in Depth
URI https://ieeexplore.ieee.org/document/6975216
https://www.ncbi.nlm.nih.gov/pubmed/25494504
https://www.proquest.com/docview/1638471485
https://search.proquest.com/docview/1640329571
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-UwEB_0ndyDn7tafUoWvAjbZ55NmsabiJ-s4uEJ3krTTFGEVp6tB_96J-kHIrvgraWhTWcm-f0mk8wA7BtCARurKJyaOApFjjo0NBWHGUGxNAnywpdkubmNL-_F9YN8WIA_w1kYRPSbz3DiLn0s31Z545bKDmOtCG3iRVhUWrdntYaIgSs46yObUoWKaH8fkuT6cHZ15_ZwiclRpGhCdolCnVskZFedrUcjX17l_0zTI875Ctz0fW03mjxPmtpM8vcvaRy_-zOrsNxRT3bS2soaLGC5DisdDWXdIH9dhx-fchRugLrAyiLpkl2Vb-RYkyaY443NHI_ZCfvrsJCR9-pnn2rOnkq6e6kff8Ls_Gx2ehl21RbCPBKqDi2JKCt4Fk8zTEg4iS6IXenYGLQ24jzHOCukJP7CdSQSm1kthdBHaBNuqcUvGJVViVvAuOWJNpYcRSIAxAe0mRbEOxKDrhyg0AEc9EJPX9qcGqn3RbhOSVep01Xa6SqADSe6oV0ntQDGvZbSbtC9po5aEtaKRAbwe3hMw8XFQLISq8a1ETwiM1TTADZb7Q7v7o1i-9_f3IEl6pls11_GMKrnDe4SI6nNnjfFD7Dg17U
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remh7KAX6SKGtkXqp1CxeYjs2N4Sgu7CLethK3KI4nqgIKUFL0kN_fcfOQ1UFUm-JYiXOzNjfNx57BuCzJRRwKk3iqVVJLAo0saWpOM4JiqXVyMtQkmV5pWY_xMW1vN6Ar-NZGEQMm89w4i9DLN_VReuXyg6VSQlt1BN4Srxaq-601hgz8CVnQ2xTpnFKxH8ISnJzuJp_97u4xOQoSWlK9qlCvWMkZF-fbcCjUGDlca4ZMOd8C5ZDb7utJreTtrGT4vc_iRz_93dewcuefLKTzlq2YQOrHdjqiSjrh_n9Drz4K0vhLqTfsHZI2mTz6he51qQL5plju8ZjdsIWHg0Z-a9h_qnX7Kaiu7vm52tYnZ-tTmdxX28hLhKRNrEjEeUlz9U0R03C0aYkfmWUtehcwnmBKi-lJAbDTSK0y52RQpgjdJo7avEGNqu6wnfAuOPaWEeuIlEAYgTGTktiHtqiLwgoTARfBqFnd11WjSx4I9xkpKvM6yrrdRXBrhfd2K6XWgT7g5ayftjdZ55cEtoKLSM4GB_TgPFRkLzCuvVtBE_IENNpBG877Y7vHozi_cPf_ATPZqvlIlvMry734Dn1UnarMfuw2axb_ED8pLEfg1n-ASbo2wA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geodesic+Invariant+Feature%3A+A+Local+Descriptor+in+Depth&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Liu%2C+Yazhou&rft.au=Lasang%2C+Pongsak&rft.au=Siegel%2C+Mel&rft.au=Sun%2C+Quansen&rft.date=2015-01-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=24&rft.issue=1&rft.spage=236&rft.epage=248&rft_id=info:doi/10.1109%2FTIP.2014.2378019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2014_2378019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon