Cortical Plasticity and Motor Activity Studied with Transcranial Magnetic Stimulation
For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years using new tools designed to study plasticity in the adult human brain. Transcranial magnetic stimulation (TMS) is a valuable non-invasive te...
Saved in:
Published in | Reviews in the neurosciences Vol. 17; no. 5; pp. 469 - 496 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
2006
|
Subjects | |
Online Access | Get full text |
ISSN | 0334-1763 2191-0200 |
DOI | 10.1515/REVNEURO.2006.17.5.469 |
Cover
Loading…
Abstract | For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years using new tools designed to study plasticity in the adult human brain. Transcranial magnetic stimulation (TMS) is a valuable non-invasive technique for exploring the ability of the motor cortex to change during motor skill acquisition. Results obtained with TMS in neurological patients as well as in normal subjects demonstrate that cortical plasticity is a necessity for correct adaptation to the continuously changing environment. Topographical reorganization of the motor cortex depends on the types of movements performed by the subjects. During simple training, the cortical representation is enlarged, and it returns to its initial size when the task is overlearned. These transient modifications characterize simple motor training. Motor skills in which coordination of distal and proximal muscles, precision of the task and spatio-temporal constraints are associated, has a different impact on cortical reorganization. We propose that years of practice of a complex motor skill induces a new cortical topography that must be interpreted as structural plasticity which provides the capacity to execute a plastic behaviour instead of a stereotypical movement. We review the neuronal mechanisms underlying plasticity in different types of movement. We stress new emerging notions, such as overlap of cortical maps, and system dynamics at single neuron and network levels, to explain the reorganization of movement representations that encode motor skill. Dendritic arborizations as functional computing elements, newly generated neurons in adult brain, and plastic architectures of cortical networks operating as distributed functional modules are new hypotheses for structural plasticity. |
---|---|
AbstractList | For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years using new tools designed to study plasticity in the adult human brain. Transcranial magnetic stimulation (TMS) is a valuable non-invasive technique for exploring the ability of the motor cortex to change during motor skill acquisition. Results obtained with TMS in neurological patients as well as in normal subjects demonstrate that cortical plasticity is a necessity for correct adaptation to the continuously changing environment. Topographical reorganization of the motor cortex depends on the types of movements performed by the subjects. During simple training, the cortical representation is enlarged, and it returns to its initial size when the task is overlearned. These transient modifications characterize simple motor training. Motor skills in which coordination of distal and proximal muscles, precision of the task and spatio-temporal constraints are associated, has a different impact on cortical reorganization. We propose that years of practice of a complex motor skill induces a new cortical topography that must be interpreted as structural plasticity which provides the capacity to execute a plastic behaviour instead of a stereotypical movement. We review the neuronal mechanisms underlying plasticity in different types of movement. We stress new emerging notions, such as overlap of cortical maps, and system dynamics at single neuron and network levels, to explain the reorganization of movement representations that encode motor skill. Dendritic arborizations as functional computing elements, newly generated neurons in adult brain, and plastic architectures of cortical networks operating as distributed functional modules are new hypotheses for structural plasticity.For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years using new tools designed to study plasticity in the adult human brain. Transcranial magnetic stimulation (TMS) is a valuable non-invasive technique for exploring the ability of the motor cortex to change during motor skill acquisition. Results obtained with TMS in neurological patients as well as in normal subjects demonstrate that cortical plasticity is a necessity for correct adaptation to the continuously changing environment. Topographical reorganization of the motor cortex depends on the types of movements performed by the subjects. During simple training, the cortical representation is enlarged, and it returns to its initial size when the task is overlearned. These transient modifications characterize simple motor training. Motor skills in which coordination of distal and proximal muscles, precision of the task and spatio-temporal constraints are associated, has a different impact on cortical reorganization. We propose that years of practice of a complex motor skill induces a new cortical topography that must be interpreted as structural plasticity which provides the capacity to execute a plastic behaviour instead of a stereotypical movement. We review the neuronal mechanisms underlying plasticity in different types of movement. We stress new emerging notions, such as overlap of cortical maps, and system dynamics at single neuron and network levels, to explain the reorganization of movement representations that encode motor skill. Dendritic arborizations as functional computing elements, newly generated neurons in adult brain, and plastic architectures of cortical networks operating as distributed functional modules are new hypotheses for structural plasticity. For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years using new tools designed to study plasticity in the adult human brain. Transcranial magnetic stimulation (TMS) is a valuable non-invasive technique for exploring the ability of the motor cortex to change during motor skill acquisition. Results obtained with TMS in neurological patients as well as in normal subjects demonstrate that cortical plasticity is a necessity for correct adaptation to the continuously changing environment. Topographical reorganization of the motor cortex depends on the types of movements performed by the subjects. During simple training, the cortical representation is enlarged, and it returns to its initial size when the task is overlearned. These transient modifications characterize simple motor training. Motor skills in which coordination of distal and proximal muscles, precision of the task and spatio-temporal constraints are associated, has a different impact on cortical reorganization. We propose that years of practice of a complex motor skill induces a new cortical topography that must be interpreted as structural plasticity which provides the capacity to execute a plastic behaviour instead of a stereotypical movement. We review the neuronal mechanisms underlying plasticity in different types of movement. We stress new emerging notions, such as overlap of cortical maps, and system dynamics at single neuron and network levels, to explain the reorganization of movement representations that encode motor skill. Dendritic arborizations as functional computing elements, newly generated neurons in adult brain, and plastic architectures of cortical networks operating as distributed functional modules are new hypotheses for structural plasticity. |
Author | Boyadjian, Alain Tyc, François |
Author_xml | – sequence: 1 givenname: François surname: Tyc fullname: Tyc, François – sequence: 2 givenname: Alain surname: Boyadjian fullname: Boyadjian, Alain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17180875$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOwzAUhi0EglL6CigTW4Id23EisZSqXETLte3AYjmxA4Y0KbbD5e1xaenAggf76Oj7zpH_fbBdN7UC4BDBCFFEj--Hs-vh9P4miiFMIsQiGpEk2wKdGGUohL67DToQYxIiluA90LP2BfpDMkQztgv2EEMpTBntgOmgMU4XogpuK2F9pd1XIGoZjBvXmKBfOP2-bD24Vmolgw_tnoOJEbUt_KW9NxZPtfKiR_S8rYTTTX0AdkpRWdVbv10wPRtOBhfh6Ob8ctAfhQUmzIWFLIiiJM8llBijDCulGFU4RaUvYR4zlMc5gVKWjKJEypTFeSnhkkd5WeIuOFrNXZjmrVXW8bm2haoqUaumtTxJY5rROPXg4Rps87mSfGH0XJgv_huEB05WQGEaa40quU_i5y_OCF1xBPkyev4bPV9G73VOuY_e68kffbPhPzFcido69bmxhHnlCcOM8rsJ4fD0ajSenT1ygr8BVNKZ9w |
CitedBy_id | crossref_primary_10_1080_10749357_2018_1466970 crossref_primary_10_1152_jn_00732_2009 crossref_primary_10_1093_cercor_bhy226 crossref_primary_10_2217_14796708_2_2_189 crossref_primary_10_1016_j_wneu_2025_123814 crossref_primary_10_1016_j_clinph_2010_05_022 crossref_primary_10_1016_j_neuroimage_2008_12_002 crossref_primary_10_1186_1743_0003_8_46 crossref_primary_10_3390_biomedicines12112506 crossref_primary_10_1016_j_neuroscience_2013_04_040 crossref_primary_10_1016_j_resp_2011_04_001 crossref_primary_10_1016_j_humov_2018_01_013 crossref_primary_10_1111_j_1365_2842_2009_01955_x crossref_primary_10_1007_s00221_018_5349_5 crossref_primary_10_1080_00222895_2020_1738992 crossref_primary_10_1016_j_brainres_2019_146323 crossref_primary_10_1016_j_neulet_2012_02_075 crossref_primary_10_1016_j_resp_2007_09_007 crossref_primary_10_1016_j_neuroscience_2016_11_023 crossref_primary_10_3389_fneur_2022_793253 crossref_primary_10_1097_WNP_0b013e31818e7944 crossref_primary_10_1016_j_brainres_2014_02_017 crossref_primary_10_1111_j_1748_1716_2012_02451_x crossref_primary_10_1523_JNEUROSCI_1435_10_2010 crossref_primary_10_1016_j_neuropharm_2011_07_024 crossref_primary_10_1016_j_tics_2008_09_004 |
Cites_doi | 10.1016/0022-510X(93)90102-5 10.1111/j.1460-9568.2003.03066.x 10.1016/S0168-5597(97)00096-8 10.1207/s15326969eco0704_2 10.1152/jn.00900.2002 10.1523/JNEUROSCI.18-03-01115.1998 10.1139/y95-032 10.1073/pnas.85.6.2003 10.1038/nrn876 10.1523/JNEUROSCI.18-17-07000.1998 10.1126/science.270.5234.305 10.1016/0022-510X(96)00100-1 10.1126/science.1843843 10.1016/S1388-2457(02)00144-X 10.1111/j.1469-7793.1998.571bb.x 10.1152/jn.1994.71.6.2543 10.1016/S1388-2457(99)00323-5 10.1097/00001756-199402000-00010 10.1016/0168-5597(92)90094-R 10.1016/S0278-2626(02)00512-2 10.1038/368592b0 10.1016/0022-510X(88)90132-3 10.1016/S0163-1047(85)90310-3 10.1109/10.335848 10.1016/0028-3932(89)90090-0 10.1016/S1388-2457(98)00044-3 10.1016/S0304-3940(99)00930-1 10.1093/brain/110.5.1173 10.1523/JNEUROSCI.22-12-05074.2002 10.1016/S1388-2457(02)00008-1 10.1093/brain/114.1.615 10.1093/brain/113.6.1843 10.1101/lm.6.6.542 10.1016/0168-5597(89)90036-1 10.1016/S0924-980X(98)00038-1 10.1016/0168-5597(93)90116-7 10.1111/j.1469-7793.1999.0591t.x 10.1007/BF00229319 10.1016/S0006-8993(99)01553-X 10.1016/S0140-6736(85)92413-4 10.1038/jcbfm.1991.122 10.1097/00019052-199912000-00009 10.1016/j.neuroscience.2003.09.029 10.1038/35018000 10.1113/jphysiol.1993.sp019912 10.1097/00004691-199101000-00005 10.1113/jphysiol.1993.sp019467 10.1152/jn.1998.80.6.3321 10.1007/s00221-003-1480-y 10.1006/nimg.1996.0001 10.1007/BF02510738 10.1136/jnnp.70.4.506 10.1034/j.1600-0404.2000.90337a.x 10.1093/cercor/bhh020 10.1016/0168-5597(94)90076-0 10.1152/jn.00595.2003 10.1146/annurev.neuro.28.051804.101459 10.1523/JNEUROSCI.23-12-05308.2003 10.1002/ana.410400306 10.1113/jphysiol.1996.sp021734 10.1161/01.STR.28.1.110 10.1111/j.1469-7793.1998.625bq.x 10.1016/j.brainres.2003.12.039 10.1177/1073858405278015 10.1093/brain/110.5.1191 10.1016/S1388-2457(03)00263-3 10.1126/science.2655083 10.1016/0168-5597(92)90096-T 10.1016/S0924-980X(97)95720-9 10.1093/brain/112.3.649 10.1523/JNEUROSCI.12-07-02542.1992 10.1093/cercor/bhj052 10.1038/35036239 10.1080/00222895.1995.9941716 10.1523/JNEUROSCI.5016-03.2004 10.1016/0304-3940(87)90083-8 10.1093/brain/116.1.1 10.1073/pnas.84.4.1123 10.1037/0096-1523.18.2.403 10.1002/ana.410380106 10.1007/s00221-003-1448-y 10.1523/JNEUROSCI.19-17-07679.1999 10.1016/S1388-2457(03)00320-1 10.1093/brain/124.6.1171 10.1007/BF01294721 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1515/REVNEURO.2006.17.5.469 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2191-0200 |
EndPage | 496 |
ExternalDocumentID | 17180875 10_1515_REVNEURO_2006_17_5_469 ark_67375_QT4_0BKLMVFZ_4 |
Genre | Journal Article Review |
GroupedDBID | --- -~0 0R~ 0~D 123 3V. 4.4 53G 7X7 88E 8FE 8FH 8FI 8FJ 8G5 9-L AAAEU AAFPC AAGVJ AAILP AAKRG AALGR AAONY AAOWA AAPJK AAQCX AASQH AASQN AAWFC AAXCG AAXMT ABABW ABAOT ABAQN ABFKT ABIQR ABIVO ABJNI ABLVI ABMIY ABPLS ABRDF ABRQL ABUVI ABUWG ABVMU ABWLS ABXMZ ABYBW ACEFL ACGFS ACIWK ACMKP ACPMA ACPRK ACXLN ACZBO ADALX ADBBV ADEQT ADGQD ADGYE ADOZN AEDGQ AEGVQ AEICA AEJTT AEKEB AEMOE AENEX AEQDQ AERZL AEXIE AFAUI AFBAA AFBQV AFCXV AFGNR AFKRA AFQUK AFYRI AGBEV AGGNV AGWTP AHMBA AHVWV AHXUK AIERV AIKXB AJATJ AJPIC AKXKS ALIPV ALMA_UNASSIGNED_HOLDINGS ALUKF AMAVY ASPBG ASYPN AVWKF AZFZN AZMOX AZQEC BAKPI BBCWN BBDJO BBNVY BCIFA BDLBQ BENPR BHPHI BPHCQ BSCLL BVXVI CCPQU DA2 DASCH DBYYV DWQXO EBS EJD EMOBN F5P FEDTE FSTRU FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IAO IY9 KDIRW LK8 M1P M2M M2O M7P O9- P2P PADUT PQQKQ PROAC PSQYO PSYQQ QD8 RDG SA. SLJYH UK5 UKHRP WTRAM AAYXX ABDRH ACDEB ACRPL ACUND ACYCL ADNMO AECWL AFBDD AFSHE AGQPQ AIWOI CITATION LVMAB PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7X8 ADNPR DSRVY |
ID | FETCH-LOGICAL-c347t-cdc4e54bbd0d33193eee75e381f3ee0b271b2b40ddf7516dd872bfd0bd0d1bff3 |
ISSN | 0334-1763 |
IngestDate | Fri Sep 05 11:58:54 EDT 2025 Wed Feb 19 01:46:24 EST 2025 Tue Jul 01 01:58:32 EDT 2025 Thu Apr 24 23:11:44 EDT 2025 Wed Oct 30 09:29:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-cdc4e54bbd0d33193eee75e381f3ee0b271b2b40ddf7516dd872bfd0bd0d1bff3 |
Notes | istex:A1E9DF3ACD97F920AB9F972CC3B080C265E98F80 ArticleID:REVNEURO.2006.17.5.469 ark:/67375/QT4-0BKLMVFZ-4 revneuro.2006.17.5.469.pdf ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 17180875 |
PQID | 68259528 |
PQPubID | 23479 |
PageCount | 28 |
ParticipantIDs | proquest_miscellaneous_68259528 pubmed_primary_17180875 crossref_citationtrail_10_1515_REVNEURO_2006_17_5_469 crossref_primary_10_1515_REVNEURO_2006_17_5_469 istex_primary_ark_67375_QT4_0BKLMVFZ_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006 2006-01-00 2006-00-00 20060101 |
PublicationDateYYYYMMDD | 2006-01-01 |
PublicationDate_xml | – year: 2006 text: 2006 |
PublicationDecade | 2000 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Reviews in the neurosciences |
PublicationTitleAlternate | Rev Neurosci |
PublicationYear | 2006 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | Ming G-L (p_126) 2005; 28 Ziemann U (p_249) 2004; 24 Pons TP (p_161) 1991; 252 Kelso JAS (p_92) 1990; 2 Grafton ST (p_61) 1992; 12 Penfield W (p_153) 1937; 6 Wassermann EM (p_236) 2002; 113 Michaels C (p_124) 1995; 7 Wassermann EM (p_235) 1998; 108 Traversa R (p_219) 1997; 2 Day B (p_41) 1989; 112 Kuhtz-Buschbeck JP (p_104) 2003; 18 Atwood HL (p_6) 1999; 6 Wassermann EM (p_232) 1993; 89 Meintzschel F (p_123) 2006; 16 (p_227) 1963; 166 Maeda F (p_119) 2000; 111 Duffau H (p_49) 2001; 70 Liepert J (p_114) 2004; 1003 Kleim JA (p_96) 1998; 80 Kleim JA (p_98) 1996; 16 Maccabee PJ (p_116) 1993; 460 Ridding M C (p_168) 1995; 73 Maeda F (p_118) 2002; 113 Monfils M-H (p_129) 2004; 14 Wolters (p_242) 2003; 89 Anand S (p_4) 2002; 50 Di Lazzaro V (p_45) 1998; 109 Hallett M (p_65) 2000; 406 Hari R (p_67) 1989; 244 Lee L (p_108) 2003; 23 Ziemann U (p_251) 2001; 124 Lexell J (p_110) 1988; 84 Lee DL (p_107) 1995; 27 Malinow R (p_121) 1998 Walsh V (p_230) 2000; 1 Zanone PG (p_246) 1992; 18 Day BL (p_39) 1987; 75 Liepert J (p_113) 1998; 104 Mano Y (p_122) 1995; 38 (p_85) 1991; 2 Di Lazzaro V (p_44) 2004; 115 Maccabee PJ (p_117) 1998; 513 Werhahn KJ (p_237) 1999; 517 Rossini P M (p_183) 1987; 1 Wu C W (p_243) 1999; 19 Mills KR (p_125) 1992; 85 Byrnes M L (p_24) 1999; 110 (p_80) 1982; 79 Atwood HL (p_5) 2002; 3 Malenka R (p_120) 1998 Withers GS (p_240) 1989; 27 Mortifee P (p_130) 1994; 93 Ziemann U (p_250) 1996; 40 Ridding M C (p_93) 1994; 72 Cohen LG (p_32) 1991 Sanes JN (p_194) 1988; 85 Yang TT (p_245) 1994; 368 Foerster O (p_55) 1936 Monfils M-H (p_128) 2005; 11 Wilson SA (p_238) 1993; 118 Day BL (p_38) 1987; 110 Colebatch JG (p_36) 1990; 113 Yang T T (p_244) 1994; 5 Liepert J (p_112) 2000; 101 Kujirai T (p_105) 1993; 471 Di Lazzaro V (p_46) 1998; 508 Brasil-Neto JP (p_18) 1993; 116 Amassian VE (p_3) 1989; 74 Dettmers C (p_42) 1999; 2 Elbert T (p_52) 1995; 270 Ziemann U (p_247) 1998; 18 Miranda PC (p_127) 1997; 105 (p_8) 1991; 8 Latash ML (p_106) 2003; 151 Hess G (p_74) 1994; 71 Rossini P M (p_182) 1987; 14 Stewart M (p_164) 1992; 2 Krings T (p_103) 2000; 278 Liepert J (p_111) 1999; 12 Tinazzi M (p_215) 2003; 150 Friston KJ (p_57) 1991; 11 Greenough WT (p_63) 1985; 44 de Groot J (p_43) 1950; 1 Abdeen MA (p_1) 1994; 41 Wassermann EM (p_231) 1992; 85 Salmons S (p_189) 1969; 2 Shimizu T (p_205) 1999; 834 Ziemann U (p_248) 1998; 18 Barker AT (p_7) 1985 Cohen LG (p_33) 1991; 114 Levy WJ (p_109) 1991 Rothwell JC (p_185) 1987; 110 (p_228) 1963; 1 Gamba HR (p_59) 1998; 36 Garry MI (p_60) 2004; 91 Ziemann U (p_252) 1996; 496 Liepert J. T M S (p_115) 1999 Foltys H (p_56) 2003; 114 Donoghue JP (p_48) 1990; 79 Barth T M (p_196) 1986; 3 Farmer J (p_54) 2004; 124 Ehrsson HH (p_51) 2002; 22 Donoghue JP (p_47) 1987; 84 Hanajima R (p_66) 1996; 140 Wassermann EM (p_234) 1996; 3 |
References_xml | – volume: 6 start-page: 9 year: 1937 ident: p_153 publication-title: Brain – volume: 118 start-page: 134 year: 1993 ident: p_238 publication-title: J Neurol Sei doi: 10.1016/0022-510X(93)90102-5 – volume: 2 start-page: 1159 year: 1992 ident: p_164 publication-title: Science – volume: 18 start-page: 3375 year: 2003 ident: p_104 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2003.03066.x – volume: 108 start-page: 1 year: 1998 ident: p_235 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0168-5597(97)00096-8 – volume: 7 start-page: 259 year: 1995 ident: p_124 publication-title: Ecol Psychol doi: 10.1207/s15326969eco0704_2 – volume: 3 start-page: 104 year: 1986 ident: p_196 publication-title: Brain Res – volume: 89 start-page: 2339 year: 2003 ident: p_242 publication-title: J Neurophysiol doi: 10.1152/jn.00900.2002 – volume: 18 start-page: 1115 year: 1998 ident: p_247 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-03-01115.1998 – volume: 73 start-page: 218 year: 1995 ident: p_168 publication-title: Can J Physiol Pharmacol doi: 10.1139/y95-032 – volume: 85 start-page: 3 year: 1988 ident: p_194 publication-title: Proc Natl Acad Sei U S A doi: 10.1073/pnas.85.6.2003 – volume: 3 start-page: 497 year: 2002 ident: p_5 publication-title: Nat Rev Neurosci doi: 10.1038/nrn876 – volume: 18 start-page: 7000 year: 1998 ident: p_248 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-17-07000.1998 – volume: 270 start-page: 305 year: 1995 ident: p_52 publication-title: Science doi: 10.1126/science.270.5234.305 – volume: 140 start-page: 109 year: 1996 ident: p_66 publication-title: J Neurol Sei doi: 10.1016/0022-510X(96)00100-1 – volume: 252 start-page: 1857 year: 1991 ident: p_161 publication-title: Science doi: 10.1126/science.1843843 – volume: 113 start-page: 1165 year: 2002 ident: p_236 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00144-X – start-page: 36 year: 1991 ident: p_32 publication-title: Electroencephalogr Clin Neurophysiol – volume: 513 start-page: 571 year: 1998 ident: p_117 publication-title: J Physiol doi: 10.1111/j.1469-7793.1998.571bb.x – volume: 166 start-page: 1 year: 1963 ident: p_227 publication-title: J Physiol – volume: 71 start-page: 3 year: 1994 ident: p_74 publication-title: J Neurophysiol doi: 10.1152/jn.1994.71.6.2543 – volume: 111 start-page: 800 year: 2000 ident: p_119 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00323-5 – volume: 1 start-page: 183 year: 1987 ident: p_183 publication-title: Neurosurgery – volume: 2 start-page: 5 year: 1969 ident: p_189 publication-title: J Physiol – volume: 5 start-page: 701 year: 1994 ident: p_244 publication-title: NeuroReport doi: 10.1097/00001756-199402000-00010 – volume: 85 start-page: 1 year: 1992 ident: p_231 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(92)90094-R – volume: 50 start-page: 336 year: 2002 ident: p_4 publication-title: Brain Cogn doi: 10.1016/S0278-2626(02)00512-2 – volume: 368 start-page: 592 year: 1994 ident: p_245 publication-title: Nature doi: 10.1038/368592b0 – volume: 84 start-page: 275 year: 1988 ident: p_110 publication-title: J Neurol Sei doi: 10.1016/0022-510X(88)90132-3 – volume: 44 start-page: 301 year: 1985 ident: p_63 publication-title: Behav Neural Biol doi: 10.1016/S0163-1047(85)90310-3 – volume: 41 start-page: 1092 year: 1994 ident: p_1 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.335848 – volume: 27 start-page: 61 year: 1989 ident: p_240 publication-title: Neuropsychologia doi: 10.1016/0028-3932(89)90090-0 – volume: 110 start-page: 7 year: 1999 ident: p_24 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(98)00044-3 – volume: 278 start-page: 189 year: 2000 ident: p_103 publication-title: Neurosci Lett doi: 10.1016/S0304-3940(99)00930-1 – volume: 110 start-page: 1173 year: 1987 ident: p_185 publication-title: Brain doi: 10.1093/brain/110.5.1173 – volume: 22 start-page: 5074 year: 2002 ident: p_51 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-12-05074.2002 – volume: 113 start-page: 376 year: 2002 ident: p_118 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00008-1 – start-page: 151 year: 1999 ident: p_115 publication-title: Electroencephalogr Clin Neurophysiol – volume: 114 start-page: 615 year: 1991 ident: p_33 publication-title: Brain doi: 10.1093/brain/114.1.615 – volume: 113 start-page: 1843 year: 1990 ident: p_36 publication-title: Brain doi: 10.1093/brain/113.6.1843 – volume: 1 start-page: 3 year: 1963 ident: p_228 publication-title: J Physiol – start-page: 207 year: 1998 ident: p_120 publication-title: Central Synapses: Quantal Mechanisms and Plasticity. Strasbourg: Human Frontier Science Program – volume: 6 start-page: 542 year: 1999 ident: p_6 publication-title: Learn Mem doi: 10.1101/lm.6.6.542 – volume: 74 start-page: 458 year: 1989 ident: p_3 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(89)90036-1 – volume: 109 start-page: 397 year: 1998 ident: p_45 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0924-980X(98)00038-1 – volume: 89 start-page: 424 year: 1993 ident: p_232 publication-title: Electroencephalogr Neurophysiol doi: 10.1016/0168-5597(93)90116-7 – volume: 517 start-page: 591 year: 1999 ident: p_237 publication-title: J Physiol doi: 10.1111/j.1469-7793.1999.0591t.x – volume: 79 start-page: 492 year: 1990 ident: p_48 publication-title: Exp Brain Res doi: 10.1007/BF00229319 – volume: 834 start-page: 74 year: 1999 ident: p_205 publication-title: Brain Res doi: 10.1016/S0006-8993(99)01553-X – start-page: 1106 year: 1985 ident: p_7 publication-title: Lancet doi: 10.1016/S0140-6736(85)92413-4 – volume: 1 start-page: 5 year: 1950 ident: p_43 publication-title: J Physiol – volume: 11 start-page: 690 year: 1991 ident: p_57 publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1991.122 – volume: 12 start-page: 709 year: 1999 ident: p_111 publication-title: Curr Opin Neurol doi: 10.1097/00019052-199912000-00009 – volume: 2 start-page: 4 year: 1991 ident: p_85 publication-title: Science – volume: 124 start-page: 71 year: 2004 ident: p_54 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2003.09.029 – volume: 406 start-page: 147 year: 2000 ident: p_65 publication-title: Nature doi: 10.1038/35018000 – volume: 471 start-page: 501 year: 1993 ident: p_105 publication-title: J Physiol Lond doi: 10.1113/jphysiol.1993.sp019912 – volume: 8 start-page: 26 year: 1991 ident: p_8 publication-title: J Clin Neurophysiol doi: 10.1097/00004691-199101000-00005 – volume: 460 start-page: 201 year: 1993 ident: p_116 publication-title: J Physiol Lond doi: 10.1113/jphysiol.1993.sp019467 – volume: 80 start-page: 1 year: 1998 ident: p_96 publication-title: J Neurophysiol doi: 10.1152/jn.1998.80.6.3321 – volume: 151 start-page: 60 year: 2003 ident: p_106 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1480-y – volume: 3 start-page: 1 year: 1996 ident: p_234 publication-title: Neuroimage doi: 10.1006/nimg.1996.0001 – volume: 36 start-page: 165 year: 1998 ident: p_59 publication-title: Med Biol Comput doi: 10.1007/BF02510738 – volume: 70 start-page: 506 year: 2001 ident: p_49 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.70.4.506 – volume: 101 start-page: 321 year: 2000 ident: p_112 publication-title: Acta Neurol Scand doi: 10.1034/j.1600-0404.2000.90337a.x – volume: 14 start-page: 586 year: 2004 ident: p_129 publication-title: Cereb Cortex doi: 10.1093/cercor/bhh020 – start-page: 51 year: 1991 ident: p_109 publication-title: Magnetic Motor Stimulation: Basic Principles and Clinical Experience. Electroencephogr Clin Neurophysiol – volume: 93 start-page: 131 year: 1994 ident: p_130 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(94)90076-0 – volume: 2 start-page: 9 year: 1990 ident: p_92 publication-title: Springer-Verlag – volume: 91 start-page: 1570 year: 2004 ident: p_60 publication-title: J Neurophysiol doi: 10.1152/jn.00595.2003 – volume: 14 start-page: 1 year: 1987 ident: p_182 publication-title: Brain Res – volume: 28 start-page: 223 year: 2005 ident: p_126 publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.28.051804.101459 – volume: 23 start-page: 5308 year: 2003 ident: p_108 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-12-05308.2003 – volume: 40 start-page: 367 year: 1996 ident: p_250 publication-title: Ann Neurol doi: 10.1002/ana.410400306 – volume: 496 start-page: 873 year: 1996 ident: p_252 publication-title: J Physiol Lond doi: 10.1113/jphysiol.1996.sp021734 – volume: 2 start-page: 110 year: 1997 ident: p_219 publication-title: Stroke doi: 10.1161/01.STR.28.1.110 – volume: 508 start-page: 625 year: 1998 ident: p_46 publication-title: J Physiol Lond doi: 10.1111/j.1469-7793.1998.625bq.x – volume: 1003 start-page: 68 year: 2004 ident: p_114 publication-title: Brain Res doi: 10.1016/j.brainres.2003.12.039 – start-page: 226 year: 1998 ident: p_121 publication-title: Central Synapses: Quantal Mechanisms and Plasticity. Strasbourg: Human Frontier Science Program – volume: 11 start-page: 471 year: 2005 ident: p_128 publication-title: Neuroseientist doi: 10.1177/1073858405278015 – volume: 110 start-page: 1191 year: 1987 ident: p_38 publication-title: Brain doi: 10.1093/brain/110.5.1191 – volume: 114 start-page: 2404 year: 2003 ident: p_56 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00263-3 – volume: 244 start-page: 432 year: 1989 ident: p_67 publication-title: Science doi: 10.1126/science.2655083 – volume: 16 start-page: 9 year: 1996 ident: p_98 publication-title: J Nerurosci – volume: 85 start-page: 17 year: 1992 ident: p_125 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(92)90096-T – volume: 105 start-page: 116 year: 1997 ident: p_127 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0924-980X(97)95720-9 – volume: 112 start-page: 649 year: 1989 ident: p_41 publication-title: Brain doi: 10.1093/brain/112.3.649 – volume: 12 start-page: 2542 year: 1992 ident: p_61 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.12-07-02542.1992 – volume: 79 start-page: 4 year: 1982 ident: p_80 publication-title: Proc Natl Acad Sei U S A – volume: 2 start-page: 1 year: 1999 ident: p_42 publication-title: Neurosci Lett – volume: 16 start-page: 1106 year: 2006 ident: p_123 publication-title: Cereb Cortex doi: 10.1093/cercor/bhj052 – volume: 1 start-page: 73 year: 2000 ident: p_230 publication-title: Nat Rev Neurosci doi: 10.1038/35036239 – volume: 27 start-page: 263 year: 1995 ident: p_107 publication-title: J Mot Behav doi: 10.1080/00222895.1995.9941716 – volume: 24 start-page: 1666 year: 2004 ident: p_249 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5016-03.2004 – volume: 75 start-page: 101 year: 1987 ident: p_39 publication-title: Neurosci Lett doi: 10.1016/0304-3940(87)90083-8 – volume: 72 start-page: 7 year: 1994 ident: p_93 publication-title: J Neurophysiol – volume: 116 start-page: 1 year: 1993 ident: p_18 publication-title: Brain doi: 10.1093/brain/116.1.1 – volume: 84 start-page: 1123 year: 1987 ident: p_47 publication-title: Proc Natl Acad Sei USA doi: 10.1073/pnas.84.4.1123 – volume: 18 start-page: 403 year: 1992 ident: p_246 publication-title: J Exp Psychol: Hum Percept Perform doi: 10.1037/0096-1523.18.2.403 – start-page: 1 year: 1936 ident: p_55 publication-title: Springer – volume: 38 start-page: 15 year: 1995 ident: p_122 publication-title: Ann Neurol doi: 10.1002/ana.410380106 – volume: 150 start-page: 222 year: 2003 ident: p_215 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1448-y – volume: 19 start-page: 7679 year: 1999 ident: p_243 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-17-07679.1999 – volume: 115 start-page: 112 year: 2004 ident: p_44 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00320-1 – volume: 124 start-page: 1171 year: 2001 ident: p_251 publication-title: Brain doi: 10.1093/brain/124.6.1171 – volume: 104 start-page: 1207 year: 1998 ident: p_113 publication-title: J Neural Transm doi: 10.1007/BF01294721 |
SSID | ssj0000491597 |
Score | 1.9021018 |
SecondaryResourceType | review_article |
Snippet | For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years... |
SourceID | proquest pubmed crossref istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 469 |
SubjectTerms | Adaptation, Physiological Animals Brain - physiology Brain Mapping Humans Learning - physiology Motor Activity - physiology Neuronal Plasticity - physiology Transcranial Magnetic Stimulation |
Title | Cortical Plasticity and Motor Activity Studied with Transcranial Magnetic Stimulation |
URI | https://api.istex.fr/ark:/67375/QT4-0BKLMVFZ-4/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/17180875 https://www.proquest.com/docview/68259528 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Zb9MwGLdglRAvEzfl9APiBaXLYcfNYzd1TEAnQG018WLFR1BhS1CXSpS_ns9HDmATg5cosuwm8ffrd_k7EHohiSCpKNIgE1oFIAJkkJE8D0D0prHIJKP2BH92nB4tyJsTetJ5lWx2SS1G8seFeSX_Q1UYA7qaLNl_oGz7ozAA90BfuAKF4XolGh9Ua-eKfg86sAmPrl01pVkFlvSrifSdIVysoA8zt8JJwsVm5eafS5PFCFNWZ76RV19ddScH500wZK_4ZRd6ON_KRgO2p-6sWnWu92qbqy8r52SdnOa-zHfrZeiCRACs6822iRX2qVYJMZUlHWfSdgw4XxSEruxox1pZD0K0xyeJ68_iRS5xTW3_4ObUFr74OF0em7BGd3IUsREdtcv75bN_E2ttsGG-_mqi1xjlH-aEh_tv382Wh584uY4GMWMRsMLB5PX-dNm65sBoAiXPJto3H-pzy-GF9i5-nV_UmoH5h36_3Gaxusv8Ftr1RgeeOATdRtd0eQfdmPmwirto0QAJd0DCACRsgYQbIGEPJGyAhPtAwg2QcA9I99DicDo_OAp8v41AJoTVgVSSaEqEUKFKgDUnWmtGNeh0BdyGImaRiAUJlSoYjVKlxiwWhQrN_EgURXIf7ZRVqR8inOVyDPrROCREg1TIM1CUUqZTMP_B3g-zIaLNdnHpi9Gbniin3BilsM282WbTJzXlEeOUwzYP0V677psrx_LXFS8tNdrpl8FhiJ435OLAYs25WV7qanPO03FMMxqPh-iBo2L3aNDsTEuIR1d9yGN0s_PhPUE79Xqjn4JWW4tnHoU_ATZzoV4 |
linkProvider | Walter de Gruyter |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+Plasticity+and+Motor+Activity+Studied+with+Transcranial+Magnetic+Stimulation&rft.jtitle=Reviews+in+the+neurosciences&rft.au=Tyc%2C+Fran%C3%A7ois&rft.au=Boyadjian%2C+Alain&rft.date=2006&rft.pub=De+Gruyter&rft.issn=0334-1763&rft.eissn=2191-0200&rft.volume=17&rft.issue=5&rft.spage=469&rft.epage=496&rft_id=info:doi/10.1515%2FREVNEURO.2006.17.5.469&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_QT4_0BKLMVFZ_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0334-1763&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0334-1763&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0334-1763&client=summon |