Cortical Plasticity and Motor Activity Studied with Transcranial Magnetic Stimulation

For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years using new tools designed to study plasticity in the adult human brain. Transcranial magnetic stimulation (TMS) is a valuable non-invasive te...

Full description

Saved in:
Bibliographic Details
Published inReviews in the neurosciences Vol. 17; no. 5; pp. 469 - 496
Main Authors Tyc, François, Boyadjian, Alain
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 2006
Subjects
Online AccessGet full text
ISSN0334-1763
2191-0200
DOI10.1515/REVNEURO.2006.17.5.469

Cover

Loading…
Abstract For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years using new tools designed to study plasticity in the adult human brain. Transcranial magnetic stimulation (TMS) is a valuable non-invasive technique for exploring the ability of the motor cortex to change during motor skill acquisition. Results obtained with TMS in neurological patients as well as in normal subjects demonstrate that cortical plasticity is a necessity for correct adaptation to the continuously changing environment. Topographical reorganization of the motor cortex depends on the types of movements performed by the subjects. During simple training, the cortical representation is enlarged, and it returns to its initial size when the task is overlearned. These transient modifications characterize simple motor training. Motor skills in which coordination of distal and proximal muscles, precision of the task and spatio-temporal constraints are associated, has a different impact on cortical reorganization. We propose that years of practice of a complex motor skill induces a new cortical topography that must be interpreted as structural plasticity which provides the capacity to execute a plastic behaviour instead of a stereotypical movement. We review the neuronal mechanisms underlying plasticity in different types of movement. We stress new emerging notions, such as overlap of cortical maps, and system dynamics at single neuron and network levels, to explain the reorganization of movement representations that encode motor skill. Dendritic arborizations as functional computing elements, newly generated neurons in adult brain, and plastic architectures of cortical networks operating as distributed functional modules are new hypotheses for structural plasticity.
AbstractList For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years using new tools designed to study plasticity in the adult human brain. Transcranial magnetic stimulation (TMS) is a valuable non-invasive technique for exploring the ability of the motor cortex to change during motor skill acquisition. Results obtained with TMS in neurological patients as well as in normal subjects demonstrate that cortical plasticity is a necessity for correct adaptation to the continuously changing environment. Topographical reorganization of the motor cortex depends on the types of movements performed by the subjects. During simple training, the cortical representation is enlarged, and it returns to its initial size when the task is overlearned. These transient modifications characterize simple motor training. Motor skills in which coordination of distal and proximal muscles, precision of the task and spatio-temporal constraints are associated, has a different impact on cortical reorganization. We propose that years of practice of a complex motor skill induces a new cortical topography that must be interpreted as structural plasticity which provides the capacity to execute a plastic behaviour instead of a stereotypical movement. We review the neuronal mechanisms underlying plasticity in different types of movement. We stress new emerging notions, such as overlap of cortical maps, and system dynamics at single neuron and network levels, to explain the reorganization of movement representations that encode motor skill. Dendritic arborizations as functional computing elements, newly generated neurons in adult brain, and plastic architectures of cortical networks operating as distributed functional modules are new hypotheses for structural plasticity.For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years using new tools designed to study plasticity in the adult human brain. Transcranial magnetic stimulation (TMS) is a valuable non-invasive technique for exploring the ability of the motor cortex to change during motor skill acquisition. Results obtained with TMS in neurological patients as well as in normal subjects demonstrate that cortical plasticity is a necessity for correct adaptation to the continuously changing environment. Topographical reorganization of the motor cortex depends on the types of movements performed by the subjects. During simple training, the cortical representation is enlarged, and it returns to its initial size when the task is overlearned. These transient modifications characterize simple motor training. Motor skills in which coordination of distal and proximal muscles, precision of the task and spatio-temporal constraints are associated, has a different impact on cortical reorganization. We propose that years of practice of a complex motor skill induces a new cortical topography that must be interpreted as structural plasticity which provides the capacity to execute a plastic behaviour instead of a stereotypical movement. We review the neuronal mechanisms underlying plasticity in different types of movement. We stress new emerging notions, such as overlap of cortical maps, and system dynamics at single neuron and network levels, to explain the reorganization of movement representations that encode motor skill. Dendritic arborizations as functional computing elements, newly generated neurons in adult brain, and plastic architectures of cortical networks operating as distributed functional modules are new hypotheses for structural plasticity.
For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years using new tools designed to study plasticity in the adult human brain. Transcranial magnetic stimulation (TMS) is a valuable non-invasive technique for exploring the ability of the motor cortex to change during motor skill acquisition. Results obtained with TMS in neurological patients as well as in normal subjects demonstrate that cortical plasticity is a necessity for correct adaptation to the continuously changing environment. Topographical reorganization of the motor cortex depends on the types of movements performed by the subjects. During simple training, the cortical representation is enlarged, and it returns to its initial size when the task is overlearned. These transient modifications characterize simple motor training. Motor skills in which coordination of distal and proximal muscles, precision of the task and spatio-temporal constraints are associated, has a different impact on cortical reorganization. We propose that years of practice of a complex motor skill induces a new cortical topography that must be interpreted as structural plasticity which provides the capacity to execute a plastic behaviour instead of a stereotypical movement. We review the neuronal mechanisms underlying plasticity in different types of movement. We stress new emerging notions, such as overlap of cortical maps, and system dynamics at single neuron and network levels, to explain the reorganization of movement representations that encode motor skill. Dendritic arborizations as functional computing elements, newly generated neurons in adult brain, and plastic architectures of cortical networks operating as distributed functional modules are new hypotheses for structural plasticity.
Author Boyadjian, Alain
Tyc, François
Author_xml – sequence: 1
  givenname: François
  surname: Tyc
  fullname: Tyc, François
– sequence: 2
  givenname: Alain
  surname: Boyadjian
  fullname: Boyadjian, Alain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17180875$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOwzAUhi0EglL6CigTW4Id23EisZSqXETLte3AYjmxA4Y0KbbD5e1xaenAggf76Oj7zpH_fbBdN7UC4BDBCFFEj--Hs-vh9P4miiFMIsQiGpEk2wKdGGUohL67DToQYxIiluA90LP2BfpDMkQztgv2EEMpTBntgOmgMU4XogpuK2F9pd1XIGoZjBvXmKBfOP2-bD24Vmolgw_tnoOJEbUt_KW9NxZPtfKiR_S8rYTTTX0AdkpRWdVbv10wPRtOBhfh6Ob8ctAfhQUmzIWFLIiiJM8llBijDCulGFU4RaUvYR4zlMc5gVKWjKJEypTFeSnhkkd5WeIuOFrNXZjmrVXW8bm2haoqUaumtTxJY5rROPXg4Rps87mSfGH0XJgv_huEB05WQGEaa40quU_i5y_OCF1xBPkyev4bPV9G73VOuY_e68kffbPhPzFcido69bmxhHnlCcOM8rsJ4fD0ajSenT1ygr8BVNKZ9w
CitedBy_id crossref_primary_10_1080_10749357_2018_1466970
crossref_primary_10_1152_jn_00732_2009
crossref_primary_10_1093_cercor_bhy226
crossref_primary_10_2217_14796708_2_2_189
crossref_primary_10_1016_j_wneu_2025_123814
crossref_primary_10_1016_j_clinph_2010_05_022
crossref_primary_10_1016_j_neuroimage_2008_12_002
crossref_primary_10_1186_1743_0003_8_46
crossref_primary_10_3390_biomedicines12112506
crossref_primary_10_1016_j_neuroscience_2013_04_040
crossref_primary_10_1016_j_resp_2011_04_001
crossref_primary_10_1016_j_humov_2018_01_013
crossref_primary_10_1111_j_1365_2842_2009_01955_x
crossref_primary_10_1007_s00221_018_5349_5
crossref_primary_10_1080_00222895_2020_1738992
crossref_primary_10_1016_j_brainres_2019_146323
crossref_primary_10_1016_j_neulet_2012_02_075
crossref_primary_10_1016_j_resp_2007_09_007
crossref_primary_10_1016_j_neuroscience_2016_11_023
crossref_primary_10_3389_fneur_2022_793253
crossref_primary_10_1097_WNP_0b013e31818e7944
crossref_primary_10_1016_j_brainres_2014_02_017
crossref_primary_10_1111_j_1748_1716_2012_02451_x
crossref_primary_10_1523_JNEUROSCI_1435_10_2010
crossref_primary_10_1016_j_neuropharm_2011_07_024
crossref_primary_10_1016_j_tics_2008_09_004
Cites_doi 10.1016/0022-510X(93)90102-5
10.1111/j.1460-9568.2003.03066.x
10.1016/S0168-5597(97)00096-8
10.1207/s15326969eco0704_2
10.1152/jn.00900.2002
10.1523/JNEUROSCI.18-03-01115.1998
10.1139/y95-032
10.1073/pnas.85.6.2003
10.1038/nrn876
10.1523/JNEUROSCI.18-17-07000.1998
10.1126/science.270.5234.305
10.1016/0022-510X(96)00100-1
10.1126/science.1843843
10.1016/S1388-2457(02)00144-X
10.1111/j.1469-7793.1998.571bb.x
10.1152/jn.1994.71.6.2543
10.1016/S1388-2457(99)00323-5
10.1097/00001756-199402000-00010
10.1016/0168-5597(92)90094-R
10.1016/S0278-2626(02)00512-2
10.1038/368592b0
10.1016/0022-510X(88)90132-3
10.1016/S0163-1047(85)90310-3
10.1109/10.335848
10.1016/0028-3932(89)90090-0
10.1016/S1388-2457(98)00044-3
10.1016/S0304-3940(99)00930-1
10.1093/brain/110.5.1173
10.1523/JNEUROSCI.22-12-05074.2002
10.1016/S1388-2457(02)00008-1
10.1093/brain/114.1.615
10.1093/brain/113.6.1843
10.1101/lm.6.6.542
10.1016/0168-5597(89)90036-1
10.1016/S0924-980X(98)00038-1
10.1016/0168-5597(93)90116-7
10.1111/j.1469-7793.1999.0591t.x
10.1007/BF00229319
10.1016/S0006-8993(99)01553-X
10.1016/S0140-6736(85)92413-4
10.1038/jcbfm.1991.122
10.1097/00019052-199912000-00009
10.1016/j.neuroscience.2003.09.029
10.1038/35018000
10.1113/jphysiol.1993.sp019912
10.1097/00004691-199101000-00005
10.1113/jphysiol.1993.sp019467
10.1152/jn.1998.80.6.3321
10.1007/s00221-003-1480-y
10.1006/nimg.1996.0001
10.1007/BF02510738
10.1136/jnnp.70.4.506
10.1034/j.1600-0404.2000.90337a.x
10.1093/cercor/bhh020
10.1016/0168-5597(94)90076-0
10.1152/jn.00595.2003
10.1146/annurev.neuro.28.051804.101459
10.1523/JNEUROSCI.23-12-05308.2003
10.1002/ana.410400306
10.1113/jphysiol.1996.sp021734
10.1161/01.STR.28.1.110
10.1111/j.1469-7793.1998.625bq.x
10.1016/j.brainres.2003.12.039
10.1177/1073858405278015
10.1093/brain/110.5.1191
10.1016/S1388-2457(03)00263-3
10.1126/science.2655083
10.1016/0168-5597(92)90096-T
10.1016/S0924-980X(97)95720-9
10.1093/brain/112.3.649
10.1523/JNEUROSCI.12-07-02542.1992
10.1093/cercor/bhj052
10.1038/35036239
10.1080/00222895.1995.9941716
10.1523/JNEUROSCI.5016-03.2004
10.1016/0304-3940(87)90083-8
10.1093/brain/116.1.1
10.1073/pnas.84.4.1123
10.1037/0096-1523.18.2.403
10.1002/ana.410380106
10.1007/s00221-003-1448-y
10.1523/JNEUROSCI.19-17-07679.1999
10.1016/S1388-2457(03)00320-1
10.1093/brain/124.6.1171
10.1007/BF01294721
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1515/REVNEURO.2006.17.5.469
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2191-0200
EndPage 496
ExternalDocumentID 17180875
10_1515_REVNEURO_2006_17_5_469
ark_67375_QT4_0BKLMVFZ_4
Genre Journal Article
Review
GroupedDBID ---
-~0
0R~
0~D
123
3V.
4.4
53G
7X7
88E
8FE
8FH
8FI
8FJ
8G5
9-L
AAAEU
AAFPC
AAGVJ
AAILP
AAKRG
AALGR
AAONY
AAOWA
AAPJK
AAQCX
AASQH
AASQN
AAWFC
AAXCG
AAXMT
ABABW
ABAOT
ABAQN
ABFKT
ABIQR
ABIVO
ABJNI
ABLVI
ABMIY
ABPLS
ABRDF
ABRQL
ABUVI
ABUWG
ABVMU
ABWLS
ABXMZ
ABYBW
ACEFL
ACGFS
ACIWK
ACMKP
ACPMA
ACPRK
ACXLN
ACZBO
ADALX
ADBBV
ADEQT
ADGQD
ADGYE
ADOZN
AEDGQ
AEGVQ
AEICA
AEJTT
AEKEB
AEMOE
AENEX
AEQDQ
AERZL
AEXIE
AFAUI
AFBAA
AFBQV
AFCXV
AFGNR
AFKRA
AFQUK
AFYRI
AGBEV
AGGNV
AGWTP
AHMBA
AHVWV
AHXUK
AIERV
AIKXB
AJATJ
AJPIC
AKXKS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUKF
AMAVY
ASPBG
ASYPN
AVWKF
AZFZN
AZMOX
AZQEC
BAKPI
BBCWN
BBDJO
BBNVY
BCIFA
BDLBQ
BENPR
BHPHI
BPHCQ
BSCLL
BVXVI
CCPQU
DA2
DASCH
DBYYV
DWQXO
EBS
EJD
EMOBN
F5P
FEDTE
FSTRU
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IY9
KDIRW
LK8
M1P
M2M
M2O
M7P
O9-
P2P
PADUT
PQQKQ
PROAC
PSQYO
PSYQQ
QD8
RDG
SA.
SLJYH
UK5
UKHRP
WTRAM
AAYXX
ABDRH
ACDEB
ACRPL
ACUND
ACYCL
ADNMO
AECWL
AFBDD
AFSHE
AGQPQ
AIWOI
CITATION
LVMAB
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADNPR
DSRVY
ID FETCH-LOGICAL-c347t-cdc4e54bbd0d33193eee75e381f3ee0b271b2b40ddf7516dd872bfd0bd0d1bff3
ISSN 0334-1763
IngestDate Fri Sep 05 11:58:54 EDT 2025
Wed Feb 19 01:46:24 EST 2025
Tue Jul 01 01:58:32 EDT 2025
Thu Apr 24 23:11:44 EDT 2025
Wed Oct 30 09:29:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-cdc4e54bbd0d33193eee75e381f3ee0b271b2b40ddf7516dd872bfd0bd0d1bff3
Notes istex:A1E9DF3ACD97F920AB9F972CC3B080C265E98F80
ArticleID:REVNEURO.2006.17.5.469
ark:/67375/QT4-0BKLMVFZ-4
revneuro.2006.17.5.469.pdf
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 17180875
PQID 68259528
PQPubID 23479
PageCount 28
ParticipantIDs proquest_miscellaneous_68259528
pubmed_primary_17180875
crossref_citationtrail_10_1515_REVNEURO_2006_17_5_469
crossref_primary_10_1515_REVNEURO_2006_17_5_469
istex_primary_ark_67375_QT4_0BKLMVFZ_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006
2006-01-00
2006-00-00
20060101
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: 2006
PublicationDecade 2000
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Reviews in the neurosciences
PublicationTitleAlternate Rev Neurosci
PublicationYear 2006
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References Ming G-L (p_126) 2005; 28
Ziemann U (p_249) 2004; 24
Pons TP (p_161) 1991; 252
Kelso JAS (p_92) 1990; 2
Grafton ST (p_61) 1992; 12
Penfield W (p_153) 1937; 6
Wassermann EM (p_236) 2002; 113
Michaels C (p_124) 1995; 7
Wassermann EM (p_235) 1998; 108
Traversa R (p_219) 1997; 2
Day B (p_41) 1989; 112
Kuhtz-Buschbeck JP (p_104) 2003; 18
Atwood HL (p_6) 1999; 6
Wassermann EM (p_232) 1993; 89
Meintzschel F (p_123) 2006; 16
(p_227) 1963; 166
Maeda F (p_119) 2000; 111
Duffau H (p_49) 2001; 70
Liepert J (p_114) 2004; 1003
Kleim JA (p_96) 1998; 80
Kleim JA (p_98) 1996; 16
Maccabee PJ (p_116) 1993; 460
Ridding M C (p_168) 1995; 73
Maeda F (p_118) 2002; 113
Monfils M-H (p_129) 2004; 14
Wolters (p_242) 2003; 89
Anand S (p_4) 2002; 50
Di Lazzaro V (p_45) 1998; 109
Hallett M (p_65) 2000; 406
Hari R (p_67) 1989; 244
Lee L (p_108) 2003; 23
Ziemann U (p_251) 2001; 124
Lexell J (p_110) 1988; 84
Lee DL (p_107) 1995; 27
Malinow R (p_121) 1998
Walsh V (p_230) 2000; 1
Zanone PG (p_246) 1992; 18
Day BL (p_39) 1987; 75
Liepert J (p_113) 1998; 104
Mano Y (p_122) 1995; 38
(p_85) 1991; 2
Di Lazzaro V (p_44) 2004; 115
Maccabee PJ (p_117) 1998; 513
Werhahn KJ (p_237) 1999; 517
Rossini P M (p_183) 1987; 1
Wu C W (p_243) 1999; 19
Mills KR (p_125) 1992; 85
Byrnes M L (p_24) 1999; 110
(p_80) 1982; 79
Atwood HL (p_5) 2002; 3
Malenka R (p_120) 1998
Withers GS (p_240) 1989; 27
Mortifee P (p_130) 1994; 93
Ziemann U (p_250) 1996; 40
Ridding M C (p_93) 1994; 72
Cohen LG (p_32) 1991
Sanes JN (p_194) 1988; 85
Yang TT (p_245) 1994; 368
Foerster O (p_55) 1936
Monfils M-H (p_128) 2005; 11
Wilson SA (p_238) 1993; 118
Day BL (p_38) 1987; 110
Colebatch JG (p_36) 1990; 113
Yang T T (p_244) 1994; 5
Liepert J (p_112) 2000; 101
Kujirai T (p_105) 1993; 471
Di Lazzaro V (p_46) 1998; 508
Brasil-Neto JP (p_18) 1993; 116
Amassian VE (p_3) 1989; 74
Dettmers C (p_42) 1999; 2
Elbert T (p_52) 1995; 270
Ziemann U (p_247) 1998; 18
Miranda PC (p_127) 1997; 105
(p_8) 1991; 8
Latash ML (p_106) 2003; 151
Hess G (p_74) 1994; 71
Rossini P M (p_182) 1987; 14
Stewart M (p_164) 1992; 2
Krings T (p_103) 2000; 278
Liepert J (p_111) 1999; 12
Tinazzi M (p_215) 2003; 150
Friston KJ (p_57) 1991; 11
Greenough WT (p_63) 1985; 44
de Groot J (p_43) 1950; 1
Abdeen MA (p_1) 1994; 41
Wassermann EM (p_231) 1992; 85
Salmons S (p_189) 1969; 2
Shimizu T (p_205) 1999; 834
Ziemann U (p_248) 1998; 18
Barker AT (p_7) 1985
Cohen LG (p_33) 1991; 114
Levy WJ (p_109) 1991
Rothwell JC (p_185) 1987; 110
(p_228) 1963; 1
Gamba HR (p_59) 1998; 36
Garry MI (p_60) 2004; 91
Ziemann U (p_252) 1996; 496
Liepert J. T M S (p_115) 1999
Foltys H (p_56) 2003; 114
Donoghue JP (p_48) 1990; 79
Barth T M (p_196) 1986; 3
Farmer J (p_54) 2004; 124
Ehrsson HH (p_51) 2002; 22
Donoghue JP (p_47) 1987; 84
Hanajima R (p_66) 1996; 140
Wassermann EM (p_234) 1996; 3
References_xml – volume: 6
  start-page: 9
  year: 1937
  ident: p_153
  publication-title: Brain
– volume: 118
  start-page: 134
  year: 1993
  ident: p_238
  publication-title: J Neurol Sei
  doi: 10.1016/0022-510X(93)90102-5
– volume: 2
  start-page: 1159
  year: 1992
  ident: p_164
  publication-title: Science
– volume: 18
  start-page: 3375
  year: 2003
  ident: p_104
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2003.03066.x
– volume: 108
  start-page: 1
  year: 1998
  ident: p_235
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0168-5597(97)00096-8
– volume: 7
  start-page: 259
  year: 1995
  ident: p_124
  publication-title: Ecol Psychol
  doi: 10.1207/s15326969eco0704_2
– volume: 3
  start-page: 104
  year: 1986
  ident: p_196
  publication-title: Brain Res
– volume: 89
  start-page: 2339
  year: 2003
  ident: p_242
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00900.2002
– volume: 18
  start-page: 1115
  year: 1998
  ident: p_247
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-03-01115.1998
– volume: 73
  start-page: 218
  year: 1995
  ident: p_168
  publication-title: Can J Physiol Pharmacol
  doi: 10.1139/y95-032
– volume: 85
  start-page: 3
  year: 1988
  ident: p_194
  publication-title: Proc Natl Acad Sei U S A
  doi: 10.1073/pnas.85.6.2003
– volume: 3
  start-page: 497
  year: 2002
  ident: p_5
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn876
– volume: 18
  start-page: 7000
  year: 1998
  ident: p_248
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-17-07000.1998
– volume: 270
  start-page: 305
  year: 1995
  ident: p_52
  publication-title: Science
  doi: 10.1126/science.270.5234.305
– volume: 140
  start-page: 109
  year: 1996
  ident: p_66
  publication-title: J Neurol Sei
  doi: 10.1016/0022-510X(96)00100-1
– volume: 252
  start-page: 1857
  year: 1991
  ident: p_161
  publication-title: Science
  doi: 10.1126/science.1843843
– volume: 113
  start-page: 1165
  year: 2002
  ident: p_236
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00144-X
– start-page: 36
  year: 1991
  ident: p_32
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 513
  start-page: 571
  year: 1998
  ident: p_117
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1998.571bb.x
– volume: 166
  start-page: 1
  year: 1963
  ident: p_227
  publication-title: J Physiol
– volume: 71
  start-page: 3
  year: 1994
  ident: p_74
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1994.71.6.2543
– volume: 111
  start-page: 800
  year: 2000
  ident: p_119
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00323-5
– volume: 1
  start-page: 183
  year: 1987
  ident: p_183
  publication-title: Neurosurgery
– volume: 2
  start-page: 5
  year: 1969
  ident: p_189
  publication-title: J Physiol
– volume: 5
  start-page: 701
  year: 1994
  ident: p_244
  publication-title: NeuroReport
  doi: 10.1097/00001756-199402000-00010
– volume: 85
  start-page: 1
  year: 1992
  ident: p_231
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(92)90094-R
– volume: 50
  start-page: 336
  year: 2002
  ident: p_4
  publication-title: Brain Cogn
  doi: 10.1016/S0278-2626(02)00512-2
– volume: 368
  start-page: 592
  year: 1994
  ident: p_245
  publication-title: Nature
  doi: 10.1038/368592b0
– volume: 84
  start-page: 275
  year: 1988
  ident: p_110
  publication-title: J Neurol Sei
  doi: 10.1016/0022-510X(88)90132-3
– volume: 44
  start-page: 301
  year: 1985
  ident: p_63
  publication-title: Behav Neural Biol
  doi: 10.1016/S0163-1047(85)90310-3
– volume: 41
  start-page: 1092
  year: 1994
  ident: p_1
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.335848
– volume: 27
  start-page: 61
  year: 1989
  ident: p_240
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(89)90090-0
– volume: 110
  start-page: 7
  year: 1999
  ident: p_24
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(98)00044-3
– volume: 278
  start-page: 189
  year: 2000
  ident: p_103
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(99)00930-1
– volume: 110
  start-page: 1173
  year: 1987
  ident: p_185
  publication-title: Brain
  doi: 10.1093/brain/110.5.1173
– volume: 22
  start-page: 5074
  year: 2002
  ident: p_51
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-12-05074.2002
– volume: 113
  start-page: 376
  year: 2002
  ident: p_118
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00008-1
– start-page: 151
  year: 1999
  ident: p_115
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 114
  start-page: 615
  year: 1991
  ident: p_33
  publication-title: Brain
  doi: 10.1093/brain/114.1.615
– volume: 113
  start-page: 1843
  year: 1990
  ident: p_36
  publication-title: Brain
  doi: 10.1093/brain/113.6.1843
– volume: 1
  start-page: 3
  year: 1963
  ident: p_228
  publication-title: J Physiol
– start-page: 207
  year: 1998
  ident: p_120
  publication-title: Central Synapses: Quantal Mechanisms and Plasticity. Strasbourg: Human Frontier Science Program
– volume: 6
  start-page: 542
  year: 1999
  ident: p_6
  publication-title: Learn Mem
  doi: 10.1101/lm.6.6.542
– volume: 74
  start-page: 458
  year: 1989
  ident: p_3
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(89)90036-1
– volume: 109
  start-page: 397
  year: 1998
  ident: p_45
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0924-980X(98)00038-1
– volume: 89
  start-page: 424
  year: 1993
  ident: p_232
  publication-title: Electroencephalogr Neurophysiol
  doi: 10.1016/0168-5597(93)90116-7
– volume: 517
  start-page: 591
  year: 1999
  ident: p_237
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1999.0591t.x
– volume: 79
  start-page: 492
  year: 1990
  ident: p_48
  publication-title: Exp Brain Res
  doi: 10.1007/BF00229319
– volume: 834
  start-page: 74
  year: 1999
  ident: p_205
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(99)01553-X
– start-page: 1106
  year: 1985
  ident: p_7
  publication-title: Lancet
  doi: 10.1016/S0140-6736(85)92413-4
– volume: 1
  start-page: 5
  year: 1950
  ident: p_43
  publication-title: J Physiol
– volume: 11
  start-page: 690
  year: 1991
  ident: p_57
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.1991.122
– volume: 12
  start-page: 709
  year: 1999
  ident: p_111
  publication-title: Curr Opin Neurol
  doi: 10.1097/00019052-199912000-00009
– volume: 2
  start-page: 4
  year: 1991
  ident: p_85
  publication-title: Science
– volume: 124
  start-page: 71
  year: 2004
  ident: p_54
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2003.09.029
– volume: 406
  start-page: 147
  year: 2000
  ident: p_65
  publication-title: Nature
  doi: 10.1038/35018000
– volume: 471
  start-page: 501
  year: 1993
  ident: p_105
  publication-title: J Physiol Lond
  doi: 10.1113/jphysiol.1993.sp019912
– volume: 8
  start-page: 26
  year: 1991
  ident: p_8
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-199101000-00005
– volume: 460
  start-page: 201
  year: 1993
  ident: p_116
  publication-title: J Physiol Lond
  doi: 10.1113/jphysiol.1993.sp019467
– volume: 80
  start-page: 1
  year: 1998
  ident: p_96
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1998.80.6.3321
– volume: 151
  start-page: 60
  year: 2003
  ident: p_106
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1480-y
– volume: 3
  start-page: 1
  year: 1996
  ident: p_234
  publication-title: Neuroimage
  doi: 10.1006/nimg.1996.0001
– volume: 36
  start-page: 165
  year: 1998
  ident: p_59
  publication-title: Med Biol Comput
  doi: 10.1007/BF02510738
– volume: 70
  start-page: 506
  year: 2001
  ident: p_49
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.70.4.506
– volume: 101
  start-page: 321
  year: 2000
  ident: p_112
  publication-title: Acta Neurol Scand
  doi: 10.1034/j.1600-0404.2000.90337a.x
– volume: 14
  start-page: 586
  year: 2004
  ident: p_129
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhh020
– start-page: 51
  year: 1991
  ident: p_109
  publication-title: Magnetic Motor Stimulation: Basic Principles and Clinical Experience. Electroencephogr Clin Neurophysiol
– volume: 93
  start-page: 131
  year: 1994
  ident: p_130
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(94)90076-0
– volume: 2
  start-page: 9
  year: 1990
  ident: p_92
  publication-title: Springer-Verlag
– volume: 91
  start-page: 1570
  year: 2004
  ident: p_60
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00595.2003
– volume: 14
  start-page: 1
  year: 1987
  ident: p_182
  publication-title: Brain Res
– volume: 28
  start-page: 223
  year: 2005
  ident: p_126
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.28.051804.101459
– volume: 23
  start-page: 5308
  year: 2003
  ident: p_108
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-12-05308.2003
– volume: 40
  start-page: 367
  year: 1996
  ident: p_250
  publication-title: Ann Neurol
  doi: 10.1002/ana.410400306
– volume: 496
  start-page: 873
  year: 1996
  ident: p_252
  publication-title: J Physiol Lond
  doi: 10.1113/jphysiol.1996.sp021734
– volume: 2
  start-page: 110
  year: 1997
  ident: p_219
  publication-title: Stroke
  doi: 10.1161/01.STR.28.1.110
– volume: 508
  start-page: 625
  year: 1998
  ident: p_46
  publication-title: J Physiol Lond
  doi: 10.1111/j.1469-7793.1998.625bq.x
– volume: 1003
  start-page: 68
  year: 2004
  ident: p_114
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2003.12.039
– start-page: 226
  year: 1998
  ident: p_121
  publication-title: Central Synapses: Quantal Mechanisms and Plasticity. Strasbourg: Human Frontier Science Program
– volume: 11
  start-page: 471
  year: 2005
  ident: p_128
  publication-title: Neuroseientist
  doi: 10.1177/1073858405278015
– volume: 110
  start-page: 1191
  year: 1987
  ident: p_38
  publication-title: Brain
  doi: 10.1093/brain/110.5.1191
– volume: 114
  start-page: 2404
  year: 2003
  ident: p_56
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00263-3
– volume: 244
  start-page: 432
  year: 1989
  ident: p_67
  publication-title: Science
  doi: 10.1126/science.2655083
– volume: 16
  start-page: 9
  year: 1996
  ident: p_98
  publication-title: J Nerurosci
– volume: 85
  start-page: 17
  year: 1992
  ident: p_125
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(92)90096-T
– volume: 105
  start-page: 116
  year: 1997
  ident: p_127
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0924-980X(97)95720-9
– volume: 112
  start-page: 649
  year: 1989
  ident: p_41
  publication-title: Brain
  doi: 10.1093/brain/112.3.649
– volume: 12
  start-page: 2542
  year: 1992
  ident: p_61
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.12-07-02542.1992
– volume: 79
  start-page: 4
  year: 1982
  ident: p_80
  publication-title: Proc Natl Acad Sei U S A
– volume: 2
  start-page: 1
  year: 1999
  ident: p_42
  publication-title: Neurosci Lett
– volume: 16
  start-page: 1106
  year: 2006
  ident: p_123
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhj052
– volume: 1
  start-page: 73
  year: 2000
  ident: p_230
  publication-title: Nat Rev Neurosci
  doi: 10.1038/35036239
– volume: 27
  start-page: 263
  year: 1995
  ident: p_107
  publication-title: J Mot Behav
  doi: 10.1080/00222895.1995.9941716
– volume: 24
  start-page: 1666
  year: 2004
  ident: p_249
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5016-03.2004
– volume: 75
  start-page: 101
  year: 1987
  ident: p_39
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(87)90083-8
– volume: 72
  start-page: 7
  year: 1994
  ident: p_93
  publication-title: J Neurophysiol
– volume: 116
  start-page: 1
  year: 1993
  ident: p_18
  publication-title: Brain
  doi: 10.1093/brain/116.1.1
– volume: 84
  start-page: 1123
  year: 1987
  ident: p_47
  publication-title: Proc Natl Acad Sei USA
  doi: 10.1073/pnas.84.4.1123
– volume: 18
  start-page: 403
  year: 1992
  ident: p_246
  publication-title: J Exp Psychol: Hum Percept Perform
  doi: 10.1037/0096-1523.18.2.403
– start-page: 1
  year: 1936
  ident: p_55
  publication-title: Springer
– volume: 38
  start-page: 15
  year: 1995
  ident: p_122
  publication-title: Ann Neurol
  doi: 10.1002/ana.410380106
– volume: 150
  start-page: 222
  year: 2003
  ident: p_215
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1448-y
– volume: 19
  start-page: 7679
  year: 1999
  ident: p_243
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-17-07679.1999
– volume: 115
  start-page: 112
  year: 2004
  ident: p_44
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00320-1
– volume: 124
  start-page: 1171
  year: 2001
  ident: p_251
  publication-title: Brain
  doi: 10.1093/brain/124.6.1171
– volume: 104
  start-page: 1207
  year: 1998
  ident: p_113
  publication-title: J Neural Transm
  doi: 10.1007/BF01294721
SSID ssj0000491597
Score 1.9021018
SecondaryResourceType review_article
Snippet For decades cortical representations of the parts of the body have been considered to be unchangeable. This view has changed radically during the past 20 years...
SourceID proquest
pubmed
crossref
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 469
SubjectTerms Adaptation, Physiological
Animals
Brain - physiology
Brain Mapping
Humans
Learning - physiology
Motor Activity - physiology
Neuronal Plasticity - physiology
Transcranial Magnetic Stimulation
Title Cortical Plasticity and Motor Activity Studied with Transcranial Magnetic Stimulation
URI https://api.istex.fr/ark:/67375/QT4-0BKLMVFZ-4/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17180875
https://www.proquest.com/docview/68259528
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Zb9MwGLdglRAvEzfl9APiBaXLYcfNYzd1TEAnQG018WLFR1BhS1CXSpS_ns9HDmATg5cosuwm8ffrd_k7EHohiSCpKNIgE1oFIAJkkJE8D0D0prHIJKP2BH92nB4tyJsTetJ5lWx2SS1G8seFeSX_Q1UYA7qaLNl_oGz7ozAA90BfuAKF4XolGh9Ua-eKfg86sAmPrl01pVkFlvSrifSdIVysoA8zt8JJwsVm5eafS5PFCFNWZ76RV19ddScH500wZK_4ZRd6ON_KRgO2p-6sWnWu92qbqy8r52SdnOa-zHfrZeiCRACs6822iRX2qVYJMZUlHWfSdgw4XxSEruxox1pZD0K0xyeJ68_iRS5xTW3_4ObUFr74OF0em7BGd3IUsREdtcv75bN_E2ttsGG-_mqi1xjlH-aEh_tv382Wh584uY4GMWMRsMLB5PX-dNm65sBoAiXPJto3H-pzy-GF9i5-nV_UmoH5h36_3Gaxusv8Ftr1RgeeOATdRtd0eQfdmPmwirto0QAJd0DCACRsgYQbIGEPJGyAhPtAwg2QcA9I99DicDo_OAp8v41AJoTVgVSSaEqEUKFKgDUnWmtGNeh0BdyGImaRiAUJlSoYjVKlxiwWhQrN_EgURXIf7ZRVqR8inOVyDPrROCREg1TIM1CUUqZTMP_B3g-zIaLNdnHpi9Gbniin3BilsM282WbTJzXlEeOUwzYP0V677psrx_LXFS8tNdrpl8FhiJ435OLAYs25WV7qanPO03FMMxqPh-iBo2L3aNDsTEuIR1d9yGN0s_PhPUE79Xqjn4JWW4tnHoU_ATZzoV4
linkProvider Walter de Gruyter
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+Plasticity+and+Motor+Activity+Studied+with+Transcranial+Magnetic+Stimulation&rft.jtitle=Reviews+in+the+neurosciences&rft.au=Tyc%2C+Fran%C3%A7ois&rft.au=Boyadjian%2C+Alain&rft.date=2006&rft.pub=De+Gruyter&rft.issn=0334-1763&rft.eissn=2191-0200&rft.volume=17&rft.issue=5&rft.spage=469&rft.epage=496&rft_id=info:doi/10.1515%2FREVNEURO.2006.17.5.469&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_QT4_0BKLMVFZ_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0334-1763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0334-1763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0334-1763&client=summon