Slip role for unsteady MHD mixed convection of nanofluid over stretching sheet with thermal radiation and electric field
This paper mainly focuses on the impacts of slip conditions on the two-dimensional unsteady mixed convection flow of electrical magnetohydrodynamic nanofluid over a stretching sheet in the presence of thermal radiation, viscous dissipation, and chemical reaction. The synchronized impacts of electric...
Saved in:
Published in | Indian journal of physics Vol. 94; no. 2; pp. 195 - 207 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper mainly focuses on the impacts of slip conditions on the two-dimensional unsteady mixed convection flow of electrical magnetohydrodynamic nanofluid over a stretching sheet in the presence of thermal radiation, viscous dissipation, and chemical reaction. The synchronized impacts of electric and magnetic fields on the momentum and energy fields using Buongiorno nanofluid model were introduced to enhance thermal conductivity and hence create more pathways to heat transfer performance of nanofluid. The highly nonlinear couple systems of partial differential equations were modeled as a set of nonlinear ordinary differential equations by using suitably defined transformations which are then solved by implicit finite difference scheme known as Keller box method. It was established that velocity has a direct opposite relationship with electric and magnetic fields. The velocity, temperature, and concentration profiles caused intense decay to velocity slip, thermal slip, and solutal slip, with permeability condition. Magnetic field enhances the nanofluid temperature intensely with impermeable medium resulting in a decrease in heat transfer rate from the surface. The heat convection current is strengthened by viscous dissipation and radiative heat transfer prevailing impermeability, which leads to a reduction in heat transfer rate. Comparisons with previously published works seen in the literature were made, and the result was found to be in excellent agreement. |
---|---|
AbstractList | This paper mainly focuses on the impacts of slip conditions on the two-dimensional unsteady mixed convection flow of electrical magnetohydrodynamic nanofluid over a stretching sheet in the presence of thermal radiation, viscous dissipation, and chemical reaction. The synchronized impacts of electric and magnetic fields on the momentum and energy fields using Buongiorno nanofluid model were introduced to enhance thermal conductivity and hence create more pathways to heat transfer performance of nanofluid. The highly nonlinear couple systems of partial differential equations were modeled as a set of nonlinear ordinary differential equations by using suitably defined transformations which are then solved by implicit finite difference scheme known as Keller box method. It was established that velocity has a direct opposite relationship with electric and magnetic fields. The velocity, temperature, and concentration profiles caused intense decay to velocity slip, thermal slip, and solutal slip, with permeability condition. Magnetic field enhances the nanofluid temperature intensely with impermeable medium resulting in a decrease in heat transfer rate from the surface. The heat convection current is strengthened by viscous dissipation and radiative heat transfer prevailing impermeability, which leads to a reduction in heat transfer rate. Comparisons with previously published works seen in the literature were made, and the result was found to be in excellent agreement. |
Author | Ismail, Zuhaila Bahar, Arifah Aziz, Zainal Abdul Salah, Faisal Daniel, Yahaya Shagaiya |
Author_xml | – sequence: 1 givenname: Yahaya Shagaiya surname: Daniel fullname: Daniel, Yahaya Shagaiya organization: Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, Department of Mathematical Sciences, Faculty of Science, Kaduna State University – sequence: 2 givenname: Zainal Abdul surname: Aziz fullname: Aziz, Zainal Abdul email: zainalaz@utm.my organization: Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia – sequence: 3 givenname: Zuhaila surname: Ismail fullname: Ismail, Zuhaila organization: Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia – sequence: 4 givenname: Arifah surname: Bahar fullname: Bahar, Arifah organization: Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia – sequence: 5 givenname: Faisal surname: Salah fullname: Salah, Faisal organization: Department of Mathematics, College of Science and Art, King Abdul-Aziz University |
BookMark | eNp9kUFPGzEQhS0EEiTwBzhZ6nlb22uv7WNFW4IE4gCcLa93TIw2dmo7Kfn3XRKkSj3kMJo5vO_NjN4MncYUAaFrSr5SQuS3QlnHVUOonopL3uxO0AXR06AVF6f7uW0oF-oczUp5I6TTVIoL9P40hjXOaQTsU8abWCrYYYcfFj_wKrzDgF2KW3A1pIiTx9HG5MdNGHDaQsalZqhuGeIrLkuAiv-EusR1CXllR5ztEOyetHHAME42OTjsA4zDJTrzdixw9dnn6OXXz-ebRXP_eHt38_2-cS2XtXG964eeM-GdUJR4aUF2vRVMdHrQDKgH5xnjSjAueiq96lvFOqG1Zb7nsp2jLwffdU6_N1CqeUubHKeVhrWCEUWkIkdVjGrF2o6pSaUOKpdTKRm8caHuH6zZhtFQYj7SMIc0zJSG2adhdhPK_kPXOaxs3h2H2gNUJnF8hfzvqiPUXy_LoMY |
CitedBy_id | crossref_primary_10_1080_19397038_2024_2449384 crossref_primary_10_1007_s10404_021_02514_y crossref_primary_10_1142_S0217979223502326 crossref_primary_10_1002_zamm_202400194 crossref_primary_10_1007_s41939_025_00818_y crossref_primary_10_1142_S0217979223501515 crossref_primary_10_3390_en15166060 crossref_primary_10_1142_S0217979224500395 crossref_primary_10_1007_s10973_020_09603_0 crossref_primary_10_1142_S0217979223502521 crossref_primary_10_1016_j_finmec_2022_100102 crossref_primary_10_1142_S0217979224502060 crossref_primary_10_3390_sym13122334 crossref_primary_10_1002_htj_22736 crossref_primary_10_1142_S0217979223503058 crossref_primary_10_1002_zamm_202200454 crossref_primary_10_1177_0958305X241244487 crossref_primary_10_1063_1_5120455 crossref_primary_10_1016_j_surfin_2021_101267 crossref_primary_10_1177_00368504231195504 crossref_primary_10_1016_j_icheatmasstransfer_2022_106262 crossref_primary_10_3389_fmats_2022_964543 crossref_primary_10_1080_02726351_2024_2412654 crossref_primary_10_1016_j_aej_2024_06_004 crossref_primary_10_1016_j_heliyon_2023_e22503 crossref_primary_10_1093_ijlct_ctac045 crossref_primary_10_1007_s40819_021_01137_9 crossref_primary_10_1142_S0217979224501212 crossref_primary_10_2139_ssrn_4100922 crossref_primary_10_1016_j_jocs_2024_102256 crossref_primary_10_1177_01445987241276261 crossref_primary_10_1002_zamm_202300733 crossref_primary_10_1016_j_cjph_2024_02_013 crossref_primary_10_1155_2021_6610332 crossref_primary_10_1002_zamm_202300260 crossref_primary_10_1007_s41939_024_00670_6 crossref_primary_10_1016_j_icheatmasstransfer_2020_104973 crossref_primary_10_1002_htj_22460 crossref_primary_10_1016_j_ijmecsci_2022_107676 crossref_primary_10_1007_s12648_021_02025_0 crossref_primary_10_1016_j_aej_2023_11_070 crossref_primary_10_3390_nano12111791 crossref_primary_10_1080_10407782_2024_2334446 crossref_primary_10_1142_S0217979225501127 crossref_primary_10_1080_17455030_2022_2055205 crossref_primary_10_3390_coatings11091048 crossref_primary_10_1016_j_csite_2025_105862 crossref_primary_10_1016_j_tsep_2020_100801 crossref_primary_10_1002_zamm_202400052 crossref_primary_10_1016_j_heliyon_2023_e18376 crossref_primary_10_1016_j_heliyon_2024_e26958 crossref_primary_10_1142_S0217979223501977 crossref_primary_10_1016_j_icheatmasstransfer_2022_106239 crossref_primary_10_1016_j_heliyon_2023_e20053 crossref_primary_10_1142_S0217979224500693 crossref_primary_10_1002_zamm_202300642 crossref_primary_10_1142_S0217979224502230 crossref_primary_10_1002_zamm_202300053 crossref_primary_10_1016_j_fuel_2022_123601 crossref_primary_10_1007_s12648_021_02073_6 crossref_primary_10_1002_zamm_202400568 crossref_primary_10_1016_j_icheatmasstransfer_2021_105196 crossref_primary_10_1080_10406638_2023_2169721 crossref_primary_10_1177_09544089231159203 crossref_primary_10_1142_S0217979224502849 crossref_primary_10_1016_j_csite_2024_104683 crossref_primary_10_1002_cjce_25352 crossref_primary_10_1080_16583655_2024_2347057 crossref_primary_10_1007_s12668_024_01427_8 crossref_primary_10_1080_10407790_2023_2252598 crossref_primary_10_1155_2021_6665743 crossref_primary_10_1016_j_applthermaleng_2024_124603 crossref_primary_10_1016_j_icheatmasstransfer_2021_105816 crossref_primary_10_1016_j_asej_2021_06_005 crossref_primary_10_1088_1402_4896_abb7aa crossref_primary_10_1016_j_finmec_2022_100129 crossref_primary_10_23939_mmc2022_01_083 crossref_primary_10_1002_htj_22244 crossref_primary_10_1080_10407782_2023_2176383 crossref_primary_10_1177_16878132241245833 crossref_primary_10_1016_j_csite_2021_100867 crossref_primary_10_1016_j_csite_2022_102389 crossref_primary_10_1002_zamm_202400375 |
Cites_doi | 10.1016/j.aej.2015.03.029 10.1016/j.jcis.2017.03.024 10.1016/j.molliq.2018.05.132 10.1016/j.ijheatmasstransfer.2018.04.076 10.1016/j.molliq.2018.04.147 10.1016/j.ijheatmasstransfer.2016.05.142 10.1016/j.molliq.2016.04.032 10.1016/j.ijheatmasstransfer.2018.07.013 10.1063/1.5009611 10.1115/1.2150834 10.1016/j.taml.2017.06.003 10.1016/j.physleta.2018.01.024 10.1016/j.ijheatmasstransfer.2018.02.015 10.1016/j.molliq.2018.06.083 10.1016/j.aej.2017.07.007 10.1016/j.molliq.2017.09.075 10.1016/j.cjph.2017.08.028 10.1016/j.molliq.2018.04.111 10.1016/j.compfluid.2014.05.013 10.1016/j.ijthermalsci.2011.11.017 10.1615/IntJMultCompEng.2017021952 10.1016/j.ijheatmasstransfer.2016.04.016 10.1007/s40034-016-0084-6 10.1016/j.molliq.2018.03.067 10.1016/j.ijheatfluidflow.2018.05.005 10.1063/1.5012517 10.1016/j.cjph.2017.04.001 10.1016/j.physleta.2018.05.021 10.1016/j.molliq.2018.04.144 10.1371/journal.pone.0180976 10.1016/j.molliq.2018.01.130 10.1016/j.jmmm.2014.09.013 10.1016/j.ijheatmasstransfer.2015.08.013 10.1016/j.ijheatmasstransfer.2017.12.109 10.1016/j.cma.2018.04.020 10.1016/j.molliq.2016.11.107 10.1016/j.colsurfa.2017.12.021 10.1016/j.ijheatmasstransfer.2018.05.128 10.1016/j.ijheatmasstransfer.2018.04.155 10.1016/j.icheatmasstransfer.2017.11.001 10.1016/j.compfluid.2013.01.014 10.1016/S0017-9310(01)00075-8 10.1016/j.ijheatmasstransfer.2018.06.087 10.1007/978-1-4612-3918-5 10.1016/j.euromechflu.2010.06.008 10.1016/j.physb.2018.01.023 10.1016/j.cjph.2017.08.009 10.1016/j.jksus.2017.10.002 |
ContentType | Journal Article |
Copyright | Indian Association for the Cultivation of Science 2019 Indian Journal of Physics is a copyright of Springer, (2019). All Rights Reserved. 2019© Indian Association for the Cultivation of Science 2019 |
Copyright_xml | – notice: Indian Association for the Cultivation of Science 2019 – notice: Indian Journal of Physics is a copyright of Springer, (2019). All Rights Reserved. – notice: 2019© Indian Association for the Cultivation of Science 2019 |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1007/s12648-019-01474-y |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0974-9845 |
EndPage | 207 |
ExternalDocumentID | 10_1007_s12648_019_01474_y |
GroupedDBID | -EM 04Q 04W 06D 0R~ 0VY 203 29I 29~ 2JN 2KG 2VQ 30V 3V. 406 408 5GY 5VS 67Z 8FE 8FG 8G5 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACCUX ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY AZQEC BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP C~6 DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M2O M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P62 P9T PQQKQ PROAC PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 Z7X Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7U5 8FD ABRTQ H8D L7M |
ID | FETCH-LOGICAL-c347t-cbcbdb425fc5810f7ae76ba52569d92e1fecf22485245b17f8b3826599a2fb473 |
IEDL.DBID | U2A |
ISSN | 0973-1458 |
IngestDate | Sun Jul 13 05:07:43 EDT 2025 Mon Jul 14 07:22:18 EDT 2025 Tue Jul 01 03:02:30 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 Fri Feb 21 02:35:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Permeable/impermeable sheet Electric field Thermal radiation Chemical reaction 47.15.G Magnetic nanofluid 44.05.+e 47.45.Gx 47.10.ad 81.16.Ta 47.65.-d |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-cbcbdb425fc5810f7ae76ba52569d92e1fecf22485245b17f8b3826599a2fb473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2219823628 |
PQPubID | 2034531 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2352080780 proquest_journals_2219823628 crossref_citationtrail_10_1007_s12648_019_01474_y crossref_primary_10_1007_s12648_019_01474_y springer_journals_10_1007_s12648_019_01474_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: West Bengal |
PublicationTitle | Indian journal of physics |
PublicationTitleAbbrev | Indian J Phys |
PublicationYear | 2020 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | SheikholeslamiMRokniHBJ. Mol. Liq.2018254446 HayatTKhanMIFarooqMAlsaediAWaqasMYasmeenTInt. J. Heat Mass Transf.201699702 DanielYSAzizZAIsmailZSalahFAust. J. Mech. Eng.201816213 SheikholeslamiMShehzadSLiZInt. J. Heat Mass Transf.2018125375 T Cebeci, and P Bradshaw, Physical and computational aspects of convective heat transfer. Springer Science & Business Media (1988) HayatTKhanMIFarooqMYasmeenTAlsaediAJ. Mol. Liq.201622049 SheikholeslamiMJ. Mol. Liq.2018265347 MaboodFKhanWIsmailAMJ. Magn. Magn. Mater.20153745692015JMMM..374..569M SheikholeslamiMDarziMSadoughiMInt. J. Heat Mass Transf.2018122643 IbrahimWShankarBComput. Fluids20137513039336 SheikholeslamiMRokniHBPhys. Fluids2018300120032018PhFl...30a2003S KhanNBIbrahimZKhanMIHayatTJavedMFInt. J. Heat Mass Transf.2018121309 Abu-NadaEChamkhaAJEur. J. Mech B Fluids2010294722010EJMF...29..472A HayatTImtiazMAlsaediAInt. J. Heat Mass Transf.201692100 YuSAmeelTAInt. J. Heat Mass Transf.2001444225 WaqasMFarooqMKhanMIAlsaediAHayatTYasmeenTInt. J. Heat Mass Transf.2016102766 DanielYSAzizZAIsmailZSalahFInt. J. Mult. Comput. Eng.201715545 DanielYSAzizZAIsmailZSalahFAlex. Eng. J.20185732187 HayatTKhanMKhanMIAlsaediAAyubMPloS ONE201712e0180976 NoghrehabadiAIzadpanahiEGhalambazMComput. Fluids20141002273226644 KhanMIWaqasMHayatTKhanMIAlsaediAJ. Mol. Liq.2017246259 HayatTKhanMIQayyumSAlsaediAColloids. Surf. A Physicochem. Eng. Aspects2018539335 KhanMIQayyumSHayatTKhanMIAlsaediAKhanTAPhys. Lett. A201838220172018PhLA..382.2017K3808428 SheikholeslamiMShehzadSLiZShafeeAInt. J. Heat Mass Transf.2018127614 SheikholeslamiMLiZShafeeAInt. J. Heat Mass Transf.2018127665 HayatTKhanMIQayyumSAlsaediAKhanMIPhys. Lett. A20183827492018PhLA..382..749H3759623 HayatTQayyumSKhanMIAlsaediAPhys. Fluids2018300171012018PhFl...30a7101H DanielYSDanielSKAlex. Eng. J.201554705 SheikholeslamiMJafaryarMSaleemSLiZShafeeAJiangYInt. J. Heat Mass Transf.2018126156 BuongiornoJJ. Heat Transf.2006128240 KhanMIHayatTKhanMIAlsaediAInt. Commun. Heat Mass Transf.201891216 KhanMIWaqasMHayatTAlsaediAJ. Colloids Interface Sci.2017498852017JCIS..498...85K KhanMWAKhanMIHayatTAlsaediAPhys. B Condens. Matter20185341132018PhyB..534..113W SheikholeslamiMJafaryarMLiZJ. Mol. Liq.2018263489 DanielYSJ. Inst. Eng. (India) Ser. E201697115 DanielYSAzizZAIsmailZSalahFJ. King Saud Univ. Sci.201710.1016/j.jksus.2017.10.002 DanielYSAzizZAIsmailZSalahFTheor. Appl. Mech. Lett.20177235 HayatTKhanMIQayyumSAlsaediAChin. J. Phys.2017552501 DanielYSAzizZAIsmailZSalahFChin. J. Phys.201755630 KhanMIUllahSHayatTKhanMIAlsaediAJ. Mol. Liq.2018260279 SheikholeslamiMJ. Mol Liq.2018266495 SheikholeslamiMDarziMLiZInt. J. Heat Mass Transf.20181251087 KhanMAzamMJ. Mol. Liq.2017225554 NoghrehabadiAPourrajabRGhalambazMInt. J. Therm. Sci.201254253 SheikholeslamiMJ. Mol. Liq.2018263472 SheikholeslamiMJ. Mol. Liq.2018263303 MohseniMMTissotGBadawiMInt. J. Heat Fluid Flow201871442 SheikholeslamiMShehzadSAbbasiFLiZComput. Methods Appl. Mech. Eng.20183384912018CMAME.338..491S DanielYSAzizZAIsmailZSalahFEng. Lett.201826107 DanielYSAzizZAIsmailZSalahFChin. J. Phys.2017551821 YS Daniel (1474_CR34) 2018; 57 A Noghrehabadi (1474_CR46) 2012; 54 T Hayat (1474_CR35) 2018; 30 M Sheikholeslami (1474_CR19) 2018; 126 S Yu (1474_CR36) 2001; 44 YS Daniel (1474_CR49) 2017; 55 T Hayat (1474_CR1) 2016; 92 T Hayat (1474_CR8) 2016; 220 M Sheikholeslami (1474_CR12) 2018; 265 MI Khan (1474_CR6) 2018; 382 M Sheikholeslami (1474_CR33) 2018; 263 M Sheikholeslami (1474_CR23) 2018; 266 MI Khan (1474_CR27) 2017; 498 M Sheikholeslami (1474_CR13) 2018; 263 1474_CR42 YS Daniel (1474_CR47) 2017; 55 M Sheikholeslami (1474_CR18) 2018; 122 T Hayat (1474_CR29) 2017; 55 YS Daniel (1474_CR24) 2018; 16 M Sheikholeslami (1474_CR15) 2018; 338 MI Khan (1474_CR30) 2017; 246 YS Daniel (1474_CR38) 2016; 97 W Ibrahim (1474_CR37) 2013; 75 M Sheikholeslami (1474_CR22) 2018; 127 J Buongiorno (1474_CR40) 2006; 128 YS Daniel (1474_CR43) 2017 M Sheikholeslami (1474_CR32) 2018; 125 NB Khan (1474_CR10) 2018; 121 MI Khan (1474_CR5) 2018; 260 M Sheikholeslami (1474_CR11) 2018; 263 YS Daniel (1474_CR48) 2017; 15 YS Daniel (1474_CR2) 2017; 7 T Hayat (1474_CR9) 2016; 99 T Hayat (1474_CR28) 2018; 539 M Sheikholeslami (1474_CR25) 2018; 127 M Sheikholeslami (1474_CR16) 2018; 30 MWA Khan (1474_CR17) 2018; 534 E Abu-Nada (1474_CR3) 2010; 29 F Mabood (1474_CR41) 2015; 374 T Hayat (1474_CR20) 2018; 382 M Waqas (1474_CR26) 2016; 102 MM Mohseni (1474_CR39) 2018; 71 YS Daniel (1474_CR44) 2018; 26 T Hayat (1474_CR21) 2017; 12 M Khan (1474_CR50) 2017; 225 M Sheikholeslami (1474_CR14) 2018; 125 MI Khan (1474_CR4) 2018; 91 M Sheikholeslami (1474_CR31) 2018; 254 YS Daniel (1474_CR7) 2015; 54 A Noghrehabadi (1474_CR45) 2014; 100 |
References_xml | – reference: SheikholeslamiMLiZShafeeAInt. J. Heat Mass Transf.2018127665 – reference: SheikholeslamiMJ. Mol. Liq.2018265347 – reference: SheikholeslamiMJ. Mol. Liq.2018263303 – reference: DanielYSJ. Inst. Eng. (India) Ser. E201697115 – reference: KhanMWAKhanMIHayatTAlsaediAPhys. B Condens. Matter20185341132018PhyB..534..113W – reference: SheikholeslamiMJafaryarMSaleemSLiZShafeeAJiangYInt. J. Heat Mass Transf.2018126156 – reference: HayatTQayyumSKhanMIAlsaediAPhys. Fluids2018300171012018PhFl...30a7101H – reference: SheikholeslamiMRokniHBJ. Mol. Liq.2018254446 – reference: WaqasMFarooqMKhanMIAlsaediAHayatTYasmeenTInt. J. Heat Mass Transf.2016102766 – reference: SheikholeslamiMDarziMSadoughiMInt. J. Heat Mass Transf.2018122643 – reference: KhanMIWaqasMHayatTKhanMIAlsaediAJ. Mol. Liq.2017246259 – reference: SheikholeslamiMShehzadSAbbasiFLiZComput. Methods Appl. Mech. Eng.20183384912018CMAME.338..491S – reference: Abu-NadaEChamkhaAJEur. J. Mech B Fluids2010294722010EJMF...29..472A – reference: SheikholeslamiMJ. Mol. Liq.2018263472 – reference: HayatTKhanMIQayyumSAlsaediAChin. J. Phys.2017552501 – reference: KhanMIWaqasMHayatTAlsaediAJ. Colloids Interface Sci.2017498852017JCIS..498...85K – reference: KhanMIUllahSHayatTKhanMIAlsaediAJ. Mol. Liq.2018260279 – reference: DanielYSAzizZAIsmailZSalahFJ. King Saud Univ. Sci.201710.1016/j.jksus.2017.10.002 – reference: SheikholeslamiMDarziMLiZInt. J. Heat Mass Transf.20181251087 – reference: SheikholeslamiMJ. Mol Liq.2018266495 – reference: DanielYSAzizZAIsmailZSalahFAlex. Eng. J.20185732187 – reference: MaboodFKhanWIsmailAMJ. Magn. Magn. Mater.20153745692015JMMM..374..569M – reference: BuongiornoJJ. Heat Transf.2006128240 – reference: DanielYSAzizZAIsmailZSalahFTheor. Appl. Mech. Lett.20177235 – reference: SheikholeslamiMRokniHBPhys. Fluids2018300120032018PhFl...30a2003S – reference: DanielYSDanielSKAlex. Eng. J.201554705 – reference: HayatTKhanMIQayyumSAlsaediAColloids. Surf. A Physicochem. Eng. Aspects2018539335 – reference: IbrahimWShankarBComput. Fluids20137513039336 – reference: HayatTKhanMKhanMIAlsaediAAyubMPloS ONE201712e0180976 – reference: SheikholeslamiMJafaryarMLiZJ. Mol. Liq.2018263489 – reference: HayatTKhanMIQayyumSAlsaediAKhanMIPhys. Lett. A20183827492018PhLA..382..749H3759623 – reference: NoghrehabadiAPourrajabRGhalambazMInt. J. Therm. Sci.201254253 – reference: NoghrehabadiAIzadpanahiEGhalambazMComput. Fluids20141002273226644 – reference: HayatTImtiazMAlsaediAInt. J. Heat Mass Transf.201692100 – reference: T Cebeci, and P Bradshaw, Physical and computational aspects of convective heat transfer. Springer Science & Business Media (1988) – reference: KhanMAzamMJ. Mol. Liq.2017225554 – reference: DanielYSAzizZAIsmailZSalahFInt. J. Mult. Comput. Eng.201715545 – reference: DanielYSAzizZAIsmailZSalahFChin. J. Phys.2017551821 – reference: KhanMIHayatTKhanMIAlsaediAInt. Commun. Heat Mass Transf.201891216 – reference: DanielYSAzizZAIsmailZSalahFAust. J. Mech. Eng.201816213 – reference: MohseniMMTissotGBadawiMInt. J. Heat Fluid Flow201871442 – reference: HayatTKhanMIFarooqMAlsaediAWaqasMYasmeenTInt. J. Heat Mass Transf.201699702 – reference: SheikholeslamiMShehzadSLiZInt. J. Heat Mass Transf.2018125375 – reference: YuSAmeelTAInt. J. Heat Mass Transf.2001444225 – reference: HayatTKhanMIFarooqMYasmeenTAlsaediAJ. Mol. Liq.201622049 – reference: KhanMIQayyumSHayatTKhanMIAlsaediAKhanTAPhys. Lett. A201838220172018PhLA..382.2017K3808428 – reference: SheikholeslamiMShehzadSLiZShafeeAInt. J. Heat Mass Transf.2018127614 – reference: DanielYSAzizZAIsmailZSalahFEng. Lett.201826107 – reference: KhanNBIbrahimZKhanMIHayatTJavedMFInt. J. Heat Mass Transf.2018121309 – reference: DanielYSAzizZAIsmailZSalahFChin. J. Phys.201755630 – volume: 16 start-page: 213 year: 2018 ident: 1474_CR24 publication-title: Aust. J. Mech. Eng. – volume: 54 start-page: 705 year: 2015 ident: 1474_CR7 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2015.03.029 – volume: 498 start-page: 85 year: 2017 ident: 1474_CR27 publication-title: J. Colloids Interface Sci. doi: 10.1016/j.jcis.2017.03.024 – volume: 265 start-page: 347 year: 2018 ident: 1474_CR12 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.05.132 – volume: 125 start-page: 375 year: 2018 ident: 1474_CR32 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.076 – volume: 263 start-page: 489 year: 2018 ident: 1474_CR11 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.04.147 – volume: 102 start-page: 766 year: 2016 ident: 1474_CR26 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.05.142 – volume: 220 start-page: 49 year: 2016 ident: 1474_CR8 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.04.032 – volume: 127 start-page: 614 year: 2018 ident: 1474_CR25 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.07.013 – volume: 30 start-page: 017101 year: 2018 ident: 1474_CR35 publication-title: Phys. Fluids doi: 10.1063/1.5009611 – volume: 128 start-page: 240 year: 2006 ident: 1474_CR40 publication-title: J. Heat Transf. doi: 10.1115/1.2150834 – volume: 7 start-page: 235 year: 2017 ident: 1474_CR2 publication-title: Theor. Appl. Mech. Lett. doi: 10.1016/j.taml.2017.06.003 – volume: 382 start-page: 749 year: 2018 ident: 1474_CR20 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.01.024 – volume: 122 start-page: 643 year: 2018 ident: 1474_CR18 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.02.015 – volume: 266 start-page: 495 year: 2018 ident: 1474_CR23 publication-title: J. Mol Liq. doi: 10.1016/j.molliq.2018.06.083 – volume: 57 start-page: 2187 issue: 3 year: 2018 ident: 1474_CR34 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2017.07.007 – volume: 246 start-page: 259 year: 2017 ident: 1474_CR30 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.09.075 – volume: 26 start-page: 107 year: 2018 ident: 1474_CR44 publication-title: Eng. Lett. – volume: 55 start-page: 2501 year: 2017 ident: 1474_CR29 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.08.028 – volume: 263 start-page: 472 year: 2018 ident: 1474_CR33 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.04.111 – volume: 100 start-page: 227 year: 2014 ident: 1474_CR45 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2014.05.013 – volume: 54 start-page: 253 year: 2012 ident: 1474_CR46 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.11.017 – volume: 15 start-page: 545 year: 2017 ident: 1474_CR48 publication-title: Int. J. Mult. Comput. Eng. doi: 10.1615/IntJMultCompEng.2017021952 – volume: 99 start-page: 702 year: 2016 ident: 1474_CR9 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.04.016 – volume: 97 start-page: 115 year: 2016 ident: 1474_CR38 publication-title: J. Inst. Eng. (India) Ser. E doi: 10.1007/s40034-016-0084-6 – volume: 260 start-page: 279 year: 2018 ident: 1474_CR5 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.03.067 – volume: 71 start-page: 442 year: 2018 ident: 1474_CR39 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2018.05.005 – volume: 30 start-page: 012003 year: 2018 ident: 1474_CR16 publication-title: Phys. Fluids doi: 10.1063/1.5012517 – volume: 55 start-page: 630 year: 2017 ident: 1474_CR49 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.04.001 – volume: 382 start-page: 2017 year: 2018 ident: 1474_CR6 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.05.021 – volume: 263 start-page: 303 year: 2018 ident: 1474_CR13 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.04.144 – volume: 12 start-page: e0180976 year: 2017 ident: 1474_CR21 publication-title: PloS ONE doi: 10.1371/journal.pone.0180976 – volume: 254 start-page: 446 year: 2018 ident: 1474_CR31 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.01.130 – volume: 374 start-page: 569 year: 2015 ident: 1474_CR41 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.09.013 – volume: 92 start-page: 100 year: 2016 ident: 1474_CR1 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.08.013 – volume: 121 start-page: 309 year: 2018 ident: 1474_CR10 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.12.109 – volume: 338 start-page: 491 year: 2018 ident: 1474_CR15 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.04.020 – volume: 225 start-page: 554 year: 2017 ident: 1474_CR50 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.11.107 – volume: 539 start-page: 335 year: 2018 ident: 1474_CR28 publication-title: Colloids. Surf. A Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2017.12.021 – volume: 126 start-page: 156 year: 2018 ident: 1474_CR19 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.05.128 – volume: 125 start-page: 1087 year: 2018 ident: 1474_CR14 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.155 – volume: 91 start-page: 216 year: 2018 ident: 1474_CR4 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2017.11.001 – volume: 75 start-page: 1 year: 2013 ident: 1474_CR37 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2013.01.014 – volume: 44 start-page: 4225 year: 2001 ident: 1474_CR36 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(01)00075-8 – volume: 127 start-page: 665 year: 2018 ident: 1474_CR22 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.06.087 – ident: 1474_CR42 doi: 10.1007/978-1-4612-3918-5 – volume: 29 start-page: 472 year: 2010 ident: 1474_CR3 publication-title: Eur. J. Mech B Fluids doi: 10.1016/j.euromechflu.2010.06.008 – volume: 534 start-page: 113 year: 2018 ident: 1474_CR17 publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2018.01.023 – volume: 55 start-page: 1821 year: 2017 ident: 1474_CR47 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.08.009 – year: 2017 ident: 1474_CR43 publication-title: J. King Saud Univ. Sci. doi: 10.1016/j.jksus.2017.10.002 |
SSID | ssj0069175 |
Score | 2.4768968 |
Snippet | This paper mainly focuses on the impacts of slip conditions on the two-dimensional unsteady mixed convection flow of electrical magnetohydrodynamic nanofluid... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 195 |
SubjectTerms | Astrophysics and Astroparticles Chemical reactions Computational fluid dynamics Convection currents Electric fields Electrical resistivity Energy dissipation Finite difference method Fluid flow Heat transfer Magnetic fields Magnetic permeability Magnetohydrodynamics Mathematical models Nanofluids Nonlinear equations Nonlinear systems Ordinary differential equations Organic chemistry Original Paper Partial differential equations Physics Physics and Astronomy Radiative heat transfer Slip Stretching Thermal conductivity Thermal radiation Two dimensional flow Viscosity |
Title | Slip role for unsteady MHD mixed convection of nanofluid over stretching sheet with thermal radiation and electric field |
URI | https://link.springer.com/article/10.1007/s12648-019-01474-y https://www.proquest.com/docview/2219823628 https://www.proquest.com/docview/2352080780 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELY2ENJeEDAQZR26B95YpMSx4-SxZZRqE7ywSuwpin-JSiVFNJXof787N1m1CZB4ihT7Yukutr-zv7tj7MzhayXiNDJpaiOE1HFUOC-jzBmbx9pIm1G88_VNNp6IH3fyrg0KW3Rs9-5KMqzUm2A3ImOh60v8HqFEtPrItiX67kTkmvBBt_5m6IAE4mKh0igRMm9DZV7-xr_b0QZj_nctGnab0R7bbWEiDNZ23WcfXH3AdgJd0yw-s-fb2fQRiBkICDphWQdbreB6_B0eps_OQmCTh5gFmHuoq3ruZ8upBWJsAgWINIFECYt75xqg01ggKPiAgz5RuoIgWdUW1nVypgYC1-2QTUaXvy7GUVtDAZUvVBMZbbTVODG9kXkSe1U5lelKItIpbMFd4p3xnPKacSF1onyuU_Q4ZFFU3Guh0iO2Vc9rd8wAp6vNlKjQg9LCKqtjjgJCW-GS3KW2x5JOlaVpE4xTnYtZuUmNTOovUf1lUH-56rHzvzKP6_Qab_budxYq26m2KDmuuVS1necvNyPCjCmpftxj3zqjbppfH-zkfd2_sE-cXPFA6O6zreZp6b4iXmn0KdsejIbDG3pe_f55eRp-1z-P8eYi |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60InoRn1ifc_CmgWSzySbHopb6aC-20FvIvrBQU7Ep2H_v7DaxKCp4ze7swsw-vsl-M0PIhcbPnPmhJ8NQeQipfS_VJvJiLVXiCxmp2MY7d3txZ8Duh9GwCgqb1mz3-knSndTLYDdLxkLX1_J7GGfefJWsIRhI7Foe0FZ9_sbogDjiYspDL2BRUoXK_DzG1-toiTG_PYu626a9TbYqmAithV13yIoudsm6o2vK6R55fxqPXsEyAwFBJ8wKZ6s5dDs38DJ61wocm9zFLMDEQJEXEzOejRRYxibYAJHSkShh-qx1CfZvLFgo-IKTvtl0BU4yLxQs6uSMJDiu2z4ZtG_71x2vqqGAyme89KSQQgncmEZGSeAbnmseizxCpJOqlOrAaGmozWtGWSQCbhIRoscRpWlOjWA8PCCNYlLoQwK4XVXMWY4elGCKK-FTFGBCMR0kOlRNEtSqzGSVYNzWuRhny9TIVv0Zqj9z6s_mTXL5KfO6SK_xZ--T2kJZtdWmGcUz11Ztp8nPzYgwfZtU32-Sq9qoy-bfJzv6X_dzstHpdx-zx7vewzHZpNYtd-TuE9Io32b6FLFLKc7cUv0AI-zmBQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF5RUFEvCGgRaXnMgVuxsNdrr31EQBSeQoJI3CzvS0QKTkQcifz7zmxsQhFF6tXr9Uoz-_jG-30zjB1YfCxFGAc6jk2AkDoMcuuSILXaZKHSiUlJ73x9k_b64uIheXij4vds9_ZKcq5poCxNVX00Nu5oIXwjYhaGwcT1EVIEsy9sRZAaGGd0nx-3e3GKwYgnMeYyDiKRZI1s5uNv_H00LfDmuytSf_J019laAxnheO7jDbZkq0321VM39eQ7e7kbDsZALEFAAArTyvttBte9U3gavFgDnlnu9QswclCV1cgNpwMDxN4EEovUnlAJk0dra6A_s0Cw8AkHfabUBb5nWRmY18wZaPC8tx-s3z27P-kFTT0FdISQdaCVVkbhInU6yaLQydLKVJUJop7c5NxGzmrHKccZF4mKpMtUjNFHkucld0rIeIstV6PKbjPApWtSKUqMppQw0qiQYwehjLBRZmPTYVFrykI3ycap5sWwWKRJJvMXaP7Cm7-Yddjv1z7jeaqNT9_eaT1UNMtuUnDcf6mCO88-bka0GVKC_bDDDlunLpr_PdjP_3t9n63ennaLq_Oby1_sG6cI3fO8d9hy_Ty1uwhjarXnZ-ofSyjqOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slip+role+for+unsteady+MHD+mixed+convection+of+nanofluid+over+stretching+sheet+with+thermal+radiation+and+electric+field&rft.jtitle=Indian+journal+of+physics&rft.au=Daniel%2C+Yahaya+Shagaiya&rft.au=Aziz%2C+Zainal+Abdul&rft.au=Ismail%2C+Zuhaila&rft.au=Bahar%2C+Arifah&rft.date=2020-02-01&rft.pub=Springer+India&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=94&rft.issue=2&rft.spage=195&rft.epage=207&rft_id=info:doi/10.1007%2Fs12648-019-01474-y&rft.externalDocID=10_1007_s12648_019_01474_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon |