CMOS-GAN: Semi-supervised Generative Adversarial Model for Cross-Modality Face Image Synthesis

Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both mo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 32; p. 1
Main Authors Yu, Shikang, Han, Hu, Shan, Shiguang, Chen, Xilin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community.
AbstractList Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community (https://github.com/skgyu/CMOS-GAN).
Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community.
Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community.Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community.
Author Yu, Shikang
Shan, Shiguang
Chen, Xilin
Han, Hu
Author_xml – sequence: 1
  givenname: Shikang
  orcidid: 0000-0001-7111-2120
  surname: Yu
  fullname: Yu, Shikang
  organization: Institute of Computing Technology, Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Hu
  orcidid: 0000-0001-6010-1792
  surname: Han
  fullname: Han, Hu
  organization: Institute of Computing Technology, Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Shiguang
  orcidid: 0000-0002-8348-392X
  surname: Shan
  fullname: Shan, Shiguang
  organization: Institute of Computing Technology, Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Xilin
  orcidid: 0000-0003-3024-4404
  surname: Chen
  fullname: Chen, Xilin
  organization: Institute of Computing Technology, Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37015478$$D View this record in MEDLINE/PubMed
BookMark eNp90UtrGzEUBWBRUppHuy8UiqCbbMa5eoxkdWdM4hiSJuB0WyFr7rQK83ClGYP_fWTsdJFFV5LgOxdxzzk56foOCfnMYMIYmKun5eOEA-cTwbmSTLwjZ8xIVgBIfpLvUOpCM2lOyXlKzwBMlkx9IKdCAyulnp6RX_P7h1WxmP34TlfYhiKNG4zbkLCiC-wwuiFskc6qLcbkYnANve8rbGjdRzqPfUpFfrsmDDt64zzSZet-I13tuuEPppA-kve1axJ-Op4X5OfN9dP8trh7WCzns7vCC6mHwhsBQldrXTHJQTj05dQpLisD4Ka18RzWmIFxUCqH60rWTNY6O-GFg1pckMvD3E3s_46YBtuG5LFpXIf9mCzXRjHFYAqZfntDn_sxdvl3WZWq3Due1dejGtctVnYTQ-vizr5uLgN1AH6_hYi19WHI2-q7IbrQWAZ2X5HNFdl9RfZYUQ7Cm-Dr7P9EvhwiARH_cWN0yRUTL9WrmeE
CODEN IIPRE4
CitedBy_id crossref_primary_10_1145_3672400
crossref_primary_10_1109_TIFS_2024_3521323
crossref_primary_10_1038_s41598_024_72066_y
crossref_primary_10_1109_TIP_2024_3426482
crossref_primary_10_1109_TIFS_2023_3346176
crossref_primary_10_1109_TIP_2024_3520423
crossref_primary_10_1109_TIP_2025_3548896
Cites_doi 10.1109/TIP.2007.911828
10.1109/FG.2018.00012
10.1109/LSP.2020.3005039
10.1109/ICB.2016.7550062
10.1109/CVPRW.2017.90
10.1109/ICPR.2010.526
10.1109/TPAMI.2019.2936024
10.1109/TCSVT.2012.2198090
10.1145/2671188.2749321
10.1109/TPAMI.2003.1227983
10.1109/ICCV.2017.579
10.1109/ICCV.2013.448
10.1109/CVPRW.2009.5204149
10.1109/CVPR.2016.23
10.1109/ICIG.2011.112
10.1109/CVPRW.2017.87
10.1109/TIP.2018.2869688
10.1007/978-3-030-01249-6_11
10.1109/CVPR.2011.5995324
10.1109/CVPRW.2013.59
10.1007/978-3-642-01793-3_33
10.1609/aaai.v32i1.12224
10.1109/WACV.2013.6475017
10.1109/TIP.2006.881969
10.1109/ICASSP40776.2020.9054007
10.1109/ICCV.2003.1238414
10.1109/BTAS.2013.6712717
10.1109/CVPR46437.2021.00720
10.1007/978-3-319-46487-9_6
10.1109/TIP.2003.819861
10.1109/CVPR.2016.90
10.1109/ICPR.2014.302
10.1109/ICB2018.2018.00031
10.1109/IJCB52358.2021.9484381
10.1145/311535.311556
10.1109/TCSVT.2017.2776220
10.1609/aaai.v32i1.12291
10.1109/FGR.2006.78
10.1109/TSMC.2014.2331215
10.1109/TPAMI.2012.229
10.1109/FG.2018.00020
10.1109/CVPR.2017.135
10.1109/ICCV.2017.244
10.1109/CVPRW.2015.7301308
10.1109/CVPR.2017.463
10.1007/978-3-319-46493-0_47
10.1109/ICCVW.2011.6130515
10.1016/j.patrec.2009.03.011
10.1126/science.290.5500.2323
10.1007/s11263-015-0816-y
10.1109/TPAMI.2008.222
10.1109/CVPR.2017.720
10.1109/TIFS.2012.2228856
10.1109/TIFS.2011.2118207
10.1007/978-3-030-01219-9_11
10.1109/CVPR.2017.163
10.1109/CVPR.2017.632
10.1109/CVPR.2018.00917
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2022.3226413
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1
ExternalDocumentID 37015478
10_1109_TIP_2022_3226413
9975261
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2017YFA0700804
– fundername: National Natural Science Foundation of China
  grantid: 61732004; 62176249
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
53G
5VS
AAYOK
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
RIG
VH1
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-c93037db7d14203aec58a624d900a8f9c20be37d9a056aebd4f14f7aec3c3a0f3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 02:08:29 EDT 2025
Mon Jun 30 10:19:49 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Tue Jul 01 02:03:28 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Wed Aug 27 02:18:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-c93037db7d14203aec58a624d900a8f9c20be37d9a056aebd4f14f7aec3c3a0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8348-392X
0000-0001-6010-1792
0000-0001-7111-2120
0000-0003-3024-4404
PMID 37015478
PQID 2756561612
PQPubID 85429
PageCount 1
ParticipantIDs proquest_journals_2756561612
ieee_primary_9975261
pubmed_primary_37015478
crossref_primary_10_1109_TIP_2022_3226413
proquest_miscellaneous_2796161080
crossref_citationtrail_10_1109_TIP_2022_3226413
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref54
ref10
ref16
ref18
huang (ref65) 2012
liu (ref31) 2017
ref51
ref50
ref45
ref48
zhou (ref41) 2017
ref47
ref42
ref44
ref43
ref49
ref8
ref7
johnson (ref55) 2016
ref9
ref4
ref3
feng (ref5) 2018
ref6
ref40
liu (ref19) 2005
ref35
ref30
ref33
ref32
ref2
ref39
ref38
hg (ref69) 2012
ref71
ref70
ref73
ref72
fu (ref17) 2019
ref68
ref24
ref67
maeng (ref64) 2012
ref26
park (ref36) 2020
ref25
ref20
ref63
ref66
ref22
ref21
li (ref37) 2016
ref28
ref27
ref29
goodfellow (ref34) 2014; 27
ref60
ref62
chen (ref46) 2009
ref61
tang (ref1) 2002; 1
wang (ref23) 2012
References_xml – ident: ref22
  doi: 10.1109/TIP.2007.911828
– ident: ref6
  doi: 10.1109/FG.2018.00012
– start-page: 319
  year: 2020
  ident: ref36
  article-title: Contrastive learning for unpaired image-to-image translation
  publication-title: Proc ECCV
– ident: ref47
  doi: 10.1109/LSP.2020.3005039
– ident: ref32
  doi: 10.1109/ICB.2016.7550062
– ident: ref15
  doi: 10.1109/CVPRW.2017.90
– ident: ref25
  doi: 10.1109/ICPR.2010.526
– ident: ref54
  doi: 10.1109/TPAMI.2019.2936024
– ident: ref24
  doi: 10.1109/TCSVT.2012.2198090
– ident: ref26
  doi: 10.1145/2671188.2749321
– ident: ref50
  doi: 10.1109/TPAMI.2003.1227983
– start-page: 700
  year: 2017
  ident: ref31
  article-title: Unsupervised image-to-image translation networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 534
  year: 2018
  ident: ref5
  article-title: Joint 3D face reconstruction and dense alignment with position map regression network
  publication-title: Proc ECCV
– volume: 1
  start-page: 1
  year: 2002
  ident: ref1
  article-title: Face photo recognition using sketch
  publication-title: Proc Int Conf Image Process
– ident: ref16
  doi: 10.1109/ICCV.2017.579
– volume: 27
  start-page: 2672
  year: 2014
  ident: ref34
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 708
  year: 2012
  ident: ref64
  article-title: Nighttime face recognition at long distance: Cross-distance and cross-spectral matching
  publication-title: Proc ACCV
– ident: ref51
  doi: 10.1109/ICCV.2013.448
– ident: ref61
  doi: 10.1109/CVPRW.2009.5204149
– ident: ref4
  doi: 10.1109/CVPR.2016.23
– ident: ref2
  doi: 10.1109/ICIG.2011.112
– ident: ref71
  doi: 10.1109/CVPRW.2017.87
– ident: ref13
  doi: 10.1109/TIP.2018.2869688
– ident: ref42
  doi: 10.1007/978-3-030-01249-6_11
– ident: ref33
  doi: 10.1109/CVPR.2011.5995324
– ident: ref62
  doi: 10.1109/CVPRW.2013.59
– ident: ref45
  doi: 10.1007/978-3-642-01793-3_33
– ident: ref27
  doi: 10.1609/aaai.v32i1.12224
– ident: ref66
  doi: 10.1109/WACV.2013.6475017
– ident: ref21
  doi: 10.1109/TIP.2006.881969
– start-page: 1
  year: 2019
  ident: ref17
  article-title: Dual variational generation for low-shot heterogeneous face recognition
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 111
  year: 2017
  ident: ref41
  article-title: GeneGAN: Learning object transfiguration and attribute subspace from unpaired data
  publication-title: Proc Brit Mach Vis Conf
– ident: ref28
  doi: 10.1109/ICASSP40776.2020.9054007
– ident: ref12
  doi: 10.1109/ICCV.2003.1238414
– ident: ref70
  doi: 10.1109/BTAS.2013.6712717
– start-page: 42
  year: 2012
  ident: ref69
  article-title: An RGB-D database using microsoft's Kinect for windows for face detection
  publication-title: Proc 8th Int Conf Signal Image Technol Internet Based Syst
– ident: ref43
  doi: 10.1109/CVPR46437.2021.00720
– ident: ref57
  doi: 10.1007/978-3-319-46487-9_6
– ident: ref72
  doi: 10.1109/TIP.2003.819861
– year: 2016
  ident: ref37
  article-title: Deep identity-aware transfer of facial attributes
  publication-title: arXiv 1610 05586
– ident: ref60
  doi: 10.1109/CVPR.2016.90
– ident: ref67
  doi: 10.1109/ICPR.2014.302
– ident: ref11
  doi: 10.1109/ICB2018.2018.00031
– ident: ref7
  doi: 10.1109/IJCB52358.2021.9484381
– ident: ref52
  doi: 10.1145/311535.311556
– ident: ref8
  doi: 10.1109/TCSVT.2017.2776220
– ident: ref9
  doi: 10.1609/aaai.v32i1.12291
– ident: ref73
  doi: 10.1109/FGR.2006.78
– ident: ref68
  doi: 10.1109/TSMC.2014.2331215
– start-page: 694
  year: 2016
  ident: ref55
  article-title: Perceptual losses for real-time style transfer and super-resolution
  publication-title: Proc ECCV
– ident: ref3
  doi: 10.1109/TPAMI.2012.229
– ident: ref58
  doi: 10.1109/FG.2018.00020
– ident: ref38
  doi: 10.1109/CVPR.2017.135
– year: 2012
  ident: ref65
  publication-title: The Buaa-visnir Face Database Instructions
– ident: ref29
  doi: 10.1109/ICCV.2017.244
– ident: ref44
  doi: 10.1109/CVPRW.2015.7301308
– ident: ref39
  doi: 10.1109/CVPR.2017.463
– start-page: 1005
  year: 2005
  ident: ref19
  article-title: A nonlinear approach for face sketch synthesis and recognition
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit (CVPR)
– start-page: 156
  year: 2009
  ident: ref46
  article-title: Learning mappings for face synthesis from near infrared to visual light images
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref40
  doi: 10.1007/978-3-319-46493-0_47
– ident: ref63
  doi: 10.1109/ICCVW.2011.6130515
– ident: ref53
  doi: 10.1016/j.patrec.2009.03.011
– ident: ref18
  doi: 10.1126/science.290.5500.2323
– ident: ref56
  doi: 10.1007/s11263-015-0816-y
– ident: ref20
  doi: 10.1109/TPAMI.2008.222
– ident: ref10
  doi: 10.1109/CVPR.2017.720
– ident: ref14
  doi: 10.1109/TIFS.2012.2228856
– start-page: 2216
  year: 2012
  ident: ref23
  article-title: Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref48
  doi: 10.1109/TIFS.2011.2118207
– ident: ref30
  doi: 10.1007/978-3-030-01219-9_11
– ident: ref49
  doi: 10.1109/CVPR.2017.163
– ident: ref35
  doi: 10.1109/CVPR.2017.632
– ident: ref59
  doi: 10.1109/CVPR.2018.00917
SSID ssj0014516
Score 2.4778774
Snippet Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Animation
CMOS
Coders
cross-modality face recognition
Cross-modality synthesis
Datasets
Encoders-Decoders
Face recognition
generative adversarial networks
Image acquisition
semi-supervised synthesis
Source code
Synthesis
Title CMOS-GAN: Semi-supervised Generative Adversarial Model for Cross-Modality Face Image Synthesis
URI https://ieeexplore.ieee.org/document/9975261
https://www.ncbi.nlm.nih.gov/pubmed/37015478
https://www.proquest.com/docview/2756561612
https://www.proquest.com/docview/2796161080
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGnuCBwcZHYaAg8YJE79ImaZq9TSeODekG0m3SnqjSNJWmbb2JXh_YXz877VUDAeKtVZ0mkZ345zi2Ad47VVoEIlmMqjJHA8Xq2BqvY51xk-dK-kxRgPPiJDs6k1_O1fkWfBxjYbz34fKZn9Bj8OVXK9fRUdnUGK1SsnUeoOHWx2qNHgMqOBs8mwo7Qti_cUlyMz09_oaGYJpOBEWNJuIXFRRqqvwdXgY1M9-BxWaA_e2Sy0m3Lifu9rfcjf87gyfweMCb7LAXkKew5Ztd2BmwJxtWdrsLj-4lJtyD77PF12X8-fDkgC399UXcdje0p7TYpM9TTZskC8WcW0sizKim2hVDBMxmNOkY3wPCZ3PrPDu-xm2LLX82CDfbi_YZnM0_nc6O4qESQ-yE1OvYGdR0uip1lciUC-udym2WyspwbvPauJSXHgmMRTxlfVnJOpG1RjrhhOW1eA7bzarxL4HZJBFemzqrnJemVGXFK53LSuS8TK1SEUw3zCnckKacqmVcFcFc4aZAdhbEzmJgZwQfxhY3fYqOf9DuEVNGuoEfEexv-F8Ma7gtKDE-okuEgBG8Gz_j6iOXim38qiMaQxQo7RG86OVm_LfQhE91_urPfb6Gh1S6vj_O2Yft9Y_Ov0GAsy7fBsm-A-pz9Nc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N4wF4YLDxERhgJF6QcOvEcRzzNlWUFtaC1E7aE5HjONLElk6keYC_nrskjQAB4i1RzrGtO_t-5_PdAbx0KrcIRBKOqjJFA8Vqbo3XXCfCpKmKfaIowHmxTGZn8ftzdb4Hr4dYGO99e_nMj-ix9eUXG9fQUdnYGK0isnVuoN5XYRetNfgMqORs69tU2BUC_51TUpjxev4JTcEoGkmKGw3lL0qoraryd4DZKprpASx2Q-zul3wZNdt85L7_lr3xf-dwF-70iJOddCJyD_Z8dQgHPfpk_dquD-H2T6kJj-DzZPFxxd-dLN-wlb-64HVzTbtKjU26TNW0TbK2nHNtSYgZVVW7ZIiB2YQmzfG9xfhsap1n8yvcuNjqW4WAs76o78PZ9O16MuN9LQbuZKy33BnUdbrIdRHGkZDWO5XaJIoLI4RNS-MikXskMBYRlfV5EZdhXGqkk05aUcoHsF9tKv8ImA1D6bUpk8L52OQqL0Sh07iQqcgjq1QA4x1zMtcnKqd6GZdZa7AIkyE7M2Jn1rMzgFdDi-suScc_aI-IKQNdz48Ajnf8z_pVXGeUGh_xJYLAAF4Mn3H9kVPFVn7TEI0hCpT3AB52cjP8W2pCqDp9_Oc-n8PN2Xpxmp3Olx-ewC0qZN8d7hzD_vZr458i3Nnmz1op_wHUgPgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CMOS-GAN%3A+Semi-Supervised+Generative+Adversarial+Model+for+Cross-Modality+Face+Image+Synthesis&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yu%2C+Shikang&rft.au=Han%2C+Hu&rft.au=Shan%2C+Shiguang&rft.au=Chen%2C+Xilin&rft.date=2023-01-01&rft.eissn=1941-0042&rft.volume=32&rft.spage=144&rft_id=info:doi/10.1109%2FTIP.2022.3226413&rft_id=info%3Apmid%2F37015478&rft.externalDocID=37015478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon