CMOS-GAN: Semi-supervised Generative Adversarial Model for Cross-Modality Face Image Synthesis
Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both mo...
Saved in:
Published in | IEEE transactions on image processing Vol. 32; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community. |
---|---|
AbstractList | Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community (https://github.com/skgyu/CMOS-GAN). Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community. Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community.Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community. |
Author | Yu, Shikang Shan, Shiguang Chen, Xilin Han, Hu |
Author_xml | – sequence: 1 givenname: Shikang orcidid: 0000-0001-7111-2120 surname: Yu fullname: Yu, Shikang organization: Institute of Computing Technology, Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Hu orcidid: 0000-0001-6010-1792 surname: Han fullname: Han, Hu organization: Institute of Computing Technology, Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Shiguang orcidid: 0000-0002-8348-392X surname: Shan fullname: Shan, Shiguang organization: Institute of Computing Technology, Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Xilin orcidid: 0000-0003-3024-4404 surname: Chen fullname: Chen, Xilin organization: Institute of Computing Technology, Key Laboratory of Intelligent Information Processing, Chinese Academy of Sciences, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37015478$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtrGzEUBWBRUppHuy8UiqCbbMa5eoxkdWdM4hiSJuB0WyFr7rQK83ClGYP_fWTsdJFFV5LgOxdxzzk56foOCfnMYMIYmKun5eOEA-cTwbmSTLwjZ8xIVgBIfpLvUOpCM2lOyXlKzwBMlkx9IKdCAyulnp6RX_P7h1WxmP34TlfYhiKNG4zbkLCiC-wwuiFskc6qLcbkYnANve8rbGjdRzqPfUpFfrsmDDt64zzSZet-I13tuuEPppA-kve1axJ-Op4X5OfN9dP8trh7WCzns7vCC6mHwhsBQldrXTHJQTj05dQpLisD4Ka18RzWmIFxUCqH60rWTNY6O-GFg1pckMvD3E3s_46YBtuG5LFpXIf9mCzXRjHFYAqZfntDn_sxdvl3WZWq3Due1dejGtctVnYTQ-vizr5uLgN1AH6_hYi19WHI2-q7IbrQWAZ2X5HNFdl9RfZYUQ7Cm-Dr7P9EvhwiARH_cWN0yRUTL9WrmeE |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1145_3672400 crossref_primary_10_1109_TIFS_2024_3521323 crossref_primary_10_1038_s41598_024_72066_y crossref_primary_10_1109_TIP_2024_3426482 crossref_primary_10_1109_TIFS_2023_3346176 crossref_primary_10_1109_TIP_2024_3520423 crossref_primary_10_1109_TIP_2025_3548896 |
Cites_doi | 10.1109/TIP.2007.911828 10.1109/FG.2018.00012 10.1109/LSP.2020.3005039 10.1109/ICB.2016.7550062 10.1109/CVPRW.2017.90 10.1109/ICPR.2010.526 10.1109/TPAMI.2019.2936024 10.1109/TCSVT.2012.2198090 10.1145/2671188.2749321 10.1109/TPAMI.2003.1227983 10.1109/ICCV.2017.579 10.1109/ICCV.2013.448 10.1109/CVPRW.2009.5204149 10.1109/CVPR.2016.23 10.1109/ICIG.2011.112 10.1109/CVPRW.2017.87 10.1109/TIP.2018.2869688 10.1007/978-3-030-01249-6_11 10.1109/CVPR.2011.5995324 10.1109/CVPRW.2013.59 10.1007/978-3-642-01793-3_33 10.1609/aaai.v32i1.12224 10.1109/WACV.2013.6475017 10.1109/TIP.2006.881969 10.1109/ICASSP40776.2020.9054007 10.1109/ICCV.2003.1238414 10.1109/BTAS.2013.6712717 10.1109/CVPR46437.2021.00720 10.1007/978-3-319-46487-9_6 10.1109/TIP.2003.819861 10.1109/CVPR.2016.90 10.1109/ICPR.2014.302 10.1109/ICB2018.2018.00031 10.1109/IJCB52358.2021.9484381 10.1145/311535.311556 10.1109/TCSVT.2017.2776220 10.1609/aaai.v32i1.12291 10.1109/FGR.2006.78 10.1109/TSMC.2014.2331215 10.1109/TPAMI.2012.229 10.1109/FG.2018.00020 10.1109/CVPR.2017.135 10.1109/ICCV.2017.244 10.1109/CVPRW.2015.7301308 10.1109/CVPR.2017.463 10.1007/978-3-319-46493-0_47 10.1109/ICCVW.2011.6130515 10.1016/j.patrec.2009.03.011 10.1126/science.290.5500.2323 10.1007/s11263-015-0816-y 10.1109/TPAMI.2008.222 10.1109/CVPR.2017.720 10.1109/TIFS.2012.2228856 10.1109/TIFS.2011.2118207 10.1007/978-3-030-01219-9_11 10.1109/CVPR.2017.163 10.1109/CVPR.2017.632 10.1109/CVPR.2018.00917 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2022.3226413 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 1 |
ExternalDocumentID | 37015478 10_1109_TIP_2022_3226413 9975261 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2017YFA0700804 – fundername: National Natural Science Foundation of China grantid: 61732004; 62176249 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 53G 5VS AAYOK AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 ICLAB IFJZH RIG VH1 NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c347t-c93037db7d14203aec58a624d900a8f9c20be37d9a056aebd4f14f7aec3c3a0f3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 02:08:29 EDT 2025 Mon Jun 30 10:19:49 EDT 2025 Sun Apr 06 01:21:17 EDT 2025 Tue Jul 01 02:03:28 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Wed Aug 27 02:18:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-c93037db7d14203aec58a624d900a8f9c20be37d9a056aebd4f14f7aec3c3a0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8348-392X 0000-0001-6010-1792 0000-0001-7111-2120 0000-0003-3024-4404 |
PMID | 37015478 |
PQID | 2756561612 |
PQPubID | 85429 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2756561612 ieee_primary_9975261 pubmed_primary_37015478 crossref_primary_10_1109_TIP_2022_3226413 proquest_miscellaneous_2796161080 crossref_citationtrail_10_1109_TIP_2022_3226413 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref11 ref54 ref10 ref16 ref18 huang (ref65) 2012 liu (ref31) 2017 ref51 ref50 ref45 ref48 zhou (ref41) 2017 ref47 ref42 ref44 ref43 ref49 ref8 ref7 johnson (ref55) 2016 ref9 ref4 ref3 feng (ref5) 2018 ref6 ref40 liu (ref19) 2005 ref35 ref30 ref33 ref32 ref2 ref39 ref38 hg (ref69) 2012 ref71 ref70 ref73 ref72 fu (ref17) 2019 ref68 ref24 ref67 maeng (ref64) 2012 ref26 park (ref36) 2020 ref25 ref20 ref63 ref66 ref22 ref21 li (ref37) 2016 ref28 ref27 ref29 goodfellow (ref34) 2014; 27 ref60 ref62 chen (ref46) 2009 ref61 tang (ref1) 2002; 1 wang (ref23) 2012 |
References_xml | – ident: ref22 doi: 10.1109/TIP.2007.911828 – ident: ref6 doi: 10.1109/FG.2018.00012 – start-page: 319 year: 2020 ident: ref36 article-title: Contrastive learning for unpaired image-to-image translation publication-title: Proc ECCV – ident: ref47 doi: 10.1109/LSP.2020.3005039 – ident: ref32 doi: 10.1109/ICB.2016.7550062 – ident: ref15 doi: 10.1109/CVPRW.2017.90 – ident: ref25 doi: 10.1109/ICPR.2010.526 – ident: ref54 doi: 10.1109/TPAMI.2019.2936024 – ident: ref24 doi: 10.1109/TCSVT.2012.2198090 – ident: ref26 doi: 10.1145/2671188.2749321 – ident: ref50 doi: 10.1109/TPAMI.2003.1227983 – start-page: 700 year: 2017 ident: ref31 article-title: Unsupervised image-to-image translation networks publication-title: Proc Adv Neural Inf Process Syst – start-page: 534 year: 2018 ident: ref5 article-title: Joint 3D face reconstruction and dense alignment with position map regression network publication-title: Proc ECCV – volume: 1 start-page: 1 year: 2002 ident: ref1 article-title: Face photo recognition using sketch publication-title: Proc Int Conf Image Process – ident: ref16 doi: 10.1109/ICCV.2017.579 – volume: 27 start-page: 2672 year: 2014 ident: ref34 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – start-page: 708 year: 2012 ident: ref64 article-title: Nighttime face recognition at long distance: Cross-distance and cross-spectral matching publication-title: Proc ACCV – ident: ref51 doi: 10.1109/ICCV.2013.448 – ident: ref61 doi: 10.1109/CVPRW.2009.5204149 – ident: ref4 doi: 10.1109/CVPR.2016.23 – ident: ref2 doi: 10.1109/ICIG.2011.112 – ident: ref71 doi: 10.1109/CVPRW.2017.87 – ident: ref13 doi: 10.1109/TIP.2018.2869688 – ident: ref42 doi: 10.1007/978-3-030-01249-6_11 – ident: ref33 doi: 10.1109/CVPR.2011.5995324 – ident: ref62 doi: 10.1109/CVPRW.2013.59 – ident: ref45 doi: 10.1007/978-3-642-01793-3_33 – ident: ref27 doi: 10.1609/aaai.v32i1.12224 – ident: ref66 doi: 10.1109/WACV.2013.6475017 – ident: ref21 doi: 10.1109/TIP.2006.881969 – start-page: 1 year: 2019 ident: ref17 article-title: Dual variational generation for low-shot heterogeneous face recognition publication-title: Proc Adv Neural Inf Process Syst – start-page: 111 year: 2017 ident: ref41 article-title: GeneGAN: Learning object transfiguration and attribute subspace from unpaired data publication-title: Proc Brit Mach Vis Conf – ident: ref28 doi: 10.1109/ICASSP40776.2020.9054007 – ident: ref12 doi: 10.1109/ICCV.2003.1238414 – ident: ref70 doi: 10.1109/BTAS.2013.6712717 – start-page: 42 year: 2012 ident: ref69 article-title: An RGB-D database using microsoft's Kinect for windows for face detection publication-title: Proc 8th Int Conf Signal Image Technol Internet Based Syst – ident: ref43 doi: 10.1109/CVPR46437.2021.00720 – ident: ref57 doi: 10.1007/978-3-319-46487-9_6 – ident: ref72 doi: 10.1109/TIP.2003.819861 – year: 2016 ident: ref37 article-title: Deep identity-aware transfer of facial attributes publication-title: arXiv 1610 05586 – ident: ref60 doi: 10.1109/CVPR.2016.90 – ident: ref67 doi: 10.1109/ICPR.2014.302 – ident: ref11 doi: 10.1109/ICB2018.2018.00031 – ident: ref7 doi: 10.1109/IJCB52358.2021.9484381 – ident: ref52 doi: 10.1145/311535.311556 – ident: ref8 doi: 10.1109/TCSVT.2017.2776220 – ident: ref9 doi: 10.1609/aaai.v32i1.12291 – ident: ref73 doi: 10.1109/FGR.2006.78 – ident: ref68 doi: 10.1109/TSMC.2014.2331215 – start-page: 694 year: 2016 ident: ref55 article-title: Perceptual losses for real-time style transfer and super-resolution publication-title: Proc ECCV – ident: ref3 doi: 10.1109/TPAMI.2012.229 – ident: ref58 doi: 10.1109/FG.2018.00020 – ident: ref38 doi: 10.1109/CVPR.2017.135 – year: 2012 ident: ref65 publication-title: The Buaa-visnir Face Database Instructions – ident: ref29 doi: 10.1109/ICCV.2017.244 – ident: ref44 doi: 10.1109/CVPRW.2015.7301308 – ident: ref39 doi: 10.1109/CVPR.2017.463 – start-page: 1005 year: 2005 ident: ref19 article-title: A nonlinear approach for face sketch synthesis and recognition publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit (CVPR) – start-page: 156 year: 2009 ident: ref46 article-title: Learning mappings for face synthesis from near infrared to visual light images publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref40 doi: 10.1007/978-3-319-46493-0_47 – ident: ref63 doi: 10.1109/ICCVW.2011.6130515 – ident: ref53 doi: 10.1016/j.patrec.2009.03.011 – ident: ref18 doi: 10.1126/science.290.5500.2323 – ident: ref56 doi: 10.1007/s11263-015-0816-y – ident: ref20 doi: 10.1109/TPAMI.2008.222 – ident: ref10 doi: 10.1109/CVPR.2017.720 – ident: ref14 doi: 10.1109/TIFS.2012.2228856 – start-page: 2216 year: 2012 ident: ref23 article-title: Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref48 doi: 10.1109/TIFS.2011.2118207 – ident: ref30 doi: 10.1007/978-3-030-01219-9_11 – ident: ref49 doi: 10.1109/CVPR.2017.163 – ident: ref35 doi: 10.1109/CVPR.2017.632 – ident: ref59 doi: 10.1109/CVPR.2018.00917 |
SSID | ssj0014516 |
Score | 2.4778774 |
Snippet | Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Animation CMOS Coders cross-modality face recognition Cross-modality synthesis Datasets Encoders-Decoders Face recognition generative adversarial networks Image acquisition semi-supervised synthesis Source code Synthesis |
Title | CMOS-GAN: Semi-supervised Generative Adversarial Model for Cross-Modality Face Image Synthesis |
URI | https://ieeexplore.ieee.org/document/9975261 https://www.ncbi.nlm.nih.gov/pubmed/37015478 https://www.proquest.com/docview/2756561612 https://www.proquest.com/docview/2796161080 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGnuCBwcZHYaAg8YJE79ImaZq9TSeODekG0m3SnqjSNJWmbb2JXh_YXz877VUDAeKtVZ0mkZ345zi2Ad47VVoEIlmMqjJHA8Xq2BqvY51xk-dK-kxRgPPiJDs6k1_O1fkWfBxjYbz34fKZn9Bj8OVXK9fRUdnUGK1SsnUeoOHWx2qNHgMqOBs8mwo7Qti_cUlyMz09_oaGYJpOBEWNJuIXFRRqqvwdXgY1M9-BxWaA_e2Sy0m3Lifu9rfcjf87gyfweMCb7LAXkKew5Ztd2BmwJxtWdrsLj-4lJtyD77PF12X8-fDkgC399UXcdje0p7TYpM9TTZskC8WcW0sizKim2hVDBMxmNOkY3wPCZ3PrPDu-xm2LLX82CDfbi_YZnM0_nc6O4qESQ-yE1OvYGdR0uip1lciUC-udym2WyspwbvPauJSXHgmMRTxlfVnJOpG1RjrhhOW1eA7bzarxL4HZJBFemzqrnJemVGXFK53LSuS8TK1SEUw3zCnckKacqmVcFcFc4aZAdhbEzmJgZwQfxhY3fYqOf9DuEVNGuoEfEexv-F8Ma7gtKDE-okuEgBG8Gz_j6iOXim38qiMaQxQo7RG86OVm_LfQhE91_urPfb6Gh1S6vj_O2Yft9Y_Ov0GAsy7fBsm-A-pz9Nc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N4wF4YLDxERhgJF6QcOvEcRzzNlWUFtaC1E7aE5HjONLElk6keYC_nrskjQAB4i1RzrGtO_t-5_PdAbx0KrcIRBKOqjJFA8Vqbo3XXCfCpKmKfaIowHmxTGZn8ftzdb4Hr4dYGO99e_nMj-ix9eUXG9fQUdnYGK0isnVuoN5XYRetNfgMqORs69tU2BUC_51TUpjxev4JTcEoGkmKGw3lL0qoraryd4DZKprpASx2Q-zul3wZNdt85L7_lr3xf-dwF-70iJOddCJyD_Z8dQgHPfpk_dquD-H2T6kJj-DzZPFxxd-dLN-wlb-64HVzTbtKjU26TNW0TbK2nHNtSYgZVVW7ZIiB2YQmzfG9xfhsap1n8yvcuNjqW4WAs76o78PZ9O16MuN9LQbuZKy33BnUdbrIdRHGkZDWO5XaJIoLI4RNS-MikXskMBYRlfV5EZdhXGqkk05aUcoHsF9tKv8ImA1D6bUpk8L52OQqL0Sh07iQqcgjq1QA4x1zMtcnKqd6GZdZa7AIkyE7M2Jn1rMzgFdDi-suScc_aI-IKQNdz48Ajnf8z_pVXGeUGh_xJYLAAF4Mn3H9kVPFVn7TEI0hCpT3AB52cjP8W2pCqDp9_Oc-n8PN2Xpxmp3Olx-ewC0qZN8d7hzD_vZr458i3Nnmz1op_wHUgPgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CMOS-GAN%3A+Semi-Supervised+Generative+Adversarial+Model+for+Cross-Modality+Face+Image+Synthesis&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yu%2C+Shikang&rft.au=Han%2C+Hu&rft.au=Shan%2C+Shiguang&rft.au=Chen%2C+Xilin&rft.date=2023-01-01&rft.eissn=1941-0042&rft.volume=32&rft.spage=144&rft_id=info:doi/10.1109%2FTIP.2022.3226413&rft_id=info%3Apmid%2F37015478&rft.externalDocID=37015478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |