Two-dimensional imine-based covalent-organic-framework derived nitrogen-doped porous carbon nanosheets for high-performance lithium-sulfur batteries
Lithium-sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short cycling performance, low sulfur loading and shuttle effect; in order to overcome these problems, more efforts have been devoted to the exploratio...
Saved in:
Published in | New journal of chemistry Vol. 45; no. 19; pp. 8683 - 8692 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short cycling performance, low sulfur loading and shuttle effect; in order to overcome these problems, more efforts have been devoted to the exploration of effective host materials for sulfur confinement. Herein, we report a facile approach for the synthesis of nitrogen-doped porous carbon (NPC) nanosheets, derived from imine-based covalent organic frameworks (COFs), as the host material.
In situ
nitrogen doping is very uniform due to the inherited nitrogen element distributed uniformly in the COF skeleton. Sulfur-loaded NPC composites can achieve a high sulfur loading amount of 71.8% and enhanced lithium-sulfur battery performance, in terms of a high initial discharge capacity (1398 mA h g
−1
at 0.1C) and good cycling properties (reversible capacity of 833 mA h g
−1
after 250 cycles). The existence of nitrogen doped carbon nanosheets with a high surface area and controlled porosity can lead to effective immobilization of the polysulfides and simultaneous improvement of the reaction kinetics of the sulfur species. This design strategy provides an extended method for fabricating high performance cathodes for lithium-sulfur batteries.
COF-derived nitrogen-doped porous carbon nanosheets with S loading achieve high capacities and good long-cycling performance for lithium-sulfur batteries. |
---|---|
AbstractList | Lithium-sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short cycling performance, low sulfur loading and shuttle effect; in order to overcome these problems, more efforts have been devoted to the exploration of effective host materials for sulfur confinement. Herein, we report a facile approach for the synthesis of nitrogen-doped porous carbon (NPC) nanosheets, derived from imine-based covalent organic frameworks (COFs), as the host material.
In situ
nitrogen doping is very uniform due to the inherited nitrogen element distributed uniformly in the COF skeleton. Sulfur-loaded NPC composites can achieve a high sulfur loading amount of 71.8% and enhanced lithium-sulfur battery performance, in terms of a high initial discharge capacity (1398 mA h g
−1
at 0.1C) and good cycling properties (reversible capacity of 833 mA h g
−1
after 250 cycles). The existence of nitrogen doped carbon nanosheets with a high surface area and controlled porosity can lead to effective immobilization of the polysulfides and simultaneous improvement of the reaction kinetics of the sulfur species. This design strategy provides an extended method for fabricating high performance cathodes for lithium-sulfur batteries.
COF-derived nitrogen-doped porous carbon nanosheets with S loading achieve high capacities and good long-cycling performance for lithium-sulfur batteries. Lithium–sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short cycling performance, low sulfur loading and shuttle effect; in order to overcome these problems, more efforts have been devoted to the exploration of effective host materials for sulfur confinement. Herein, we report a facile approach for the synthesis of nitrogen-doped porous carbon (NPC) nanosheets, derived from imine-based covalent organic frameworks (COFs), as the host material. In situ nitrogen doping is very uniform due to the inherited nitrogen element distributed uniformly in the COF skeleton. Sulfur-loaded NPC composites can achieve a high sulfur loading amount of 71.8% and enhanced lithium–sulfur battery performance, in terms of a high initial discharge capacity (1398 mA h g −1 at 0.1C) and good cycling properties (reversible capacity of 833 mA h g −1 after 250 cycles). The existence of nitrogen doped carbon nanosheets with a high surface area and controlled porosity can lead to effective immobilization of the polysulfides and simultaneous improvement of the reaction kinetics of the sulfur species. This design strategy provides an extended method for fabricating high performance cathodes for lithium–sulfur batteries. Lithium–sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short cycling performance, low sulfur loading and shuttle effect; in order to overcome these problems, more efforts have been devoted to the exploration of effective host materials for sulfur confinement. Herein, we report a facile approach for the synthesis of nitrogen-doped porous carbon (NPC) nanosheets, derived from imine-based covalent organic frameworks (COFs), as the host material. In situ nitrogen doping is very uniform due to the inherited nitrogen element distributed uniformly in the COF skeleton. Sulfur-loaded NPC composites can achieve a high sulfur loading amount of 71.8% and enhanced lithium–sulfur battery performance, in terms of a high initial discharge capacity (1398 mA h g−1 at 0.1C) and good cycling properties (reversible capacity of 833 mA h g−1 after 250 cycles). The existence of nitrogen doped carbon nanosheets with a high surface area and controlled porosity can lead to effective immobilization of the polysulfides and simultaneous improvement of the reaction kinetics of the sulfur species. This design strategy provides an extended method for fabricating high performance cathodes for lithium–sulfur batteries. |
Author | Lv, Li-Ping Chen, Shuangqiang Guo, Chaofei Xu, Jiaojiao Wang, Yong Sun, Weiwei |
AuthorAffiliation | Department of Chemical Engineering Shanghai University School of Environmental and Chemical Engineering |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Shanghai University – name: School of Environmental and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Chaofei surname: Guo fullname: Guo, Chaofei – sequence: 2 givenname: Jiaojiao surname: Xu fullname: Xu, Jiaojiao – sequence: 3 givenname: Li-Ping surname: Lv fullname: Lv, Li-Ping – sequence: 4 givenname: Shuangqiang surname: Chen fullname: Chen, Shuangqiang – sequence: 5 givenname: Weiwei surname: Sun fullname: Sun, Weiwei – sequence: 6 givenname: Yong surname: Wang fullname: Wang, Yong |
BookMark | eNptkcFrFTEQxoNUsK29eC8EehOiyWa7eTlKbdVS9FLPy7zs5L287ibbSbal_4d_sLFPFETmMDPwmw--b47YQUwRGXuj5DsltX0_qLiTslNy94IdKt1ZYZtOHdRZta2Q5233ih3lXBmlTKcO2Y_bxySGMGHMIUUYeZhCRLGGjAN36QFGjEUk2kAMTniCCR8T3fEBKTxUJIZCaYNRDGmu65woLZk7oHWKPEJMeYtYMveJ-DZstmJGqvME0SEfQ9mGZRJ5Gf1CfA2lVFnMr9lLD2PGk9_9mH2_ury9-Cxuvn36cvHhRjjdmiLcqlEAK91JC1o7b8CaatF2VrfVn7WuFqCRDrRbS0Tp20ZrMNqYQXuvj9nZXnemdL9gLv0uLVRTyH1z3qyUrcqmUnJPOUo5E_rehQKlxlUIwtgr2f_Kvv-ovl4_Z39dT97-czJTmICe_g-f7mHK7g_395H6J_ndlFU |
CitedBy_id | crossref_primary_10_1246_bcsj_20210264 crossref_primary_10_1016_j_jcis_2022_07_123 crossref_primary_10_1016_j_jssc_2022_123430 crossref_primary_10_1002_adfm_202421697 crossref_primary_10_1016_j_fuel_2023_129470 crossref_primary_10_1016_j_pmatsci_2024_101373 crossref_primary_10_1021_acsnano_3c08240 crossref_primary_10_3390_nano11071819 crossref_primary_10_1016_j_est_2023_107521 crossref_primary_10_1016_j_ensm_2021_12_041 crossref_primary_10_1007_s41061_025_00494_z crossref_primary_10_1016_j_ccr_2023_215055 |
Cites_doi | 10.1016/j.electacta.2018.04.021 10.1021/acs.chemmater.9b01986 10.1038/s41467-018-02889-7 10.1002/aenm.201702381 10.1039/C7TA10272K 10.1002/chem.201902052 10.1039/C9NJ01017C 10.1039/D0NJ05912A 10.1021/acsnano.7b01945 10.1021/acs.nanolett.6b04610 10.1021/nl5020475 10.1016/j.mtener.2018.01.003 10.1002/smll.201804786 10.1088/1361-6528/aa7bb6 10.1039/C5CC10221A 10.1039/D0NJ05914E 10.1002/adma.201502467 10.1016/j.cej.2018.03.179 10.1002/adfm.201804520 10.1021/acs.chemmater.0c00246 10.1002/smtd.201900338 10.1039/C8CC02381F 10.1002/adfm.202010455 10.1021/acsnano.7b03227 10.1021/acssuschemeng.0c00239 10.1016/j.cej.2020.126967 10.1021/acs.nanolett.6b00870 10.1021/acsami.8b00190 10.1002/adfm.201704443 10.1002/smll.201804338 10.1002/adfm.201808756 10.1021/acsnano.7b05869 10.1016/j.cej.2020.128164 10.1002/aenm.201801010 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SR 8BQ 8FD H9R JG9 KA0 |
DOI | 10.1039/d1nj00610j |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Illustrata: Natural Sciences Materials Research Database ProQuest Illustrata: Technology Collection |
DatabaseTitle | CrossRef Materials Research Database ProQuest Illustrata: Natural Sciences Engineered Materials Abstracts ProQuest Illustrata: Technology Collection Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1369-9261 |
EndPage | 8692 |
ExternalDocumentID | 10_1039_D1NJ00610J d1nj00610j |
GroupedDBID | - 0-7 0R 123 1TJ 29N 4.4 70 705 70J 7~J AAEMU AAGNR AAIWI AALRV AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG L7B M4U N9A O9- OK1 P2P R7B R7C R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SKH SLH TN5 TWZ VH6 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAYXX ABCQX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ R56 RAOCF YQT 7SR 8BQ 8FD H9R JG9 KA0 |
ID | FETCH-LOGICAL-c347t-c821aa83609a33cf7a970549693401199c9c9ae70ca3cb0ee0f4233a7377d3ff3 |
ISSN | 1144-0546 |
IngestDate | Mon Jun 30 09:47:51 EDT 2025 Tue Jul 01 02:50:51 EDT 2025 Thu Apr 24 23:12:46 EDT 2025 Sat Apr 16 10:02:51 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-c821aa83609a33cf7a970549693401199c9c9ae70ca3cb0ee0f4233a7377d3ff3 |
Notes | 10.1039/d1nj00610j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3489-7672 0000-0003-4054-008X 0000-0002-9111-1691 |
PQID | 2528196097 |
PQPubID | 2048886 |
PageCount | 1 |
ParticipantIDs | rsc_primary_d1nj00610j crossref_citationtrail_10_1039_D1NJ00610J proquest_journals_2528196097 crossref_primary_10_1039_D1NJ00610J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-21 |
PublicationDateYYYYMMDD | 2021-05-21 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | New journal of chemistry |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Pang (D1NJ00610J-(cit27)/*[position()=1]) 2015; 27 Tong (D1NJ00610J-(cit32)/*[position()=1]) 2021 Lei (D1NJ00610J-(cit13)/*[position()=1]) 2019; 9 Jeon (D1NJ00610J-(cit29)/*[position()=1]) 2021; 407 Lv (D1NJ00610J-(cit5)/*[position()=1]) 2019 Ma (D1NJ00610J-(cit3)/*[position()=1]) 2017; 11 Li (D1NJ00610J-(cit33)/*[position()=1]) 2018; 8 Zhou (D1NJ00610J-(cit15)/*[position()=1]) 2018; 273 Song (D1NJ00610J-(cit1)/*[position()=1]) 2019; 24 Kong (D1NJ00610J-(cit7)/*[position()=1]) 2019; 29 Wang (D1NJ00610J-(cit26)/*[position()=1]) 2018; 345 Gueon (D1NJ00610J-(cit12)/*[position()=1]) 2018; 12 Deng (D1NJ00610J-(cit4)/*[position()=1]) 2017; 11 Gomes (D1NJ00610J-(cit18)/*[position()=1]) 2020; 8 Yuan (D1NJ00610J-(cit20)/*[position()=1]) 2018; 54 Yoo (D1NJ00610J-(cit31)/*[position()=1]) 2016; 16 Chen (D1NJ00610J-(cit16)/*[position()=1]) 2019; 11 Lei (D1NJ00610J-(cit19)/*[position()=1]) 2018; 9 Je (D1NJ00610J-(cit30)/*[position()=1]) 2021; 407 Han (D1NJ00610J-(cit21)/*[position()=1]) 2017; 28 Zhang (D1NJ00610J-(cit22)/*[position()=1]) 2018; 7 Royuela (D1NJ00610J-(cit24)/*[position()=1]) 2019; 25 Dai (D1NJ00610J-(cit8)/*[position()=1]) 2018; 28 Zhang (D1NJ00610J-(cit11)/*[position()=1]) 2018; 6 Li (D1NJ00610J-(cit34)/*[position()=1]) 2021; 409 Kim (D1NJ00610J-(cit17)/*[position()=1]) 2020; 32 Fang (D1NJ00610J-(cit35)/*[position()=1]) 2021; 45 Shin (D1NJ00610J-(cit23)/*[position()=1]) 2019; 31 Qiu (D1NJ00610J-(cit10)/*[position()=1]) 2014; 14 Xu (D1NJ00610J-(cit9)/*[position()=1]) 2017; 17 Fu (D1NJ00610J-(cit6)/*[position()=1]) 2019 Guo (D1NJ00610J-(cit2)/*[position()=1]) 2021; 45 Zhang (D1NJ00610J-(cit14)/*[position()=1]) 2018; 10 Yu (D1NJ00610J-(cit28)/*[position()=1]) 2018; 28 Smith (D1NJ00610J-(cit25)/*[position()=1]) 2016; 52 |
References_xml | – volume: 273 start-page: 127 year: 2018 ident: D1NJ00610J-(cit15)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.021 – volume: 31 start-page: 7910 year: 2019 ident: D1NJ00610J-(cit23)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01986 – volume: 9 start-page: 576 year: 2018 ident: D1NJ00610J-(cit19)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-02889-7 – volume: 8 start-page: 1702381 year: 2018 ident: D1NJ00610J-(cit33)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702381 – volume: 6 start-page: 2797 year: 2018 ident: D1NJ00610J-(cit11)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10272K – volume: 25 start-page: 12394 year: 2019 ident: D1NJ00610J-(cit24)/*[position()=1] publication-title: Chem. Eur. J. doi: 10.1002/chem.201902052 – volume: 24 start-page: 9641 year: 2019 ident: D1NJ00610J-(cit1)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C9NJ01017C – volume: 45 start-page: 2361 year: 2021 ident: D1NJ00610J-(cit35)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/D0NJ05912A – volume: 11 start-page: 6031 year: 2017 ident: D1NJ00610J-(cit4)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01945 – volume: 17 start-page: 538 year: 2017 ident: D1NJ00610J-(cit9)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04610 – volume: 14 start-page: 4821 year: 2014 ident: D1NJ00610J-(cit10)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5020475 – volume: 7 start-page: 141 year: 2018 ident: D1NJ00610J-(cit22)/*[position()=1] publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2018.01.003 – start-page: e1804786 year: 2019 ident: D1NJ00610J-(cit6)/*[position()=1] publication-title: Small doi: 10.1002/smll.201804786 – volume: 28 start-page: 33LT01 year: 2017 ident: D1NJ00610J-(cit21)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/1361-6528/aa7bb6 – volume: 52 start-page: 3690 year: 2016 ident: D1NJ00610J-(cit25)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC10221A – volume: 45 start-page: 3652 year: 2021 ident: D1NJ00610J-(cit2)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/D0NJ05914E – volume: 27 start-page: 6021 year: 2015 ident: D1NJ00610J-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502467 – volume: 345 start-page: 271 year: 2018 ident: D1NJ00610J-(cit26)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.179 – volume: 28 start-page: 1804520 year: 2018 ident: D1NJ00610J-(cit28)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804520 – volume: 32 start-page: 4185 year: 2020 ident: D1NJ00610J-(cit17)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00246 – volume: 11 start-page: 1900338 year: 2019 ident: D1NJ00610J-(cit16)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201900338 – volume: 54 start-page: 5976 year: 2018 ident: D1NJ00610J-(cit20)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC02381F – start-page: 2010455 year: 2021 ident: D1NJ00610J-(cit32)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010455 – volume: 11 start-page: 7274 year: 2017 ident: D1NJ00610J-(cit3)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b03227 – volume: 8 start-page: 5946 year: 2020 ident: D1NJ00610J-(cit18)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c00239 – volume: 407 start-page: 126967 year: 2021 ident: D1NJ00610J-(cit29)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126967 – volume: 16 start-page: 3292 year: 2016 ident: D1NJ00610J-(cit31)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00870 – volume: 10 start-page: 8749 year: 2018 ident: D1NJ00610J-(cit14)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00190 – volume: 28 start-page: 1704443 year: 2018 ident: D1NJ00610J-(cit8)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704443 – start-page: e1804338 year: 2019 ident: D1NJ00610J-(cit5)/*[position()=1] publication-title: Small doi: 10.1002/smll.201804338 – volume: 29 start-page: 1808756 year: 2019 ident: D1NJ00610J-(cit7)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808756 – volume: 12 start-page: 226 year: 2018 ident: D1NJ00610J-(cit12)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b05869 – volume: 409 start-page: 128164 year: 2021 ident: D1NJ00610J-(cit34)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128164 – volume: 9 start-page: 1801010 year: 2019 ident: D1NJ00610J-(cit13)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801010 – volume: 407 start-page: 126967 year: 2021 ident: D1NJ00610J-(cit30)/*[position()=1] publication-title: Adv. Funct. Mater. |
SSID | ssj0011761 |
Score | 2.4058664 |
Snippet | Lithium-sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short... Lithium–sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8683 |
SubjectTerms | Carbon Cycles Flux density Lithium Lithium sulfur batteries Nanosheets Nitrogen Reaction kinetics |
Title | Two-dimensional imine-based covalent-organic-framework derived nitrogen-doped porous carbon nanosheets for high-performance lithium-sulfur batteries |
URI | https://www.proquest.com/docview/2528196097 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6uwe4IP5WFBZkCS6oCiRxEsfHFXS1VKUg0ZV6ixzH3rbaTUrbLBIn3oELL8VL8CSM4zjJ_ggBqhqlVhy7mS_jGXv8DUIvlBekNPVix80icFBAHTpcgTIkQoQqigPwIfTUwPtJdHwSjGbhrNf72YlaKrfpK_H1xn0l_yNVKAO56l2y_yDZ5qZQAOcgXziChOH4dzL-UjiZpuc31BoDnaFLOnpg0nvVoCU981dHMxCTv0k4yoZjDTLo44Ve_l9s1wU04mTFCn6CRa7jYgVfpwCNnOfFZi7ltiJuGGh6Y2fV2W0AZvx8UZ43zWzKM1WuB2nF22kjFJctR1SHqkLYZHNNEFBZ1CEAhZILWzorK6gteLGEbxNBtHA-1vlYxhdtkILRop_mJc9PPwP0T7vTGr6nV-T9dlrDTJ7YyNUqMqXbJaOswRmEavUUpjRlJGIO8w3Bu9XwhrDSIpl19HUcmTQ6duyPTGK-a-OKSzQta-blS23zuct29LQRA5MPydHJeJxMh7PpDtrzwWsBtbt3OJy-GzfLWh41BL6245Yvl7DX7b0vW0it27OztjlpKttnehfdqZ0WfGgQeA_1ZH4f3Wqe1QP04woScQeJ2CLx17fv1zCIawziyxjEBoPYYBC3GMSAO3wVg7jGIDRg0Icb9D1EJ0fD6Ztjp8754QgS0K0jYt_jXO8sYpwQoShnFJ4UixgJND0hE_DhkrqCE5G6UroKHALCKaE0I0qRfbSbF7l8hDALssBXLHQVCfXe_TgD05iqgEoRxCFP--ilfc6JqAnxdV6Ws6QKzCAseetNRpVMRn30vLl2ZWhgbrzqwIorqd-mTeKHeq0a_g_to30QYVO_lfjjP9d7gm63b8gB2t2uS_kUTOFt-qwG2G8NZ76z |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+imine-based+covalent%E2%80%93organic-framework+derived+nitrogen-doped+porous+carbon+nanosheets+for+high-performance+lithium%E2%80%93sulfur+batteries&rft.jtitle=New+journal+of+chemistry&rft.au=Guo%2C+Chaofei&rft.au=Xu%2C+Jiaojiao&rft.au=Li-Ping%2C+Lv&rft.au=Chen%2C+Shuangqiang&rft.date=2021-05-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=45&rft.issue=19&rft.spage=8683&rft.epage=8692&rft_id=info:doi/10.1039%2Fd1nj00610j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon |