Two-dimensional imine-based covalent-organic-framework derived nitrogen-doped porous carbon nanosheets for high-performance lithium-sulfur batteries

Lithium-sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short cycling performance, low sulfur loading and shuttle effect; in order to overcome these problems, more efforts have been devoted to the exploratio...

Full description

Saved in:
Bibliographic Details
Published inNew journal of chemistry Vol. 45; no. 19; pp. 8683 - 8692
Main Authors Guo, Chaofei, Xu, Jiaojiao, Lv, Li-Ping, Chen, Shuangqiang, Sun, Weiwei, Wang, Yong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium-sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short cycling performance, low sulfur loading and shuttle effect; in order to overcome these problems, more efforts have been devoted to the exploration of effective host materials for sulfur confinement. Herein, we report a facile approach for the synthesis of nitrogen-doped porous carbon (NPC) nanosheets, derived from imine-based covalent organic frameworks (COFs), as the host material. In situ nitrogen doping is very uniform due to the inherited nitrogen element distributed uniformly in the COF skeleton. Sulfur-loaded NPC composites can achieve a high sulfur loading amount of 71.8% and enhanced lithium-sulfur battery performance, in terms of a high initial discharge capacity (1398 mA h g −1 at 0.1C) and good cycling properties (reversible capacity of 833 mA h g −1 after 250 cycles). The existence of nitrogen doped carbon nanosheets with a high surface area and controlled porosity can lead to effective immobilization of the polysulfides and simultaneous improvement of the reaction kinetics of the sulfur species. This design strategy provides an extended method for fabricating high performance cathodes for lithium-sulfur batteries. COF-derived nitrogen-doped porous carbon nanosheets with S loading achieve high capacities and good long-cycling performance for lithium-sulfur batteries.
AbstractList Lithium-sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short cycling performance, low sulfur loading and shuttle effect; in order to overcome these problems, more efforts have been devoted to the exploration of effective host materials for sulfur confinement. Herein, we report a facile approach for the synthesis of nitrogen-doped porous carbon (NPC) nanosheets, derived from imine-based covalent organic frameworks (COFs), as the host material. In situ nitrogen doping is very uniform due to the inherited nitrogen element distributed uniformly in the COF skeleton. Sulfur-loaded NPC composites can achieve a high sulfur loading amount of 71.8% and enhanced lithium-sulfur battery performance, in terms of a high initial discharge capacity (1398 mA h g −1 at 0.1C) and good cycling properties (reversible capacity of 833 mA h g −1 after 250 cycles). The existence of nitrogen doped carbon nanosheets with a high surface area and controlled porosity can lead to effective immobilization of the polysulfides and simultaneous improvement of the reaction kinetics of the sulfur species. This design strategy provides an extended method for fabricating high performance cathodes for lithium-sulfur batteries. COF-derived nitrogen-doped porous carbon nanosheets with S loading achieve high capacities and good long-cycling performance for lithium-sulfur batteries.
Lithium–sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short cycling performance, low sulfur loading and shuttle effect; in order to overcome these problems, more efforts have been devoted to the exploration of effective host materials for sulfur confinement. Herein, we report a facile approach for the synthesis of nitrogen-doped porous carbon (NPC) nanosheets, derived from imine-based covalent organic frameworks (COFs), as the host material. In situ nitrogen doping is very uniform due to the inherited nitrogen element distributed uniformly in the COF skeleton. Sulfur-loaded NPC composites can achieve a high sulfur loading amount of 71.8% and enhanced lithium–sulfur battery performance, in terms of a high initial discharge capacity (1398 mA h g −1 at 0.1C) and good cycling properties (reversible capacity of 833 mA h g −1 after 250 cycles). The existence of nitrogen doped carbon nanosheets with a high surface area and controlled porosity can lead to effective immobilization of the polysulfides and simultaneous improvement of the reaction kinetics of the sulfur species. This design strategy provides an extended method for fabricating high performance cathodes for lithium–sulfur batteries.
Lithium–sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short cycling performance, low sulfur loading and shuttle effect; in order to overcome these problems, more efforts have been devoted to the exploration of effective host materials for sulfur confinement. Herein, we report a facile approach for the synthesis of nitrogen-doped porous carbon (NPC) nanosheets, derived from imine-based covalent organic frameworks (COFs), as the host material. In situ nitrogen doping is very uniform due to the inherited nitrogen element distributed uniformly in the COF skeleton. Sulfur-loaded NPC composites can achieve a high sulfur loading amount of 71.8% and enhanced lithium–sulfur battery performance, in terms of a high initial discharge capacity (1398 mA h g−1 at 0.1C) and good cycling properties (reversible capacity of 833 mA h g−1 after 250 cycles). The existence of nitrogen doped carbon nanosheets with a high surface area and controlled porosity can lead to effective immobilization of the polysulfides and simultaneous improvement of the reaction kinetics of the sulfur species. This design strategy provides an extended method for fabricating high performance cathodes for lithium–sulfur batteries.
Author Lv, Li-Ping
Chen, Shuangqiang
Guo, Chaofei
Xu, Jiaojiao
Wang, Yong
Sun, Weiwei
AuthorAffiliation Department of Chemical Engineering
Shanghai University
School of Environmental and Chemical Engineering
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Shanghai University
– name: School of Environmental and Chemical Engineering
Author_xml – sequence: 1
  givenname: Chaofei
  surname: Guo
  fullname: Guo, Chaofei
– sequence: 2
  givenname: Jiaojiao
  surname: Xu
  fullname: Xu, Jiaojiao
– sequence: 3
  givenname: Li-Ping
  surname: Lv
  fullname: Lv, Li-Ping
– sequence: 4
  givenname: Shuangqiang
  surname: Chen
  fullname: Chen, Shuangqiang
– sequence: 5
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
– sequence: 6
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
BookMark eNptkcFrFTEQxoNUsK29eC8EehOiyWa7eTlKbdVS9FLPy7zs5L287ibbSbal_4d_sLFPFETmMDPwmw--b47YQUwRGXuj5DsltX0_qLiTslNy94IdKt1ZYZtOHdRZta2Q5233ih3lXBmlTKcO2Y_bxySGMGHMIUUYeZhCRLGGjAN36QFGjEUk2kAMTniCCR8T3fEBKTxUJIZCaYNRDGmu65woLZk7oHWKPEJMeYtYMveJ-DZstmJGqvME0SEfQ9mGZRJ5Gf1CfA2lVFnMr9lLD2PGk9_9mH2_ury9-Cxuvn36cvHhRjjdmiLcqlEAK91JC1o7b8CaatF2VrfVn7WuFqCRDrRbS0Tp20ZrMNqYQXuvj9nZXnemdL9gLv0uLVRTyH1z3qyUrcqmUnJPOUo5E_rehQKlxlUIwtgr2f_Kvv-ovl4_Z39dT97-czJTmICe_g-f7mHK7g_395H6J_ndlFU
CitedBy_id crossref_primary_10_1246_bcsj_20210264
crossref_primary_10_1016_j_jcis_2022_07_123
crossref_primary_10_1016_j_jssc_2022_123430
crossref_primary_10_1002_adfm_202421697
crossref_primary_10_1016_j_fuel_2023_129470
crossref_primary_10_1016_j_pmatsci_2024_101373
crossref_primary_10_1021_acsnano_3c08240
crossref_primary_10_3390_nano11071819
crossref_primary_10_1016_j_est_2023_107521
crossref_primary_10_1016_j_ensm_2021_12_041
crossref_primary_10_1007_s41061_025_00494_z
crossref_primary_10_1016_j_ccr_2023_215055
Cites_doi 10.1016/j.electacta.2018.04.021
10.1021/acs.chemmater.9b01986
10.1038/s41467-018-02889-7
10.1002/aenm.201702381
10.1039/C7TA10272K
10.1002/chem.201902052
10.1039/C9NJ01017C
10.1039/D0NJ05912A
10.1021/acsnano.7b01945
10.1021/acs.nanolett.6b04610
10.1021/nl5020475
10.1016/j.mtener.2018.01.003
10.1002/smll.201804786
10.1088/1361-6528/aa7bb6
10.1039/C5CC10221A
10.1039/D0NJ05914E
10.1002/adma.201502467
10.1016/j.cej.2018.03.179
10.1002/adfm.201804520
10.1021/acs.chemmater.0c00246
10.1002/smtd.201900338
10.1039/C8CC02381F
10.1002/adfm.202010455
10.1021/acsnano.7b03227
10.1021/acssuschemeng.0c00239
10.1016/j.cej.2020.126967
10.1021/acs.nanolett.6b00870
10.1021/acsami.8b00190
10.1002/adfm.201704443
10.1002/smll.201804338
10.1002/adfm.201808756
10.1021/acsnano.7b05869
10.1016/j.cej.2020.128164
10.1002/aenm.201801010
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
8BQ
8FD
H9R
JG9
KA0
DOI 10.1039/d1nj00610j
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Illustrata: Natural Sciences
Materials Research Database
ProQuest Illustrata: Technology Collection
DatabaseTitle CrossRef
Materials Research Database
ProQuest Illustrata: Natural Sciences
Engineered Materials Abstracts
ProQuest Illustrata: Technology Collection
Technology Research Database
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1369-9261
EndPage 8692
ExternalDocumentID 10_1039_D1NJ00610J
d1nj00610j
GroupedDBID -
0-7
0R
123
1TJ
29N
4.4
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AALRV
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
L7B
M4U
N9A
O9-
OK1
P2P
R7B
R7C
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SKH
SLH
TN5
TWZ
VH6
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABCQX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
YQT
7SR
8BQ
8FD
H9R
JG9
KA0
ID FETCH-LOGICAL-c347t-c821aa83609a33cf7a970549693401199c9c9ae70ca3cb0ee0f4233a7377d3ff3
ISSN 1144-0546
IngestDate Mon Jun 30 09:47:51 EDT 2025
Tue Jul 01 02:50:51 EDT 2025
Thu Apr 24 23:12:46 EDT 2025
Sat Apr 16 10:02:51 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-c821aa83609a33cf7a970549693401199c9c9ae70ca3cb0ee0f4233a7377d3ff3
Notes 10.1039/d1nj00610j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3489-7672
0000-0003-4054-008X
0000-0002-9111-1691
PQID 2528196097
PQPubID 2048886
PageCount 1
ParticipantIDs rsc_primary_d1nj00610j
crossref_citationtrail_10_1039_D1NJ00610J
proquest_journals_2528196097
crossref_primary_10_1039_D1NJ00610J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-21
PublicationDateYYYYMMDD 2021-05-21
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle New journal of chemistry
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Pang (D1NJ00610J-(cit27)/*[position()=1]) 2015; 27
Tong (D1NJ00610J-(cit32)/*[position()=1]) 2021
Lei (D1NJ00610J-(cit13)/*[position()=1]) 2019; 9
Jeon (D1NJ00610J-(cit29)/*[position()=1]) 2021; 407
Lv (D1NJ00610J-(cit5)/*[position()=1]) 2019
Ma (D1NJ00610J-(cit3)/*[position()=1]) 2017; 11
Li (D1NJ00610J-(cit33)/*[position()=1]) 2018; 8
Zhou (D1NJ00610J-(cit15)/*[position()=1]) 2018; 273
Song (D1NJ00610J-(cit1)/*[position()=1]) 2019; 24
Kong (D1NJ00610J-(cit7)/*[position()=1]) 2019; 29
Wang (D1NJ00610J-(cit26)/*[position()=1]) 2018; 345
Gueon (D1NJ00610J-(cit12)/*[position()=1]) 2018; 12
Deng (D1NJ00610J-(cit4)/*[position()=1]) 2017; 11
Gomes (D1NJ00610J-(cit18)/*[position()=1]) 2020; 8
Yuan (D1NJ00610J-(cit20)/*[position()=1]) 2018; 54
Yoo (D1NJ00610J-(cit31)/*[position()=1]) 2016; 16
Chen (D1NJ00610J-(cit16)/*[position()=1]) 2019; 11
Lei (D1NJ00610J-(cit19)/*[position()=1]) 2018; 9
Je (D1NJ00610J-(cit30)/*[position()=1]) 2021; 407
Han (D1NJ00610J-(cit21)/*[position()=1]) 2017; 28
Zhang (D1NJ00610J-(cit22)/*[position()=1]) 2018; 7
Royuela (D1NJ00610J-(cit24)/*[position()=1]) 2019; 25
Dai (D1NJ00610J-(cit8)/*[position()=1]) 2018; 28
Zhang (D1NJ00610J-(cit11)/*[position()=1]) 2018; 6
Li (D1NJ00610J-(cit34)/*[position()=1]) 2021; 409
Kim (D1NJ00610J-(cit17)/*[position()=1]) 2020; 32
Fang (D1NJ00610J-(cit35)/*[position()=1]) 2021; 45
Shin (D1NJ00610J-(cit23)/*[position()=1]) 2019; 31
Qiu (D1NJ00610J-(cit10)/*[position()=1]) 2014; 14
Xu (D1NJ00610J-(cit9)/*[position()=1]) 2017; 17
Fu (D1NJ00610J-(cit6)/*[position()=1]) 2019
Guo (D1NJ00610J-(cit2)/*[position()=1]) 2021; 45
Zhang (D1NJ00610J-(cit14)/*[position()=1]) 2018; 10
Yu (D1NJ00610J-(cit28)/*[position()=1]) 2018; 28
Smith (D1NJ00610J-(cit25)/*[position()=1]) 2016; 52
References_xml – volume: 273
  start-page: 127
  year: 2018
  ident: D1NJ00610J-(cit15)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.04.021
– volume: 31
  start-page: 7910
  year: 2019
  ident: D1NJ00610J-(cit23)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01986
– volume: 9
  start-page: 576
  year: 2018
  ident: D1NJ00610J-(cit19)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02889-7
– volume: 8
  start-page: 1702381
  year: 2018
  ident: D1NJ00610J-(cit33)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702381
– volume: 6
  start-page: 2797
  year: 2018
  ident: D1NJ00610J-(cit11)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10272K
– volume: 25
  start-page: 12394
  year: 2019
  ident: D1NJ00610J-(cit24)/*[position()=1]
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201902052
– volume: 24
  start-page: 9641
  year: 2019
  ident: D1NJ00610J-(cit1)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ01017C
– volume: 45
  start-page: 2361
  year: 2021
  ident: D1NJ00610J-(cit35)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ05912A
– volume: 11
  start-page: 6031
  year: 2017
  ident: D1NJ00610J-(cit4)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01945
– volume: 17
  start-page: 538
  year: 2017
  ident: D1NJ00610J-(cit9)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04610
– volume: 14
  start-page: 4821
  year: 2014
  ident: D1NJ00610J-(cit10)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5020475
– volume: 7
  start-page: 141
  year: 2018
  ident: D1NJ00610J-(cit22)/*[position()=1]
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2018.01.003
– start-page: e1804786
  year: 2019
  ident: D1NJ00610J-(cit6)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201804786
– volume: 28
  start-page: 33LT01
  year: 2017
  ident: D1NJ00610J-(cit21)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa7bb6
– volume: 52
  start-page: 3690
  year: 2016
  ident: D1NJ00610J-(cit25)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC10221A
– volume: 45
  start-page: 3652
  year: 2021
  ident: D1NJ00610J-(cit2)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ05914E
– volume: 27
  start-page: 6021
  year: 2015
  ident: D1NJ00610J-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502467
– volume: 345
  start-page: 271
  year: 2018
  ident: D1NJ00610J-(cit26)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.179
– volume: 28
  start-page: 1804520
  year: 2018
  ident: D1NJ00610J-(cit28)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804520
– volume: 32
  start-page: 4185
  year: 2020
  ident: D1NJ00610J-(cit17)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00246
– volume: 11
  start-page: 1900338
  year: 2019
  ident: D1NJ00610J-(cit16)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201900338
– volume: 54
  start-page: 5976
  year: 2018
  ident: D1NJ00610J-(cit20)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02381F
– start-page: 2010455
  year: 2021
  ident: D1NJ00610J-(cit32)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010455
– volume: 11
  start-page: 7274
  year: 2017
  ident: D1NJ00610J-(cit3)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03227
– volume: 8
  start-page: 5946
  year: 2020
  ident: D1NJ00610J-(cit18)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c00239
– volume: 407
  start-page: 126967
  year: 2021
  ident: D1NJ00610J-(cit29)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126967
– volume: 16
  start-page: 3292
  year: 2016
  ident: D1NJ00610J-(cit31)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00870
– volume: 10
  start-page: 8749
  year: 2018
  ident: D1NJ00610J-(cit14)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00190
– volume: 28
  start-page: 1704443
  year: 2018
  ident: D1NJ00610J-(cit8)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704443
– start-page: e1804338
  year: 2019
  ident: D1NJ00610J-(cit5)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201804338
– volume: 29
  start-page: 1808756
  year: 2019
  ident: D1NJ00610J-(cit7)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808756
– volume: 12
  start-page: 226
  year: 2018
  ident: D1NJ00610J-(cit12)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05869
– volume: 409
  start-page: 128164
  year: 2021
  ident: D1NJ00610J-(cit34)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128164
– volume: 9
  start-page: 1801010
  year: 2019
  ident: D1NJ00610J-(cit13)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801010
– volume: 407
  start-page: 126967
  year: 2021
  ident: D1NJ00610J-(cit30)/*[position()=1]
  publication-title: Adv. Funct. Mater.
SSID ssj0011761
Score 2.4058664
Snippet Lithium-sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short...
Lithium–sulfur batteries are attracting more attention due to their high theoretical capacity and energy density. However, they have the problems of short...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8683
SubjectTerms Carbon
Cycles
Flux density
Lithium
Lithium sulfur batteries
Nanosheets
Nitrogen
Reaction kinetics
Title Two-dimensional imine-based covalent-organic-framework derived nitrogen-doped porous carbon nanosheets for high-performance lithium-sulfur batteries
URI https://www.proquest.com/docview/2528196097
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6uwe4IP5WFBZkCS6oCiRxEsfHFXS1VKUg0ZV6ixzH3rbaTUrbLBIn3oELL8VL8CSM4zjJ_ggBqhqlVhy7mS_jGXv8DUIvlBekNPVix80icFBAHTpcgTIkQoQqigPwIfTUwPtJdHwSjGbhrNf72YlaKrfpK_H1xn0l_yNVKAO56l2y_yDZ5qZQAOcgXziChOH4dzL-UjiZpuc31BoDnaFLOnpg0nvVoCU981dHMxCTv0k4yoZjDTLo44Ve_l9s1wU04mTFCn6CRa7jYgVfpwCNnOfFZi7ltiJuGGh6Y2fV2W0AZvx8UZ43zWzKM1WuB2nF22kjFJctR1SHqkLYZHNNEFBZ1CEAhZILWzorK6gteLGEbxNBtHA-1vlYxhdtkILRop_mJc9PPwP0T7vTGr6nV-T9dlrDTJ7YyNUqMqXbJaOswRmEavUUpjRlJGIO8w3Bu9XwhrDSIpl19HUcmTQ6duyPTGK-a-OKSzQta-blS23zuct29LQRA5MPydHJeJxMh7PpDtrzwWsBtbt3OJy-GzfLWh41BL6245Yvl7DX7b0vW0it27OztjlpKttnehfdqZ0WfGgQeA_1ZH4f3Wqe1QP04woScQeJ2CLx17fv1zCIawziyxjEBoPYYBC3GMSAO3wVg7jGIDRg0Icb9D1EJ0fD6Ztjp8754QgS0K0jYt_jXO8sYpwQoShnFJ4UixgJND0hE_DhkrqCE5G6UroKHALCKaE0I0qRfbSbF7l8hDALssBXLHQVCfXe_TgD05iqgEoRxCFP--ilfc6JqAnxdV6Ws6QKzCAseetNRpVMRn30vLl2ZWhgbrzqwIorqd-mTeKHeq0a_g_to30QYVO_lfjjP9d7gm63b8gB2t2uS_kUTOFt-qwG2G8NZ76z
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+imine-based+covalent%E2%80%93organic-framework+derived+nitrogen-doped+porous+carbon+nanosheets+for+high-performance+lithium%E2%80%93sulfur+batteries&rft.jtitle=New+journal+of+chemistry&rft.au=Guo%2C+Chaofei&rft.au=Xu%2C+Jiaojiao&rft.au=Li-Ping%2C+Lv&rft.au=Chen%2C+Shuangqiang&rft.date=2021-05-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=45&rft.issue=19&rft.spage=8683&rft.epage=8692&rft_id=info:doi/10.1039%2Fd1nj00610j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon