Periodic thermodynamics of open quantum systems

The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affin...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E Vol. 93; no. 6; p. 062134
Main Authors Brandner, Kay, Seifert, Udo
Format Journal Article
LanguageEnglish
Published United States 01.06.2016
Online AccessGet more information

Cover

Loading…
Abstract The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
AbstractList The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Author Brandner, Kay
Seifert, Udo
Author_xml – sequence: 1
  givenname: Kay
  surname: Brandner
  fullname: Brandner, Kay
  organization: Department of Applied Physics, Aalto University, 00076 Aalto, Finland
– sequence: 2
  givenname: Udo
  surname: Seifert
  fullname: Seifert, Udo
  organization: II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27415235$$D View this record in MEDLINE/PubMed
BookMark eNo1zstKw0AUgOFBFFtrX8CF5AWSnrkkxyyl1AsULNJ9OZM5QyNOJmYSIW_vQl39u4__Rlx2sWMh7iQUUoLeHM5zeufvXVHrAioltbkQS2UQcoBSL8Q6pQ8AkBXUKNW1WCg0slS6XIrNgYc2urbJxjMPIbq5o9A2KYs-iz132ddE3TiFLM1p5JBuxZWnz8Trv67E8Wl33L7k-7fn1-3jPm-0wTFvkOHBgAE22ltNpiZfswMEqhg9ei9JojNW1eRYlc6yZSKsUJOWXq3E_S_bTzawO_VDG2iYT__j6gf6HEg5
CitedBy_id crossref_primary_10_1103_PhysRevB_100_085405
crossref_primary_10_1038_s41467_018_08090_0
crossref_primary_10_1103_PhysRevE_103_012109
crossref_primary_10_1016_j_physa_2019_122789
crossref_primary_10_1103_PhysRevLett_119_050601
crossref_primary_10_1103_PhysRevE_105_L012105
crossref_primary_10_1016_j_isci_2023_106235
crossref_primary_10_1103_PhysRevE_101_032111
crossref_primary_10_3390_e23091183
crossref_primary_10_1007_s10955_021_02830_1
crossref_primary_10_1515_jnet_2018_0009
crossref_primary_10_7498_aps_70_20211723
crossref_primary_10_1103_PhysRevLett_125_260602
crossref_primary_10_1103_PhysRevResearch_4_033233
crossref_primary_10_1103_PhysRevResearch_5_L022036
crossref_primary_10_1103_PhysRevLett_128_090602
crossref_primary_10_1103_PhysRevE_108_064114
crossref_primary_10_1103_PhysRevA_97_043851
crossref_primary_10_1103_PhysRevA_101_042328
crossref_primary_10_1103_PhysRevApplied_21_044050
crossref_primary_10_3390_e27010018
crossref_primary_10_1103_PhysRevB_99_224306
crossref_primary_10_1038_s42005_024_01548_2
crossref_primary_10_1103_PhysRevE_108_024148
crossref_primary_10_1038_s41598_017_06615_z
crossref_primary_10_1063_5_0204819
crossref_primary_10_1103_PhysRevB_98_085425
crossref_primary_10_1103_PhysRevResearch_4_043112
crossref_primary_10_1103_PhysRevA_101_052106
crossref_primary_10_1103_PhysRevLett_123_250606
crossref_primary_10_1103_PhysRevLett_124_040602
crossref_primary_10_1103_PhysRevE_108_034106
crossref_primary_10_1088_1367_2630_acc966
crossref_primary_10_1103_PhysRevA_108_L040203
crossref_primary_10_1140_epjs_s11734_021_00085_1
crossref_primary_10_1103_PhysRevLett_124_170602
crossref_primary_10_1103_PhysRevLett_121_130601
crossref_primary_10_1103_PhysRevLett_126_210603
crossref_primary_10_1103_PhysRevE_103_L050101
crossref_primary_10_1103_PhysRevLett_123_240601
crossref_primary_10_1088_1751_8121_ab435a
crossref_primary_10_1103_PhysRevE_106_014114
crossref_primary_10_1007_s11128_019_2488_y
crossref_primary_10_1103_PhysRevE_102_042111
crossref_primary_10_1103_PhysRevLett_119_170602
crossref_primary_10_1103_PhysRevA_96_032117
crossref_primary_10_1140_epjb_s10051_021_00235_3
crossref_primary_10_1103_PhysRevA_97_062121
crossref_primary_10_1103_PhysRevE_105_024129
crossref_primary_10_1103_PhysRevResearch_2_033449
crossref_primary_10_1103_PhysRevA_108_023516
crossref_primary_10_1088_2399_6528_ac72f8
crossref_primary_10_1103_PhysRevE_103_012406
crossref_primary_10_1103_PhysRevE_94_062109
crossref_primary_10_1103_PhysRevE_99_042142
crossref_primary_10_1088_1367_2630_aaed55
crossref_primary_10_22331_q_2019_06_28_155
crossref_primary_10_1103_PhysRevE_103_062143
crossref_primary_10_1103_PhysRevX_6_041010
crossref_primary_10_1103_PhysRevResearch_5_L022017
crossref_primary_10_1103_PhysRevResearch_4_023217
crossref_primary_10_1103_PhysRevE_104_L022103
crossref_primary_10_1103_PhysRevLett_129_243202
crossref_primary_10_1038_s41467_017_01991_6
crossref_primary_10_1103_PhysRevE_106_L022105
crossref_primary_10_1103_PhysRevB_96_115408
crossref_primary_10_1103_PhysRevB_94_184503
crossref_primary_10_1103_PhysRevApplied_17_064022
crossref_primary_10_1146_annurev_conmatphys_033117_054120
crossref_primary_10_1103_PhysRevA_109_042209
crossref_primary_10_1103_PhysRevResearch_5_033018
crossref_primary_10_1063_5_0139998
crossref_primary_10_1088_1367_2630_aa964f
crossref_primary_10_1007_s10909_018_1960_x
crossref_primary_10_1007_s10909_024_03144_8
crossref_primary_10_1103_PhysRevLett_127_200602
crossref_primary_10_1103_PhysRevX_11_021013
crossref_primary_10_1103_PhysRevB_108_195412
crossref_primary_10_1103_PhysRevE_96_052114
crossref_primary_10_1103_PhysRevE_97_052136
crossref_primary_10_1103_PhysRevE_104_054117
crossref_primary_10_1140_epjs_s11734_023_00949_8
crossref_primary_10_1515_zna_2020_0056
crossref_primary_10_1103_PhysRevLett_122_110601
crossref_primary_10_1103_PhysRevE_100_022141
crossref_primary_10_1063_5_0068115
crossref_primary_10_1103_PhysRevB_107_195117
crossref_primary_10_1103_PhysRevB_94_035436
crossref_primary_10_21468_SciPostPhysCore_4_4_033
crossref_primary_10_1103_PhysRevE_105_L052102
crossref_primary_10_1088_1572_9494_ab6180
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevE.93.062134
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 2470-0053
ExternalDocumentID 27415235
Genre Journal Article
GroupedDBID 3MX
53G
5VS
ABSSX
AEQTI
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
EBS
EJD
NPBMV
NPM
ROL
S7W
ID FETCH-LOGICAL-c347t-c7e084040e43fb3a49af9ed070a6e7f7ff1a17d4b29ade25dbebeaa7673a31f2
IngestDate Mon Jul 21 05:58:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-c7e084040e43fb3a49af9ed070a6e7f7ff1a17d4b29ade25dbebeaa7673a31f2
OpenAccessLink http://link.aps.org/pdf/10.1103/PhysRevE.93.062134
PMID 27415235
ParticipantIDs pubmed_primary_27415235
PublicationCentury 2000
PublicationDate 2016-06-00
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review. E
PublicationTitleAlternate Phys Rev E
PublicationYear 2016
SSID ssj0001609712
Score 2.4177961
Snippet The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the...
SourceID pubmed
SourceType Index Database
StartPage 062134
Title Periodic thermodynamics of open quantum systems
URI https://www.ncbi.nlm.nih.gov/pubmed/27415235
Volume 93
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5WEbyI77fswetu95FNzFGlUgSlaAu9lWSTgId2iy0e_PXO7Ga7ta34uIQlWbJJvs1kZsh8Q8gVpTwTXF37VqbGp0pQX9KM-VxoCzZRSCOK0ciPT6zdow_9tF-nrCuiS6YqyD5WxpX8B1WoA1wxSvYPyM46hQp4BnyhBISh_BXGHfhIrl8z1B7fhrkus8sXlzMwKxZGTMKRMnR0zZN5RbRT4VPGrgR1RMItnF56VN21mHncXwxegilEdk_n886CiNWXmgJTCJWYYqKZsCTorSRgmaPQIT0vzkKGhG-rJW2IjA842Gfz3gpEEiy_DKs1HhZrjyQ5YPKmP7cusF9XTQ3SADsAE5s6b0zhQ2PIgBVXsVBh0lweD7I9uz4WLIdCg-jukG2n-ns3JY67ZM2M9shmCcRknzQrNL2vaHq59RBNz6HpOTQPSPe-1b1r-y6dhZ8llE_9jJsQzGkaGppYlUgqpBVGg8yVzHDLrY1kxDVVsZDaxKlWsMGk5IwnMolsfEjWR_nIHBNPUdhPVkUGJ8iZEWlskYiPWss0C7MTclROdDAuKUsG1RKcfttyRrbqH-acbFjYI-YCFK6puixW_RPI-yoH
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Periodic+thermodynamics+of+open+quantum+systems&rft.jtitle=Physical+review.+E&rft.au=Brandner%2C+Kay&rft.au=Seifert%2C+Udo&rft.date=2016-06-01&rft.eissn=2470-0053&rft.volume=93&rft.issue=6&rft.spage=062134&rft_id=info:doi/10.1103%2FPhysRevE.93.062134&rft_id=info%3Apmid%2F27415235&rft_id=info%3Apmid%2F27415235&rft.externalDocID=27415235