Periodic thermodynamics of open quantum systems
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affin...
Saved in:
Published in | Physical review. E Vol. 93; no. 6; p. 062134 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2016
|
Online Access | Get more information |
Cover
Loading…
Abstract | The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature. |
---|---|
AbstractList | The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature. |
Author | Brandner, Kay Seifert, Udo |
Author_xml | – sequence: 1 givenname: Kay surname: Brandner fullname: Brandner, Kay organization: Department of Applied Physics, Aalto University, 00076 Aalto, Finland – sequence: 2 givenname: Udo surname: Seifert fullname: Seifert, Udo organization: II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27415235$$D View this record in MEDLINE/PubMed |
BookMark | eNo1zstKw0AUgOFBFFtrX8CF5AWSnrkkxyyl1AsULNJ9OZM5QyNOJmYSIW_vQl39u4__Rlx2sWMh7iQUUoLeHM5zeufvXVHrAioltbkQS2UQcoBSL8Q6pQ8AkBXUKNW1WCg0slS6XIrNgYc2urbJxjMPIbq5o9A2KYs-iz132ddE3TiFLM1p5JBuxZWnz8Trv67E8Wl33L7k-7fn1-3jPm-0wTFvkOHBgAE22ltNpiZfswMEqhg9ei9JojNW1eRYlc6yZSKsUJOWXq3E_S_bTzawO_VDG2iYT__j6gf6HEg5 |
CitedBy_id | crossref_primary_10_1103_PhysRevB_100_085405 crossref_primary_10_1038_s41467_018_08090_0 crossref_primary_10_1103_PhysRevE_103_012109 crossref_primary_10_1016_j_physa_2019_122789 crossref_primary_10_1103_PhysRevLett_119_050601 crossref_primary_10_1103_PhysRevE_105_L012105 crossref_primary_10_1016_j_isci_2023_106235 crossref_primary_10_1103_PhysRevE_101_032111 crossref_primary_10_3390_e23091183 crossref_primary_10_1007_s10955_021_02830_1 crossref_primary_10_1515_jnet_2018_0009 crossref_primary_10_7498_aps_70_20211723 crossref_primary_10_1103_PhysRevLett_125_260602 crossref_primary_10_1103_PhysRevResearch_4_033233 crossref_primary_10_1103_PhysRevResearch_5_L022036 crossref_primary_10_1103_PhysRevLett_128_090602 crossref_primary_10_1103_PhysRevE_108_064114 crossref_primary_10_1103_PhysRevA_97_043851 crossref_primary_10_1103_PhysRevA_101_042328 crossref_primary_10_1103_PhysRevApplied_21_044050 crossref_primary_10_3390_e27010018 crossref_primary_10_1103_PhysRevB_99_224306 crossref_primary_10_1038_s42005_024_01548_2 crossref_primary_10_1103_PhysRevE_108_024148 crossref_primary_10_1038_s41598_017_06615_z crossref_primary_10_1063_5_0204819 crossref_primary_10_1103_PhysRevB_98_085425 crossref_primary_10_1103_PhysRevResearch_4_043112 crossref_primary_10_1103_PhysRevA_101_052106 crossref_primary_10_1103_PhysRevLett_123_250606 crossref_primary_10_1103_PhysRevLett_124_040602 crossref_primary_10_1103_PhysRevE_108_034106 crossref_primary_10_1088_1367_2630_acc966 crossref_primary_10_1103_PhysRevA_108_L040203 crossref_primary_10_1140_epjs_s11734_021_00085_1 crossref_primary_10_1103_PhysRevLett_124_170602 crossref_primary_10_1103_PhysRevLett_121_130601 crossref_primary_10_1103_PhysRevLett_126_210603 crossref_primary_10_1103_PhysRevE_103_L050101 crossref_primary_10_1103_PhysRevLett_123_240601 crossref_primary_10_1088_1751_8121_ab435a crossref_primary_10_1103_PhysRevE_106_014114 crossref_primary_10_1007_s11128_019_2488_y crossref_primary_10_1103_PhysRevE_102_042111 crossref_primary_10_1103_PhysRevLett_119_170602 crossref_primary_10_1103_PhysRevA_96_032117 crossref_primary_10_1140_epjb_s10051_021_00235_3 crossref_primary_10_1103_PhysRevA_97_062121 crossref_primary_10_1103_PhysRevE_105_024129 crossref_primary_10_1103_PhysRevResearch_2_033449 crossref_primary_10_1103_PhysRevA_108_023516 crossref_primary_10_1088_2399_6528_ac72f8 crossref_primary_10_1103_PhysRevE_103_012406 crossref_primary_10_1103_PhysRevE_94_062109 crossref_primary_10_1103_PhysRevE_99_042142 crossref_primary_10_1088_1367_2630_aaed55 crossref_primary_10_22331_q_2019_06_28_155 crossref_primary_10_1103_PhysRevE_103_062143 crossref_primary_10_1103_PhysRevX_6_041010 crossref_primary_10_1103_PhysRevResearch_5_L022017 crossref_primary_10_1103_PhysRevResearch_4_023217 crossref_primary_10_1103_PhysRevE_104_L022103 crossref_primary_10_1103_PhysRevLett_129_243202 crossref_primary_10_1038_s41467_017_01991_6 crossref_primary_10_1103_PhysRevE_106_L022105 crossref_primary_10_1103_PhysRevB_96_115408 crossref_primary_10_1103_PhysRevB_94_184503 crossref_primary_10_1103_PhysRevApplied_17_064022 crossref_primary_10_1146_annurev_conmatphys_033117_054120 crossref_primary_10_1103_PhysRevA_109_042209 crossref_primary_10_1103_PhysRevResearch_5_033018 crossref_primary_10_1063_5_0139998 crossref_primary_10_1088_1367_2630_aa964f crossref_primary_10_1007_s10909_018_1960_x crossref_primary_10_1007_s10909_024_03144_8 crossref_primary_10_1103_PhysRevLett_127_200602 crossref_primary_10_1103_PhysRevX_11_021013 crossref_primary_10_1103_PhysRevB_108_195412 crossref_primary_10_1103_PhysRevE_96_052114 crossref_primary_10_1103_PhysRevE_97_052136 crossref_primary_10_1103_PhysRevE_104_054117 crossref_primary_10_1140_epjs_s11734_023_00949_8 crossref_primary_10_1515_zna_2020_0056 crossref_primary_10_1103_PhysRevLett_122_110601 crossref_primary_10_1103_PhysRevE_100_022141 crossref_primary_10_1063_5_0068115 crossref_primary_10_1103_PhysRevB_107_195117 crossref_primary_10_1103_PhysRevB_94_035436 crossref_primary_10_21468_SciPostPhysCore_4_4_033 crossref_primary_10_1103_PhysRevE_105_L052102 crossref_primary_10_1088_1572_9494_ab6180 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevE.93.062134 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2470-0053 |
ExternalDocumentID | 27415235 |
Genre | Journal Article |
GroupedDBID | 3MX 53G 5VS ABSSX AEQTI AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK EBS EJD NPBMV NPM ROL S7W |
ID | FETCH-LOGICAL-c347t-c7e084040e43fb3a49af9ed070a6e7f7ff1a17d4b29ade25dbebeaa7673a31f2 |
IngestDate | Mon Jul 21 05:58:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-c7e084040e43fb3a49af9ed070a6e7f7ff1a17d4b29ade25dbebeaa7673a31f2 |
OpenAccessLink | http://link.aps.org/pdf/10.1103/PhysRevE.93.062134 |
PMID | 27415235 |
ParticipantIDs | pubmed_primary_27415235 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-00 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review. E |
PublicationTitleAlternate | Phys Rev E |
PublicationYear | 2016 |
SSID | ssj0001609712 |
Score | 2.4177961 |
Snippet | The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 062134 |
Title | Periodic thermodynamics of open quantum systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27415235 |
Volume | 93 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5WEbyI77fswetu95FNzFGlUgSlaAu9lWSTgId2iy0e_PXO7Ga7ta34uIQlWbJJvs1kZsh8Q8gVpTwTXF37VqbGp0pQX9KM-VxoCzZRSCOK0ciPT6zdow_9tF-nrCuiS6YqyD5WxpX8B1WoA1wxSvYPyM46hQp4BnyhBISh_BXGHfhIrl8z1B7fhrkus8sXlzMwKxZGTMKRMnR0zZN5RbRT4VPGrgR1RMItnF56VN21mHncXwxegilEdk_n886CiNWXmgJTCJWYYqKZsCTorSRgmaPQIT0vzkKGhG-rJW2IjA842Gfz3gpEEiy_DKs1HhZrjyQ5YPKmP7cusF9XTQ3SADsAE5s6b0zhQ2PIgBVXsVBh0lweD7I9uz4WLIdCg-jukG2n-ns3JY67ZM2M9shmCcRknzQrNL2vaHq59RBNz6HpOTQPSPe-1b1r-y6dhZ8llE_9jJsQzGkaGppYlUgqpBVGg8yVzHDLrY1kxDVVsZDaxKlWsMGk5IwnMolsfEjWR_nIHBNPUdhPVkUGJ8iZEWlskYiPWss0C7MTclROdDAuKUsG1RKcfttyRrbqH-acbFjYI-YCFK6puixW_RPI-yoH |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Periodic+thermodynamics+of+open+quantum+systems&rft.jtitle=Physical+review.+E&rft.au=Brandner%2C+Kay&rft.au=Seifert%2C+Udo&rft.date=2016-06-01&rft.eissn=2470-0053&rft.volume=93&rft.issue=6&rft.spage=062134&rft_id=info:doi/10.1103%2FPhysRevE.93.062134&rft_id=info%3Apmid%2F27415235&rft_id=info%3Apmid%2F27415235&rft.externalDocID=27415235 |