Optimization of the Layers of Composite Materials from Neural Networks with Tsai–Wu Failure Criterion
The use of composite materials has increased lately and the need to know the behavior of these materials is very important once these devices are subject to suffer from damage such as cracks and delamination. Normally, to analyze failure problems in composite materials, the following steps are neces...
Saved in:
Published in | Journal of failure analysis and prevention Vol. 19; no. 3; pp. 709 - 715 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Materials Park
Springer Nature B.V
15.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1547-7029 1864-1245 |
DOI | 10.1007/s11668-019-00650-w |
Cover
Loading…
Abstract | The use of composite materials has increased lately and the need to know the behavior of these materials is very important once these devices are subject to suffer from damage such as cracks and delamination. Normally, to analyze failure problems in composite materials, the following steps are necessary: (1) structure geometry design, (2) numerical and/or experimental analysis and (3) use of failure criteria (e.g., Tsai–Wu failure criterion). If the used composite material has a non-expected failure criterion, the procedure must be repeated. In order to eliminate the procedure above, this study proposes the use of an artificial neural networks (ANN) inversion which can be used to determine an adequate configuration for the layers of the composite material from the desired failure criteria value. Numerical simulations, based on the finite element method, were made in order to create a database for ANN training and validation. After the inversion of the ANN, satisfactory results were obtained and this procedure could be used to minimize the high number of numerical simulations normally used in the design of a composite device. |
---|---|
AbstractList | The use of composite materials has increased lately and the need to know the behavior of these materials is very important once these devices are subject to suffer from damage such as cracks and delamination. Normally, to analyze failure problems in composite materials, the following steps are necessary: (1) structure geometry design, (2) numerical and/or experimental analysis and (3) use of failure criteria (e.g., Tsai–Wu failure criterion). If the used composite material has a non-expected failure criterion, the procedure must be repeated. In order to eliminate the procedure above, this study proposes the use of an artificial neural networks (ANN) inversion which can be used to determine an adequate configuration for the layers of the composite material from the desired failure criteria value. Numerical simulations, based on the finite element method, were made in order to create a database for ANN training and validation. After the inversion of the ANN, satisfactory results were obtained and this procedure could be used to minimize the high number of numerical simulations normally used in the design of a composite device. |
Author | Diniz, Camila Aparecida Gomes, Guilherme Ferreira Ancelotti, Antônio Carlos Cunha, Sebastião Simões |
Author_xml | – sequence: 1 givenname: Camila Aparecida surname: Diniz fullname: Diniz, Camila Aparecida – sequence: 2 givenname: Sebastião Simões surname: Cunha fullname: Cunha, Sebastião Simões – sequence: 3 givenname: Guilherme Ferreira surname: Gomes fullname: Gomes, Guilherme Ferreira – sequence: 4 givenname: Antônio Carlos surname: Ancelotti fullname: Ancelotti, Antônio Carlos |
BookMark | eNp9kEFPwyAYhomZidv0D3gi8VwFWmg5msWpyXSXGY-ENuCYa6lA08yT_8F_6C-Rbp487PK9H8n7QHgmYNTYRgFwidE1Rii_8RgzViQI8wQhRlHSn4AxLliWYJLRUdxplic5IvwMTLzfIJRSTOgYvC3bYGrzKYOxDbQahrWCC7lTzg-nma1b601Q8EkG5YzceqidreGz6pzcxgi9de8e9ias4cpL8_P1_drBuTTbzik4c2bAbHMOTnWE1cVfTsHL_G41e0gWy_vH2e0iqdIsD3GWGUeIYJ5SLXNacknTPMt1VmjFSkJ5UZQ4TSukWZ6yTGIqK6U4IhqrktN0Cq4O97bOfnTKB7GxnWvik4IQyjArGOPHW4QRSggaWsWhVTnrvVNaVCbsRQUX_ycwEoN8cZAvonyxly_6iJJ_aOtMLd3uGPQL59OKHQ |
CitedBy_id | crossref_primary_10_1007_s00366_020_01027_6 crossref_primary_10_1007_s10443_024_10271_8 crossref_primary_10_1080_15376494_2023_2172238 crossref_primary_10_1108_EC_07_2020_0354 crossref_primary_10_1007_s00158_023_03644_3 crossref_primary_10_1007_s00466_022_02218_2 crossref_primary_10_1016_j_compstruct_2024_117999 crossref_primary_10_1590_1517_7076_rmat_2023_0006 crossref_primary_10_1016_j_hybadv_2023_100026 crossref_primary_10_1016_j_engstruct_2022_115107 crossref_primary_10_1016_j_compstruct_2023_117478 crossref_primary_10_1007_s10443_023_10102_2 crossref_primary_10_1016_j_compstruct_2023_117761 crossref_primary_10_1016_j_compstruct_2023_117043 crossref_primary_10_1007_s40430_023_04056_6 crossref_primary_10_1007_s10443_022_10046_z crossref_primary_10_1016_j_apm_2022_12_003 crossref_primary_10_1016_j_engstruct_2023_116380 crossref_primary_10_1016_j_ijhydene_2024_01_149 |
Cites_doi | 10.1016/j.compstruct.2015.07.089 10.4236/wjm.2012.23019 10.1007/s11668-017-0304-5 10.1016/j.tws.2016.01.025 10.1016/j.compstruct.2015.05.067 10.1016/j.mspro.2014.07.239 10.31399/asm.tb.scm.9781627083140 10.1016/j.engstruct.2013.05.025 |
ContentType | Journal Article |
Copyright | Journal of Failure Analysis and Prevention is a copyright of Springer, (2019). All Rights Reserved. Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Journal of Failure Analysis and Prevention is a copyright of Springer, (2019). All Rights Reserved. – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION 7SR 7TA 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1007/s11668-019-00650-w |
DatabaseName | CrossRef Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Materials Business File METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1864-1245 |
EndPage | 715 |
ExternalDocumentID | 10_1007_s11668_019_00650_w |
GroupedDBID | -Y2 .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBRH ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU CITATION COF CS3 CSCUP D-I D1I DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HRMNR HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KDC KOV L6V LLZTM M4Y M7S MA- NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P9N PDBOC PF0 PHGZM PHGZT PT4 PTHSS Q2X QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~8M ~A9 7SR 7TA 7TB 8BQ 8FD ABRTQ FR3 JG9 KR7 PQGLB |
ID | FETCH-LOGICAL-c347t-c3b490021935fa75b9a53747f48fe6b25988b133c0f67364a15acee902f1eb953 |
ISSN | 1547-7029 |
IngestDate | Fri Jul 25 12:31:24 EDT 2025 Fri Jul 25 12:21:57 EDT 2025 Tue Jul 01 04:28:30 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-c3b490021935fa75b9a53747f48fe6b25988b133c0f67364a15acee902f1eb953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2226252209 |
PQPubID | 326254 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2256168669 proquest_journals_2226252209 crossref_citationtrail_10_1007_s11668_019_00650_w crossref_primary_10_1007_s11668_019_00650_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190615 |
PublicationDateYYYYMMDD | 2019-06-15 |
PublicationDate_xml | – month: 6 year: 2019 text: 20190615 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Materials Park |
PublicationPlace_xml | – name: Materials Park |
PublicationTitle | Journal of failure analysis and prevention |
PublicationYear | 2019 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | B Yegnanarayana (650_CR20) 2005 650_CR4 AJ Kolios (650_CR12) 2012; 2 IM Daniel (650_CR5) 1994 S Haykin (650_CR9) 2009 C Velmurugan (650_CR18) 2014; 5 M Koc (650_CR11) 2016; 50 ZL Kovács (650_CR13) 1996 650_CR15 EKP Chong (650_CR3) 2001 DC Montgomery (650_CR16) 2012 AK Kaw (650_CR10) 2006 H Debski (650_CR6) 2015; 132 CAR Brito Jr (650_CR1) 2007; 12 GF Gomes (650_CR8) 2017; 17 FC Campbell (650_CR2) 2010 UK Mallela (650_CR14) 2016; 102 P Selva (650_CR17) 2013; 56 GZ Voyiadjis (650_CR19) 2005 A Fenza (650_CR7) 2015; 133 |
References_xml | – volume: 133 start-page: 390 year: 2015 ident: 650_CR7 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.07.089 – volume: 2 start-page: 162 year: 2012 ident: 650_CR12 publication-title: World J. Mech. doi: 10.4236/wjm.2012.23019 – volume-title: Introduction to Linear Regression Analysis year: 2012 ident: 650_CR16 – volume-title: An Introduction to Optimization year: 2001 ident: 650_CR3 – volume: 17 start-page: 740 issue: 4 year: 2017 ident: 650_CR8 publication-title: J. Fail. Anal. Prev. doi: 10.1007/s11668-017-0304-5 – volume-title: Engineering Mechanics of Composite Materials year: 1994 ident: 650_CR5 – volume: 50 start-page: 1 issue: 2 year: 2016 ident: 650_CR11 publication-title: J. Compos. Mater. – volume: 102 start-page: 158 year: 2016 ident: 650_CR14 publication-title: Thin Walled Struct. doi: 10.1016/j.tws.2016.01.025 – volume-title: Artificial Neural Networks year: 2005 ident: 650_CR20 – volume: 132 start-page: 567 year: 2015 ident: 650_CR6 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.05.067 – volume-title: Neural Networks and Learning Machines year: 2009 ident: 650_CR9 – volume-title: Redes Neurais Artificiais: Fundamentos e Applicações year: 1996 ident: 650_CR13 – ident: 650_CR15 – volume-title: Mechanics of Composite Materials with Matlab year: 2005 ident: 650_CR19 – ident: 650_CR4 – volume: 12 start-page: 346 issue: 2 year: 2007 ident: 650_CR1 publication-title: Mag. Mater. – volume: 5 start-page: 31 year: 2014 ident: 650_CR18 publication-title: Proc. Mater. Sci. doi: 10.1016/j.mspro.2014.07.239 – volume-title: Structural Composite Materials year: 2010 ident: 650_CR2 doi: 10.31399/asm.tb.scm.9781627083140 – volume-title: Mechanics of Composite Materials year: 2006 ident: 650_CR10 – volume: 56 start-page: 794 year: 2013 ident: 650_CR17 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2013.05.025 |
SSID | ssj0035125 |
Score | 2.2292423 |
Snippet | The use of composite materials has increased lately and the need to know the behavior of these materials is very important once these devices are subject to... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 709 |
SubjectTerms | Artificial neural networks Composite materials Computer simulation Criteria Failure analysis Finite element method Fracture mechanics Neural networks Optimization |
Title | Optimization of the Layers of Composite Materials from Neural Networks with Tsai–Wu Failure Criterion |
URI | https://www.proquest.com/docview/2226252209 https://www.proquest.com/docview/2256168669 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW9gIHxKcoFOQDt1VQEsdOctyt2FYILYdu1d4iO-ugSNkEbRNV6on_wD_kyp9gJnY-tqWIcrGy2WQ2m3n2PCdvxoS8D6O1yzLGHCT4TuDJtSPDNHVcLaTioVbBulVbLMXJWfDpgl9MJr9GqqWmVh_S6z_mlfyPV2Ef-BWzZO_h2d4o7IBt8C-04GFo_8nHX6C_b2wiZfey_7NEEt2qLKCroyQLVxeqzeWYbBIsyAGeWRoFuM1vW13KvFM-sPNmupA5KtZx3S882XrvNo3N7HGyq25iKw9YHWVPlPMyvzYKk01eSGC_EutqDM8DjprSvHs61RBZ67x9g8-q6Wm-wc05H8SOx5XNojhu8gIwt9HThd5udb7trc0Ay0VVG63CrKxbE0GZV6hwKaqdhx2YXyUck-7Zjc9B6ISufUiizb5IYOlFU5WyH9TjEXjZaIQO3XgU7ENj_FYccW1etScEav3gOpDKOldD1OyUAjeCaS9xHMpBo40EbCStjeTqAdn3YU4DUWR_tpjPlx1xYMC9eFve1_5Hm-NlMj1vXskuj9qlES03Wj0hjy0a6Mwg9CmZ6PIZeTQqdfmcfB1jlVYZBaxSg1X81GOV9liliFVqsEo7rFLEKkWs_vz-47yhFqW0R-kLcrb4uDo6cewiH07KgrCGVgUxMs2Y8UyGXMWSM5jjZkGUaaFgdh5FymMsdTOUIAbS4xKIXez6madVzNlLsldWpX5FaCgVU5z7cg2cU_NAqtgXHKY0HtwxX7ID4nW3LEltBXxciKVI7nbWAZn253wz9V_-evRh54nEjhOXCTBw4cM0x43v-BqmMCISIn59r996Qx4OPeSQ7NXbRr8FglyrdxZYvwGwaLja |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+the+Layers+of+Composite+Materials+from+Neural+Networks+with+Tsai%E2%80%93Wu+Failure+Criterion&rft.jtitle=Journal+of+failure+analysis+and+prevention&rft.au=Diniz%2C+Camila+Aparecida&rft.au=Cunha%2C+Sebasti%C3%A3o+Sim%C3%B5es&rft.au=Gomes%2C+Guilherme+Ferreira&rft.au=Ancelotti%2C+Ant%C3%B4nio+Carlos&rft.date=2019-06-15&rft.issn=1547-7029&rft.eissn=1864-1245&rft.volume=19&rft.issue=3&rft.spage=709&rft.epage=715&rft_id=info:doi/10.1007%2Fs11668-019-00650-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11668_019_00650_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-7029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-7029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-7029&client=summon |