Optimization of the Layers of Composite Materials from Neural Networks with Tsai–Wu Failure Criterion

The use of composite materials has increased lately and the need to know the behavior of these materials is very important once these devices are subject to suffer from damage such as cracks and delamination. Normally, to analyze failure problems in composite materials, the following steps are neces...

Full description

Saved in:
Bibliographic Details
Published inJournal of failure analysis and prevention Vol. 19; no. 3; pp. 709 - 715
Main Authors Diniz, Camila Aparecida, Cunha, Sebastião Simões, Gomes, Guilherme Ferreira, Ancelotti, Antônio Carlos
Format Journal Article
LanguageEnglish
Published Materials Park Springer Nature B.V 15.06.2019
Subjects
Online AccessGet full text
ISSN1547-7029
1864-1245
DOI10.1007/s11668-019-00650-w

Cover

Loading…
Abstract The use of composite materials has increased lately and the need to know the behavior of these materials is very important once these devices are subject to suffer from damage such as cracks and delamination. Normally, to analyze failure problems in composite materials, the following steps are necessary: (1) structure geometry design, (2) numerical and/or experimental analysis and (3) use of failure criteria (e.g., Tsai–Wu failure criterion). If the used composite material has a non-expected failure criterion, the procedure must be repeated. In order to eliminate the procedure above, this study proposes the use of an artificial neural networks (ANN) inversion which can be used to determine an adequate configuration for the layers of the composite material from the desired failure criteria value. Numerical simulations, based on the finite element method, were made in order to create a database for ANN training and validation. After the inversion of the ANN, satisfactory results were obtained and this procedure could be used to minimize the high number of numerical simulations normally used in the design of a composite device.
AbstractList The use of composite materials has increased lately and the need to know the behavior of these materials is very important once these devices are subject to suffer from damage such as cracks and delamination. Normally, to analyze failure problems in composite materials, the following steps are necessary: (1) structure geometry design, (2) numerical and/or experimental analysis and (3) use of failure criteria (e.g., Tsai–Wu failure criterion). If the used composite material has a non-expected failure criterion, the procedure must be repeated. In order to eliminate the procedure above, this study proposes the use of an artificial neural networks (ANN) inversion which can be used to determine an adequate configuration for the layers of the composite material from the desired failure criteria value. Numerical simulations, based on the finite element method, were made in order to create a database for ANN training and validation. After the inversion of the ANN, satisfactory results were obtained and this procedure could be used to minimize the high number of numerical simulations normally used in the design of a composite device.
Author Diniz, Camila Aparecida
Gomes, Guilherme Ferreira
Ancelotti, Antônio Carlos
Cunha, Sebastião Simões
Author_xml – sequence: 1
  givenname: Camila Aparecida
  surname: Diniz
  fullname: Diniz, Camila Aparecida
– sequence: 2
  givenname: Sebastião Simões
  surname: Cunha
  fullname: Cunha, Sebastião Simões
– sequence: 3
  givenname: Guilherme Ferreira
  surname: Gomes
  fullname: Gomes, Guilherme Ferreira
– sequence: 4
  givenname: Antônio Carlos
  surname: Ancelotti
  fullname: Ancelotti, Antônio Carlos
BookMark eNp9kEFPwyAYhomZidv0D3gi8VwFWmg5msWpyXSXGY-ENuCYa6lA08yT_8F_6C-Rbp487PK9H8n7QHgmYNTYRgFwidE1Rii_8RgzViQI8wQhRlHSn4AxLliWYJLRUdxplic5IvwMTLzfIJRSTOgYvC3bYGrzKYOxDbQahrWCC7lTzg-nma1b601Q8EkG5YzceqidreGz6pzcxgi9de8e9ias4cpL8_P1_drBuTTbzik4c2bAbHMOTnWE1cVfTsHL_G41e0gWy_vH2e0iqdIsD3GWGUeIYJ5SLXNacknTPMt1VmjFSkJ5UZQ4TSukWZ6yTGIqK6U4IhqrktN0Cq4O97bOfnTKB7GxnWvik4IQyjArGOPHW4QRSggaWsWhVTnrvVNaVCbsRQUX_ycwEoN8cZAvonyxly_6iJJ_aOtMLd3uGPQL59OKHQ
CitedBy_id crossref_primary_10_1007_s00366_020_01027_6
crossref_primary_10_1007_s10443_024_10271_8
crossref_primary_10_1080_15376494_2023_2172238
crossref_primary_10_1108_EC_07_2020_0354
crossref_primary_10_1007_s00158_023_03644_3
crossref_primary_10_1007_s00466_022_02218_2
crossref_primary_10_1016_j_compstruct_2024_117999
crossref_primary_10_1590_1517_7076_rmat_2023_0006
crossref_primary_10_1016_j_hybadv_2023_100026
crossref_primary_10_1016_j_engstruct_2022_115107
crossref_primary_10_1016_j_compstruct_2023_117478
crossref_primary_10_1007_s10443_023_10102_2
crossref_primary_10_1016_j_compstruct_2023_117761
crossref_primary_10_1016_j_compstruct_2023_117043
crossref_primary_10_1007_s40430_023_04056_6
crossref_primary_10_1007_s10443_022_10046_z
crossref_primary_10_1016_j_apm_2022_12_003
crossref_primary_10_1016_j_engstruct_2023_116380
crossref_primary_10_1016_j_ijhydene_2024_01_149
Cites_doi 10.1016/j.compstruct.2015.07.089
10.4236/wjm.2012.23019
10.1007/s11668-017-0304-5
10.1016/j.tws.2016.01.025
10.1016/j.compstruct.2015.05.067
10.1016/j.mspro.2014.07.239
10.31399/asm.tb.scm.9781627083140
10.1016/j.engstruct.2013.05.025
ContentType Journal Article
Copyright Journal of Failure Analysis and Prevention is a copyright of Springer, (2019). All Rights Reserved.
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Journal of Failure Analysis and Prevention is a copyright of Springer, (2019). All Rights Reserved.
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
7SR
7TA
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1007/s11668-019-00650-w
DatabaseName CrossRef
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Materials Business File
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-1245
EndPage 715
ExternalDocumentID 10_1007_s11668_019_00650_w
GroupedDBID -Y2
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
CS3
CSCUP
D-I
D1I
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KDC
KOV
L6V
LLZTM
M4Y
M7S
MA-
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9N
PDBOC
PF0
PHGZM
PHGZT
PT4
PTHSS
Q2X
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~A9
7SR
7TA
7TB
8BQ
8FD
ABRTQ
FR3
JG9
KR7
PQGLB
ID FETCH-LOGICAL-c347t-c3b490021935fa75b9a53747f48fe6b25988b133c0f67364a15acee902f1eb953
ISSN 1547-7029
IngestDate Fri Jul 25 12:31:24 EDT 2025
Fri Jul 25 12:21:57 EDT 2025
Tue Jul 01 04:28:30 EDT 2025
Thu Apr 24 22:58:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-c3b490021935fa75b9a53747f48fe6b25988b133c0f67364a15acee902f1eb953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2226252209
PQPubID 326254
PageCount 7
ParticipantIDs proquest_journals_2256168669
proquest_journals_2226252209
crossref_citationtrail_10_1007_s11668_019_00650_w
crossref_primary_10_1007_s11668_019_00650_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190615
PublicationDateYYYYMMDD 2019-06-15
PublicationDate_xml – month: 6
  year: 2019
  text: 20190615
  day: 15
PublicationDecade 2010
PublicationPlace Materials Park
PublicationPlace_xml – name: Materials Park
PublicationTitle Journal of failure analysis and prevention
PublicationYear 2019
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References B Yegnanarayana (650_CR20) 2005
650_CR4
AJ Kolios (650_CR12) 2012; 2
IM Daniel (650_CR5) 1994
S Haykin (650_CR9) 2009
C Velmurugan (650_CR18) 2014; 5
M Koc (650_CR11) 2016; 50
ZL Kovács (650_CR13) 1996
650_CR15
EKP Chong (650_CR3) 2001
DC Montgomery (650_CR16) 2012
AK Kaw (650_CR10) 2006
H Debski (650_CR6) 2015; 132
CAR Brito Jr (650_CR1) 2007; 12
GF Gomes (650_CR8) 2017; 17
FC Campbell (650_CR2) 2010
UK Mallela (650_CR14) 2016; 102
P Selva (650_CR17) 2013; 56
GZ Voyiadjis (650_CR19) 2005
A Fenza (650_CR7) 2015; 133
References_xml – volume: 133
  start-page: 390
  year: 2015
  ident: 650_CR7
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.07.089
– volume: 2
  start-page: 162
  year: 2012
  ident: 650_CR12
  publication-title: World J. Mech.
  doi: 10.4236/wjm.2012.23019
– volume-title: Introduction to Linear Regression Analysis
  year: 2012
  ident: 650_CR16
– volume-title: An Introduction to Optimization
  year: 2001
  ident: 650_CR3
– volume: 17
  start-page: 740
  issue: 4
  year: 2017
  ident: 650_CR8
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-017-0304-5
– volume-title: Engineering Mechanics of Composite Materials
  year: 1994
  ident: 650_CR5
– volume: 50
  start-page: 1
  issue: 2
  year: 2016
  ident: 650_CR11
  publication-title: J. Compos. Mater.
– volume: 102
  start-page: 158
  year: 2016
  ident: 650_CR14
  publication-title: Thin Walled Struct.
  doi: 10.1016/j.tws.2016.01.025
– volume-title: Artificial Neural Networks
  year: 2005
  ident: 650_CR20
– volume: 132
  start-page: 567
  year: 2015
  ident: 650_CR6
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.05.067
– volume-title: Neural Networks and Learning Machines
  year: 2009
  ident: 650_CR9
– volume-title: Redes Neurais Artificiais: Fundamentos e Applicações
  year: 1996
  ident: 650_CR13
– ident: 650_CR15
– volume-title: Mechanics of Composite Materials with Matlab
  year: 2005
  ident: 650_CR19
– ident: 650_CR4
– volume: 12
  start-page: 346
  issue: 2
  year: 2007
  ident: 650_CR1
  publication-title: Mag. Mater.
– volume: 5
  start-page: 31
  year: 2014
  ident: 650_CR18
  publication-title: Proc. Mater. Sci.
  doi: 10.1016/j.mspro.2014.07.239
– volume-title: Structural Composite Materials
  year: 2010
  ident: 650_CR2
  doi: 10.31399/asm.tb.scm.9781627083140
– volume-title: Mechanics of Composite Materials
  year: 2006
  ident: 650_CR10
– volume: 56
  start-page: 794
  year: 2013
  ident: 650_CR17
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2013.05.025
SSID ssj0035125
Score 2.2292423
Snippet The use of composite materials has increased lately and the need to know the behavior of these materials is very important once these devices are subject to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 709
SubjectTerms Artificial neural networks
Composite materials
Computer simulation
Criteria
Failure analysis
Finite element method
Fracture mechanics
Neural networks
Optimization
Title Optimization of the Layers of Composite Materials from Neural Networks with Tsai–Wu Failure Criterion
URI https://www.proquest.com/docview/2226252209
https://www.proquest.com/docview/2256168669
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW9gIHxKcoFOQDt1VQEsdOctyt2FYILYdu1d4iO-ugSNkEbRNV6on_wD_kyp9gJnY-tqWIcrGy2WQ2m3n2PCdvxoS8D6O1yzLGHCT4TuDJtSPDNHVcLaTioVbBulVbLMXJWfDpgl9MJr9GqqWmVh_S6z_mlfyPV2Ef-BWzZO_h2d4o7IBt8C-04GFo_8nHX6C_b2wiZfey_7NEEt2qLKCroyQLVxeqzeWYbBIsyAGeWRoFuM1vW13KvFM-sPNmupA5KtZx3S882XrvNo3N7HGyq25iKw9YHWVPlPMyvzYKk01eSGC_EutqDM8DjprSvHs61RBZ67x9g8-q6Wm-wc05H8SOx5XNojhu8gIwt9HThd5udb7trc0Ay0VVG63CrKxbE0GZV6hwKaqdhx2YXyUck-7Zjc9B6ISufUiizb5IYOlFU5WyH9TjEXjZaIQO3XgU7ENj_FYccW1etScEav3gOpDKOldD1OyUAjeCaS9xHMpBo40EbCStjeTqAdn3YU4DUWR_tpjPlx1xYMC9eFve1_5Hm-NlMj1vXskuj9qlES03Wj0hjy0a6Mwg9CmZ6PIZeTQqdfmcfB1jlVYZBaxSg1X81GOV9liliFVqsEo7rFLEKkWs_vz-47yhFqW0R-kLcrb4uDo6cewiH07KgrCGVgUxMs2Y8UyGXMWSM5jjZkGUaaFgdh5FymMsdTOUIAbS4xKIXez6madVzNlLsldWpX5FaCgVU5z7cg2cU_NAqtgXHKY0HtwxX7ID4nW3LEltBXxciKVI7nbWAZn253wz9V_-evRh54nEjhOXCTBw4cM0x43v-BqmMCISIn59r996Qx4OPeSQ7NXbRr8FglyrdxZYvwGwaLja
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+the+Layers+of+Composite+Materials+from+Neural+Networks+with+Tsai%E2%80%93Wu+Failure+Criterion&rft.jtitle=Journal+of+failure+analysis+and+prevention&rft.au=Diniz%2C+Camila+Aparecida&rft.au=Cunha%2C+Sebasti%C3%A3o+Sim%C3%B5es&rft.au=Gomes%2C+Guilherme+Ferreira&rft.au=Ancelotti%2C+Ant%C3%B4nio+Carlos&rft.date=2019-06-15&rft.issn=1547-7029&rft.eissn=1864-1245&rft.volume=19&rft.issue=3&rft.spage=709&rft.epage=715&rft_id=info:doi/10.1007%2Fs11668-019-00650-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11668_019_00650_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-7029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-7029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-7029&client=summon