Hierarchical Cu(OH)2@MnO2 core-shell nanorods array in situ generated on three-dimensional copper foam for high-performance supercapacitors

[Display omitted] Manganese dioxide (MnO2) with high theoretical capacity (1380 F g−1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad a...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 563; pp. 394 - 404
Main Authors Wang, Huining, Yan, Guowen, Cao, Xueying, Liu, Ying, Zhong, Yuxue, Cui, Liang, Liu, Jingquan
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Manganese dioxide (MnO2) with high theoretical capacity (1380 F g−1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)2@MnO2 core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)2 nanorod core provides the scaffold for the growth of MnO2 nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO2 nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)2@MnO2/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm−2 at the current density of 2 mA cm−2 (283.45 F g−1 at 0.8 A g−1). Additionally, the assembled Cu(OH)2@MnO2/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg−1 at a power density of 750 W kg−1. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes.
AbstractList [Display omitted] Manganese dioxide (MnO2) with high theoretical capacity (1380 F g−1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)2@MnO2 core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)2 nanorod core provides the scaffold for the growth of MnO2 nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO2 nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)2@MnO2/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm−2 at the current density of 2 mA cm−2 (283.45 F g−1 at 0.8 A g−1). Additionally, the assembled Cu(OH)2@MnO2/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg−1 at a power density of 750 W kg−1. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes.
Manganese dioxide (MnO₂) with high theoretical capacity (1380 F g⁻¹), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)₂@MnO₂ core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)₂ nanorod core provides the scaffold for the growth of MnO₂ nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO₂ nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)₂@MnO₂/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm⁻² at the current density of 2 mA cm⁻² (283.45 F g⁻¹ at 0.8 A g⁻¹). Additionally, the assembled Cu(OH)₂@MnO₂/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg⁻¹ at a power density of 750 W kg⁻¹. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes.
Manganese dioxide (MnO2) with high theoretical capacity (1380 F g-1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)2@MnO2 core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)2 nanorod core provides the scaffold for the growth of MnO2 nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO2 nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)2@MnO2/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm-2 at the current density of 2 mA cm-2 (283.45 F g-1 at 0.8 A g-1). Additionally, the assembled Cu(OH)2@MnO2/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg-1 at a power density of 750 W kg-1. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes.Manganese dioxide (MnO2) with high theoretical capacity (1380 F g-1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)2@MnO2 core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)2 nanorod core provides the scaffold for the growth of MnO2 nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO2 nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)2@MnO2/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm-2 at the current density of 2 mA cm-2 (283.45 F g-1 at 0.8 A g-1). Additionally, the assembled Cu(OH)2@MnO2/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg-1 at a power density of 750 W kg-1. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes.
Author Zhong, Yuxue
Liu, Ying
Cao, Xueying
Liu, Jingquan
Wang, Huining
Cui, Liang
Yan, Guowen
Author_xml – sequence: 1
  givenname: Huining
  surname: Wang
  fullname: Wang, Huining
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China
– sequence: 2
  givenname: Guowen
  surname: Yan
  fullname: Yan, Guowen
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China
– sequence: 3
  givenname: Xueying
  surname: Cao
  fullname: Cao, Xueying
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China
– sequence: 4
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China
– sequence: 5
  givenname: Yuxue
  surname: Zhong
  fullname: Zhong, Yuxue
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China
– sequence: 6
  givenname: Liang
  surname: Cui
  fullname: Cui, Liang
  email: cuiliang@lyu.edu.cn
  organization: College of Material Science and Engineering, Linyi University, Linyi 276000, Shandong, China
– sequence: 7
  givenname: Jingquan
  surname: Liu
  fullname: Liu, Jingquan
  email: jliu@qdu.edu.cn
  organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China
BookMark eNqFkc9u1DAQxi1UJLaFF-DkYzkk9Z9kvZY4gFaFRSraC5ytiT1pvErsYCdIfQZeGq-WUw_lMjO2vt9I833X5CrEgIS856zmjG_vTvXJ-lwLxnXNRc10-4pseGmV4kxekQ1jgldaafWGXOd8YozzttUb8ufgMUGyg7cw0v16ezx8EJ--h6OgNias8oDjSAOEmKLLFFKCJ-oDzX5Z6SOGAi_oaAx0GRJi5fyEIfsYyjYb5xkT7SNMpSQ6-MehKj9lniBYpHktLwszWL_ElN-S1z2MGd_96zfk55f7H_tD9XD8-m3_-aGyslFLZQXrHYhWdK5VopXgtszqRgmnOpCadVZ2CnrHcQeON05wx6QG3TWd6hoh5Q25veydU_y1Yl7M5LMtd0LAuGYjGsZaISTb_l8qJVdas11TpOIitSnmnLA3c_ITpCfDmTmHZE7mHJI5h2S4MCWdAu2eQcUKWIp_SwI_vox-vKBYrPpdUjTZeiy2Op_QLsZF_xL-F7ThsbI
CitedBy_id crossref_primary_10_3390_mi13020237
crossref_primary_10_1002_celc_202101711
crossref_primary_10_1007_s11696_023_02860_x
crossref_primary_10_1002_slct_202100588
crossref_primary_10_1016_j_jcis_2023_06_088
crossref_primary_10_1016_j_apsusc_2022_155183
crossref_primary_10_1021_acsami_2c21527
crossref_primary_10_1021_acsaelm_3c00152
crossref_primary_10_1016_j_jcis_2021_09_062
crossref_primary_10_1016_j_jcis_2024_07_136
crossref_primary_10_3390_mi14010125
crossref_primary_10_1007_s10853_020_05723_y
crossref_primary_10_1016_j_apsusc_2023_158966
crossref_primary_10_1016_j_inoche_2024_113429
crossref_primary_10_1007_s11581_020_03616_3
crossref_primary_10_1016_j_est_2022_104148
crossref_primary_10_3390_coatings12040529
crossref_primary_10_1016_j_compositesb_2021_108756
crossref_primary_10_1016_j_envres_2024_120423
crossref_primary_10_3390_polym15030612
crossref_primary_10_1021_acs_inorgchem_3c03594
crossref_primary_10_1007_s10853_020_05475_9
crossref_primary_10_1016_j_surfin_2023_103316
crossref_primary_10_1016_j_electacta_2024_144964
crossref_primary_10_1016_j_jcis_2022_10_037
crossref_primary_10_1016_j_cej_2022_136922
crossref_primary_10_1007_s10853_020_05407_7
crossref_primary_10_2139_ssrn_4195407
crossref_primary_10_1016_j_cej_2025_160751
crossref_primary_10_1016_j_jallcom_2023_173095
crossref_primary_10_1016_j_diamond_2024_111732
crossref_primary_10_1016_j_susmat_2023_e00802
crossref_primary_10_1039_D2RA06664E
crossref_primary_10_1016_j_jcis_2020_12_055
crossref_primary_10_1016_j_conbuildmat_2023_133469
crossref_primary_10_1016_j_jallcom_2022_168586
crossref_primary_10_1021_acsomega_1c03507
crossref_primary_10_1016_j_est_2024_110430
crossref_primary_10_1016_j_mtcomm_2022_104033
crossref_primary_10_1016_j_solidstatesciences_2020_106336
crossref_primary_10_1016_j_est_2024_113383
crossref_primary_10_1002_smll_202305136
crossref_primary_10_1016_j_mtchem_2021_100620
crossref_primary_10_1155_2024_2779104
crossref_primary_10_1016_j_jallcom_2025_178633
crossref_primary_10_1016_j_jallcom_2024_176296
crossref_primary_10_1016_j_cej_2023_145042
crossref_primary_10_1021_acs_inorgchem_4c03825
crossref_primary_10_1016_j_est_2022_104513
crossref_primary_10_1016_j_solmat_2020_110859
crossref_primary_10_1002_smll_202312179
crossref_primary_10_1016_j_colsurfa_2021_126652
crossref_primary_10_1016_j_jallcom_2021_161986
crossref_primary_10_1021_acssuschemeng_1c05164
crossref_primary_10_1557_s43578_021_00315_1
crossref_primary_10_1016_j_est_2023_110148
crossref_primary_10_1016_j_mtphys_2020_100337
crossref_primary_10_1016_j_electacta_2024_144985
crossref_primary_10_1021_acsaem_0c01004
crossref_primary_10_1016_j_jallcom_2021_160691
crossref_primary_10_1016_j_jpowsour_2022_231031
crossref_primary_10_1016_j_est_2023_108220
crossref_primary_10_1021_acsami_4c05421
crossref_primary_10_1016_j_jelechem_2024_118099
crossref_primary_10_1063_5_0238635
crossref_primary_10_1016_j_est_2021_103459
crossref_primary_10_1016_j_est_2023_108468
crossref_primary_10_1016_j_apsusc_2021_150715
crossref_primary_10_1016_j_jechem_2021_05_002
crossref_primary_10_1016_j_jallcom_2023_170483
crossref_primary_10_1016_j_nanoen_2020_105410
Cites_doi 10.1016/j.jpowsour.2019.226897
10.1557/JMR.2010.0211
10.1016/j.cej.2015.04.064
10.1016/j.carbon.2018.11.034
10.1039/C0CS00127A
10.1016/j.electacta.2015.05.157
10.1002/smll.201201336
10.1039/C2NR33136E
10.1002/smll.201101594
10.1039/c2jm35054h
10.1016/j.electacta.2012.11.089
10.1021/nl061576a
10.1039/C1RA01008E
10.1016/j.jpowsour.2011.09.050
10.1021/ja7112382
10.1016/j.matlet.2013.09.032
10.1016/j.jpowsour.2011.02.029
10.1021/am900094e
10.1016/j.matlet.2017.09.062
10.1039/c1jm11941a
10.1039/C5RA04889C
10.1039/c1jm12963e
10.1021/nn301454q
10.1016/j.jallcom.2019.02.171
10.1016/j.cej.2016.10.012
10.1007/s12274-017-1757-2
10.1002/aenm.201401882
10.1016/j.apsusc.2015.06.045
10.1016/j.jpowsour.2011.12.057
10.1039/C6TA02835G
10.1039/c3nr03578f
10.1016/j.jpowsour.2014.03.137
10.1039/c3ee41143e
10.1021/cm048887b
10.1021/nn305750s
10.1016/j.jallcom.2011.05.085
10.1016/j.matlet.2009.10.007
10.1039/c2ee24203f
10.1002/cssc.201601884
10.1021/jp804044s
10.1016/j.scib.2017.08.014
10.1039/C8TA00945G
10.1039/C8TA11396C
10.1039/C8TA02492H
10.1039/C8TA04307H
10.1039/C4TA06943A
10.1039/C7TA01805C
10.1016/j.nanoen.2014.06.013
10.1002/adma.201504833
10.1016/j.nanoen.2018.11.048
10.1039/c002126a
10.1021/nn3056077
10.1016/j.cclet.2018.12.005
10.1016/j.materresbull.2009.07.012
10.1021/acsami.5b11367
10.1039/C6TA06634H
10.1021/nl301804c
10.1016/j.electacta.2013.12.106
10.1039/c1ee01338f
10.1080/17458080903495003
10.1007/s11664-016-5194-x
10.1021/am405271q
10.1039/c1ee01685g
10.1021/nl2042112
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2019.12.095
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 404
ExternalDocumentID 10_1016_j_jcis_2019_12_095
S0021979719315620
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
7X8
7S9
L.6
ID FETCH-LOGICAL-c347t-c20fda252bd57253ad60c9472d7ba390bc3b7afd1e8ad14d21d039a9b4b7b4233
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Thu Jul 10 23:19:02 EDT 2025
Fri Jul 11 05:32:09 EDT 2025
Tue Jul 01 01:18:49 EDT 2025
Thu Apr 24 23:00:47 EDT 2025
Fri Feb 23 02:47:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MnO2
Asymmetric supercapcitors
Core–shell hierarchical structure
Cu(OH)2 nanorods array
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-c20fda252bd57253ad60c9472d7ba390bc3b7afd1e8ad14d21d039a9b4b7b4233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2331799084
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2400522306
proquest_miscellaneous_2331799084
crossref_primary_10_1016_j_jcis_2019_12_095
crossref_citationtrail_10_1016_j_jcis_2019_12_095
elsevier_sciencedirect_doi_10_1016_j_jcis_2019_12_095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xu, Yang, Sun, Hu, Huang (b0325) 2015; 5
He, Zhao, Sun, Hou, Zhu, Wang, Li, Xu, Zhai (b0225) 2019; 56
Cao, Cui, Liu, Liu, Jia, Yang, Razal, Liu (b0090) 2019; 7
Weifeng, Xinwei, Weixing, Ivey (b0055) 2011; 40
Zhao, Liu, Shi, Zhang, Zeng, Li, Miao (b0245) 2015; 351
Wang, Liu, Bao, Binjia, Haifeng, Wen, Fan (b0060) 2011; 509
Xia, Tu, Zhang, Wang, Gu, Zhao, Fan (b0120) 2012; 6
Xu, Kang, Li, Du (b0050) 2011; 25
Lan, Huang, Ye, Qin, Yan, Wu (b0265) 2019; 788
Zheng, Li, Ou, Wang, Su, Tong (b0070) 2010; 46
Choi, Yang, Jung, Lee, Kim, Park, Park, Lee, Han, Huh (b0015) 2013; 7
Guan, Cheng, Li, Li, Zhou, Zhang, Fan (b0125) 2011; 4
Wang, He, Deng, Hou, Zhuge, Xu, Zhai (b0220) 2017; 62
Ashoka, Chithaiah, Tharamani, Chandrappa (b0185) 2010; 5
Duay, Sherrill, Gui, Gillette, Sang (b0075) 2013; 7
Zhang, Ma, Huang, Li, Zhu, Hua, Yu, Zheng, Hu, Zhang (b0250) 2015; 26
Cakici, Kakarla, Alonso-Marroquin (b0175) 2017; 309
Yu, Zeng, Zhang, Lu, Zeng, Yao, Yang, Tong (b0135) 2013; 5
Cheng, Zhang, Varanasi, Liu (b0315) 2012; 12
Chassaing, Specklin, Weibel, Pale (b0180) 2015; 276
Tang, Wang, Bai, Zhu, Sun, Yue, Wu, Zhu, Holze (b0310) 2012; 197
Lu, Zheng, Teng, Liu, Huang, Xie, Tong (b0295) 2011; 4
Guo, Li, Kuang, Yu, Zhang (b0155) 2015; 174
Han, Dou, Zhao, Wei, Evans, Duan (b0105) 2013; 9
Wang, Sun, Qu, Yin, Xu (b0230) 2018; 29
Xin Zhang, Li, Huang (b0255) 2013; 112
Guoyin, Zhi, Jun, Jin, Xiaomiao, Yanwen, Quli, Lianhui, Wei (b0115) 2013; 6
Yu, Zhang, Chen, Ma (b0065) 2010; 64
Yang, Chang, Zhu, Sun, Liu, Sun, Duan (b0130) 2012; 2
Kang, Sheng, Xie, Ye, Chen, Fu, Du, Rong, Wong (b0170) 2018; 6
Rakhi, Chen, Cha, Alshareef (b0340) 2011; 21
Ghodbane, Pascal, Favier (b0040) 2009; 1
Liu, Cao, Cui, Zhong, Zheng, Wei, Barrow, Razal, Yang, Liu (b0140) 2019; 437
Amade, Jover, Caglar, Mutlu, Bertran (b0275) 2011; 196
Bai, Yao, Duan (b0270) 2018; 210
Qin, Liu, Wen, Wang, Jiang, Wan, Peng, Cao, He (b0335) 2016; 4
Wei, Cui, Chen, Ivey (b0190) 2008; 112
Lei, Yan, Fei, Song, Huang (b0195) 2016; 4
He, Chen (b0285) 2014; 262
Wei, Wang, Yang, Wang, Hou, Li (b0205) 2017; 46
Wang, Zhang, Lu, Wang, Peng, Zhang, Guo, Wang, Huo, Kim, Luo (b0260) 2019; 143
Hao, Zhou, Min, Wu (b0330) 2012; 22
He, Liang, Ji, Sun, Zhai, Xu (b0215) 2018; 11
Qu, Hu, Song, Zhang, Feng (b0005) 2014; 8
Yin, Jiang, Qu, Wu (b0290) 2015; 3
Shin, Liu (b0080) 2004; 16
Dai, Chang, Baek, Lu (b0025) 2012; 8
Chang, Ye, Lv, Cheng, Guo, Lin (b0110) 2014; 121
Cheng, Zhang, Varanasi, Liu (b0100) 2013; 6
Zhang, Zhang, Zhang, Sun, Ma (b0305) 2013
Xu, Du, Liu, Cheng, Yin, Wang, Cao (b0145) 2015; 5
Sheng, Wang, Huang, Hui, Li (b0150) 2017; 5
Teng, Xie, Yu, Fang, Liang, Lu, Tong (b0210) 2014; 8
Tang, Hou, Wang, Bai, Zhu, Sun, Yue, Wu, Zhu, Holze (b0345) 2012; 197
Cong, Ren, Wang, Yu (b0235) 2013; 6
Hu, Chang, Lin, Wu (b0035) 2006; 6
Chen, Gao, Sun (b0085) 2017; 10
Zhu, Tang, Vongehr, Xie, Meng (b0160) 2016; 8
Jiang, Hui, Yan, Zheng, Liu (b0300) 2018; 6
Wang, Ying, Huang, Kang (b0200) 2012; 204
Ran, Bok (b0045) 2008; 130
Li, Lu, Xu, Tong, Li (b0240) 2014; 6
Ying, Cao, Jiang, Jia, Liu (b0095) 2018; 6
Tang, Tian, Chao, Pi (b0165) 2009; 44
Li, Mi, Liu, Liu, Yang, Wang (b0280) 2011; 21
Cheng, Lu, Varanasi, Liu (b0320) 2013; 5
Cao, Tan, Zhang, Zhao, Zhang (b0010) 2016; 28
Wei, Scherer, Bower, Andrew, Ryhanen, Steiner (b0020) 2012; 12
Foo, Sumboja, Tan, Wang, Lee (b0030) 2015; 4
Cheng (10.1016/j.jcis.2019.12.095_b0100) 2013; 6
Tang (10.1016/j.jcis.2019.12.095_b0165) 2009; 44
Zhu (10.1016/j.jcis.2019.12.095_b0160) 2016; 8
He (10.1016/j.jcis.2019.12.095_b0215) 2018; 11
Wei (10.1016/j.jcis.2019.12.095_b0190) 2008; 112
Chang (10.1016/j.jcis.2019.12.095_b0110) 2014; 121
Tang (10.1016/j.jcis.2019.12.095_b0345) 2012; 197
Hao (10.1016/j.jcis.2019.12.095_b0330) 2012; 22
Zheng (10.1016/j.jcis.2019.12.095_b0070) 2010; 46
Wang (10.1016/j.jcis.2019.12.095_b0220) 2017; 62
Li (10.1016/j.jcis.2019.12.095_b0280) 2011; 21
Cheng (10.1016/j.jcis.2019.12.095_b0315) 2012; 12
Wang (10.1016/j.jcis.2019.12.095_b0260) 2019; 143
Choi (10.1016/j.jcis.2019.12.095_b0015) 2013; 7
Zhang (10.1016/j.jcis.2019.12.095_b0305) 2013
Cheng (10.1016/j.jcis.2019.12.095_b0320) 2013; 5
Kang (10.1016/j.jcis.2019.12.095_b0170) 2018; 6
Yu (10.1016/j.jcis.2019.12.095_b0065) 2010; 64
Liu (10.1016/j.jcis.2019.12.095_b0140) 2019; 437
Lu (10.1016/j.jcis.2019.12.095_b0295) 2011; 4
Zhao (10.1016/j.jcis.2019.12.095_b0245) 2015; 351
Bai (10.1016/j.jcis.2019.12.095_b0270) 2018; 210
Amade (10.1016/j.jcis.2019.12.095_b0275) 2011; 196
Cong (10.1016/j.jcis.2019.12.095_b0235) 2013; 6
Yin (10.1016/j.jcis.2019.12.095_b0290) 2015; 3
Yu (10.1016/j.jcis.2019.12.095_b0135) 2013; 5
Teng (10.1016/j.jcis.2019.12.095_b0210) 2014; 8
Jiang (10.1016/j.jcis.2019.12.095_b0300) 2018; 6
Tang (10.1016/j.jcis.2019.12.095_b0310) 2012; 197
Wei (10.1016/j.jcis.2019.12.095_b0205) 2017; 46
Guoyin (10.1016/j.jcis.2019.12.095_b0115) 2013; 6
Weifeng (10.1016/j.jcis.2019.12.095_b0055) 2011; 40
Qin (10.1016/j.jcis.2019.12.095_b0335) 2016; 4
Rakhi (10.1016/j.jcis.2019.12.095_b0340) 2011; 21
Xin Zhang (10.1016/j.jcis.2019.12.095_b0255) 2013; 112
Xu (10.1016/j.jcis.2019.12.095_b0325) 2015; 5
Wei (10.1016/j.jcis.2019.12.095_b0020) 2012; 12
Wang (10.1016/j.jcis.2019.12.095_b0060) 2011; 509
Chen (10.1016/j.jcis.2019.12.095_b0085) 2017; 10
Foo (10.1016/j.jcis.2019.12.095_b0030) 2015; 4
Han (10.1016/j.jcis.2019.12.095_b0105) 2013; 9
Dai (10.1016/j.jcis.2019.12.095_b0025) 2012; 8
Ran (10.1016/j.jcis.2019.12.095_b0045) 2008; 130
Ghodbane (10.1016/j.jcis.2019.12.095_b0040) 2009; 1
Ying (10.1016/j.jcis.2019.12.095_b0095) 2018; 6
Chassaing (10.1016/j.jcis.2019.12.095_b0180) 2015; 276
Xia (10.1016/j.jcis.2019.12.095_b0120) 2012; 6
Cao (10.1016/j.jcis.2019.12.095_b0090) 2019; 7
Wang (10.1016/j.jcis.2019.12.095_b0200) 2012; 204
Wang (10.1016/j.jcis.2019.12.095_b0230) 2018; 29
He (10.1016/j.jcis.2019.12.095_b0285) 2014; 262
Guan (10.1016/j.jcis.2019.12.095_b0125) 2011; 4
Yang (10.1016/j.jcis.2019.12.095_b0130) 2012; 2
He (10.1016/j.jcis.2019.12.095_b0225) 2019; 56
Lan (10.1016/j.jcis.2019.12.095_b0265) 2019; 788
Cao (10.1016/j.jcis.2019.12.095_b0010) 2016; 28
Shin (10.1016/j.jcis.2019.12.095_b0080) 2004; 16
Cakici (10.1016/j.jcis.2019.12.095_b0175) 2017; 309
Zhang (10.1016/j.jcis.2019.12.095_b0250) 2015; 26
Ashoka (10.1016/j.jcis.2019.12.095_b0185) 2010; 5
Lei (10.1016/j.jcis.2019.12.095_b0195) 2016; 4
Sheng (10.1016/j.jcis.2019.12.095_b0150) 2017; 5
Guo (10.1016/j.jcis.2019.12.095_b0155) 2015; 174
Qu (10.1016/j.jcis.2019.12.095_b0005) 2014; 8
Xu (10.1016/j.jcis.2019.12.095_b0145) 2015; 5
Hu (10.1016/j.jcis.2019.12.095_b0035) 2006; 6
Xu (10.1016/j.jcis.2019.12.095_b0050) 2011; 25
Duay (10.1016/j.jcis.2019.12.095_b0075) 2013; 7
Li (10.1016/j.jcis.2019.12.095_b0240) 2014; 6
References_xml – volume: 64
  start-page: 61
  year: 2010
  end-page: 64
  ident: b0065
  article-title: Solution-combustion synthesis of ε-MnO
  publication-title: Mater. Lett.
– volume: 121
  start-page: 175
  year: 2014
  end-page: 182
  ident: b0110
  article-title: Ultralong rutile TiO
  publication-title: Electrochim. Acta
– volume: 197
  start-page: 330
  year: 2012
  end-page: 333
  ident: b0310
  article-title: A hybrid of MnO
  publication-title: J. Power Sour.
– volume: 6
  start-page: 5531
  year: 2012
  end-page: 5538
  ident: b0120
  article-title: High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage
  publication-title: ACS Nano
– volume: 56
  start-page: 207
  year: 2019
  end-page: 215
  ident: b0225
  article-title: Construction of Longan–like hybrid structures by anchoring nickel hydroxide on yolk–shell polypyrrole for asymmetric supercapacitors
  publication-title: Nano Energy
– volume: 6
  start-page: 10064
  year: 2018
  end-page: 10073
  ident: b0170
  article-title: Tubular Cu(OH)
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 255
  year: 2014
  end-page: 263
  ident: b0210
  article-title: Oxygen vacancies enhancing capacitive properties of MnO
  publication-title: Nano Energy
– volume: 262
  start-page: 391
  year: 2014
  end-page: 400
  ident: b0285
  article-title: High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites
  publication-title: Journal of Power Sources
– volume: 8
  start-page: 1130
  year: 2012
  end-page: 1166
  ident: b0025
  article-title: Carbon nanomaterials for advanced energy conversion and storage
  publication-title: Small
– volume: 62
  start-page: 1122
  year: 2017
  end-page: 1131
  ident: b0220
  article-title: Hierarchical CuCo
  publication-title: Sci. Bull.
– volume: 276
  start-page: 155
  year: 2015
  end-page: 165
  ident: b0180
  article-title: Tetracycline degradation in aquatic environment by highly porous MnO
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 1200
  year: 2013
  end-page: 1214
  ident: b0075
  article-title: Self-limiting electrodeposition of hierarchical MnO
  publication-title: ACS nano
– volume: 4
  start-page: 2915
  year: 2011
  end-page: 2921
  ident: b0295
  article-title: Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1401882
  year: 2015
  ident: b0325
  article-title: Flexible asymmetric micro-supercapacitors based on Bi
  publication-title: Adv. Energy Mater.
– volume: 112
  start-page: 203
  year: 2013
  end-page: 206
  ident: b0255
  article-title: One-step hydrothermal synthesis of hierarchical MnO
  publication-title: Mater. Lett.
– volume: 5
  start-page: 10806
  year: 2013
  end-page: 10810
  ident: b0135
  article-title: Titanium dioxide@polypyrrole core–shell nanowires for all solid-state flexible supercapacitors
  publication-title: Nanoscale
– volume: 22
  start-page: 25207
  year: 2012
  end-page: 25216
  ident: b0330
  article-title: Reduced graphene Oxide–MnO
  publication-title: J. Mater. Chem.
– volume: 309
  start-page: 151
  year: 2017
  end-page: 158
  ident: b0175
  article-title: Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO
  publication-title: Chem. Eng. J.
– volume: 40
  start-page: 1697
  year: 2011
  end-page: 1721
  ident: b0055
  article-title: Manganese oxide-based materials as electrochemical supercapacitor electrodes
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 4212
  year: 2015
  end-page: 4220
  ident: b0250
  article-title: Birnessite MnO
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 21
  start-page: 14706
  year: 2011
  end-page: 14711
  ident: b0280
  article-title: Flexible graphene/MnO2 composite papers for supercapacitor electrodes
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 4762
  year: 2016
  end-page: 4770
  ident: b0160
  article-title: Hierarchically MnO
  publication-title: ACS Appl. Mater. Interf.
– volume: 4
  start-page: 14781
  year: 2016
  end-page: 14788
  ident: b0195
  article-title: Commercial Dacron cloth supported Cu(OH)
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 1539
  year: 2017
  end-page: 1545
  ident: b0205
  article-title: Synthesis of 3D mesoporous wall-like MnO
  publication-title: J. Electron. Mater.
– volume: 6
  start-page: 1185
  year: 2013
  end-page: 1191
  ident: b0235
  article-title: Flexible graphene-polyaniline composite paper for high-performance supercapacitor
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 2726
  year: 2014
  end-page: 2733
  ident: b0240
  article-title: Carbon/MnO
  publication-title: ACS Appl. Mater. Interf.
– volume: 21
  start-page: 16197
  year: 2011
  end-page: 16204
  ident: b0340
  article-title: High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes
  publication-title: J. Mater. Chem.
– volume: 351
  start-page: 862
  year: 2015
  end-page: 868
  ident: b0245
  article-title: Hydrothermal synthesis of urchin-like MnO
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 1415
  year: 2018
  end-page: 1425
  ident: b0215
  article-title: Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors
  publication-title: Nano Res.
– start-page: 523
  year: 2013
  end-page: 529
  ident: b0305
  article-title: Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 31
  year: 2014
  end-page: 54
  ident: b0005
  article-title: Tailored graphene systems for unconventional applications in energy conversion and storage devices
  publication-title: Energy Environ. Sci.
– volume: 197
  start-page: 330
  year: 2012
  end-page: 333
  ident: b0345
  article-title: A hybrid of MnO
  publication-title: J. Power Sour.
– volume: 9
  start-page: 98
  year: 2013
  end-page: 106
  ident: b0105
  article-title: Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage
  publication-title: Small
– volume: 4
  start-page: 3412
  year: 2015
  end-page: 3420
  ident: b0030
  article-title: Flexible and highly scalable V
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 10474
  year: 2018
  end-page: 10483
  ident: b0095
  article-title: Hierarchical CuO nanorod arrays: In situ generated on three-dimensional copper foam via cyclic voltammetry oxidation for high-performance supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 2690
  year: 2006
  end-page: 2695
  ident: b0035
  article-title: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO
  publication-title: Nano Lett.
– volume: 2
  start-page: 1663
  year: 2012
  end-page: 1668
  ident: b0130
  article-title: Hierarchical Co
  publication-title: Rsc Adv.
– volume: 1
  start-page: 1130
  year: 2009
  end-page: 1139
  ident: b0040
  article-title: Microstructural effects on charge-storage properties in MnO
  publication-title: ACS Appl. Mater. Interf.
– volume: 509
  start-page: 8306
  year: 2011
  end-page: 8312
  ident: b0060
  article-title: Structural-controlled synthesis of manganese oxide nanostructures and their electrochemical properties
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 4496
  year: 2011
  end-page: 4499
  ident: b0125
  article-title: Hybrid structure of cobalt monoxide nanowire@nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor
  publication-title: Energy Environ. Sci.
– volume: 788
  start-page: 302
  year: 2019
  end-page: 310
  ident: b0265
  article-title: Enhanced electrochemical performance of Sn-doped MnO
  publication-title: J. Alloys Compd.
– volume: 12
  start-page: 4206
  year: 2012
  end-page: 4211
  ident: b0315
  article-title: Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors
  publication-title: Nano Lett.
– volume: 5
  year: 2013
  ident: b0320
  article-title: Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes
  publication-title: Nanoscale
– volume: 3
  start-page: 5722
  year: 2015
  end-page: 5729
  ident: b0290
  article-title: Phase-controlled synthesis of polymorphic MnO
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 285
  year: 2010
  end-page: 293
  ident: b0185
  article-title: Synthesis and characterisation of microstructural α-Mn
  publication-title: J. Exp. Nanosci.
– volume: 204
  start-page: 236
  year: 2012
  end-page: 243
  ident: b0200
  article-title: Interfacial synthesis of mesoporous MnO
  publication-title: J. Power Sour.
– volume: 6
  start-page: 11966
  year: 2018
  end-page: 11977
  ident: b0300
  article-title: In-situ generation of CoS
  publication-title: J. Mater. Chem. A
– volume: 437
  start-page: 226897
  year: 2019
  ident: b0140
  article-title: Zn-Ni-Co trimetallic carbonate hydroxide nanothorns branched on Cu(OH)2 nanorods array based on Cu foam for high-performance asymmetric supercapacitors
  publication-title: J. Power Sour.
– volume: 44
  start-page: 2062
  year: 2009
  end-page: 2067
  ident: b0165
  article-title: Facile synthesis of α-MnO
  publication-title: Mater. Res. Bull.
– volume: 12
  start-page: 1857
  year: 2012
  end-page: 1862
  ident: b0020
  article-title: A nanostructured electrochromic supercapacitor
  publication-title: Nano Lett.
– volume: 6
  start-page: 1079
  year: 2013
  end-page: 1085
  ident: b0115
  article-title: Highly conductive three-dimensional MnO
  publication-title: Nanoscale
– volume: 25
  start-page: 1421
  year: 2011
  end-page: 1432
  ident: b0050
  article-title: Recent progress on manganese dioxide based supercapacitors
  publication-title: J. Mater. Res.
– volume: 7
  start-page: 3815
  year: 2019
  end-page: 3827
  ident: b0090
  article-title: Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 9960
  year: 2017
  end-page: 9969
  ident: b0150
  article-title: Hierarchical Cu(OH)
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 6167
  year: 2016
  end-page: 6196
  ident: b0010
  article-title: Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2453
  year: 2013
  end-page: 2460
  ident: b0015
  article-title: Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids
  publication-title: ACS Nano
– volume: 16
  start-page: 5460
  year: 2004
  end-page: 5464
  ident: b0080
  article-title: Copper foam structures with highly porous nanostructured walls
  publication-title: Chem. Mater.
– volume: 5
  start-page: 36656
  year: 2015
  end-page: 36664
  ident: b0145
  article-title: One-step synthesis of copper compounds on copper foil and their supercapacitive performance
  publication-title: Rsc Adv.
– volume: 130
  start-page: 2942
  year: 2008
  end-page: 2943
  ident: b0045
  article-title: MnO
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1475
  year: 2017
  end-page: 1481
  ident: b0085
  article-title: Highly active three-dimensional NiFe/Cu
  publication-title: ChemSusChem
– volume: 174
  start-page: 87
  year: 2015
  end-page: 92
  ident: b0155
  article-title: Tailoring kirkendall effect of the KCu
  publication-title: Electrochim. Acta
– volume: 29
  start-page: 1731
  year: 2018
  end-page: 1740
  ident: b0230
  article-title: Nickel/cobalt based materials for supercapacitors
  publication-title: Chin. Chem. Lett.
– volume: 4
  start-page: 9196
  year: 2016
  end-page: 9203
  ident: b0335
  article-title: Freestanding flexible graphene foams@polypyrrole@MnO
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 3314
  year: 2013
  end-page: 3321
  ident: b0100
  article-title: Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches
  publication-title: Energy Environ. Sci.
– volume: 210
  start-page: 329
  year: 2018
  end-page: 332
  ident: b0270
  article-title: Hydrothermal preparation of CS@MnO
  publication-title: Mater. Lett.
– volume: 112
  start-page: 15075
  year: 2008
  end-page: 15083
  ident: b0190
  article-title: Phase-controlled synthesis of MnO
  publication-title: J. Phys. Chem. C
– volume: 143
  start-page: 335
  year: 2019
  end-page: 342
  ident: b0260
  article-title: Cable-like double-carbon layers for fast ion and electron transport: An example of CNT@NCT@MnO
  publication-title: Carbon
– volume: 196
  start-page: 5779
  year: 2011
  end-page: 5783
  ident: b0275
  article-title: Optimization of MnO
  publication-title: J. Power Sour.
– volume: 46
  start-page: 5021
  year: 2010
  end-page: 5023
  ident: b0070
  article-title: Synthesis of hierarchical rippled Bi
  publication-title: Chem. Commun.
– volume: 437
  start-page: 226897
  year: 2019
  ident: 10.1016/j.jcis.2019.12.095_b0140
  article-title: Zn-Ni-Co trimetallic carbonate hydroxide nanothorns branched on Cu(OH)2 nanorods array based on Cu foam for high-performance asymmetric supercapacitors
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2019.226897
– volume: 25
  start-page: 1421
  year: 2011
  ident: 10.1016/j.jcis.2019.12.095_b0050
  article-title: Recent progress on manganese dioxide based supercapacitors
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2010.0211
– volume: 276
  start-page: 155
  year: 2015
  ident: 10.1016/j.jcis.2019.12.095_b0180
  article-title: Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.04.064
– volume: 143
  start-page: 335
  year: 2019
  ident: 10.1016/j.jcis.2019.12.095_b0260
  article-title: Cable-like double-carbon layers for fast ion and electron transport: An example of CNT@NCT@MnO2 3D nanostructure for high-performance supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.11.034
– volume: 8
  start-page: 31
  year: 2014
  ident: 10.1016/j.jcis.2019.12.095_b0005
  article-title: Tailored graphene systems for unconventional applications in energy conversion and storage devices
  publication-title: Energy Environ. Sci.
– volume: 40
  start-page: 1697
  year: 2011
  ident: 10.1016/j.jcis.2019.12.095_b0055
  article-title: Manganese oxide-based materials as electrochemical supercapacitor electrodes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00127A
– volume: 174
  start-page: 87
  year: 2015
  ident: 10.1016/j.jcis.2019.12.095_b0155
  article-title: Tailoring kirkendall effect of the KCu7S4 microwires towards CuO@MnO2 core-shell nanostructures for supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.05.157
– volume: 9
  start-page: 98
  year: 2013
  ident: 10.1016/j.jcis.2019.12.095_b0105
  article-title: Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage
  publication-title: Small
  doi: 10.1002/smll.201201336
– volume: 5
  year: 2013
  ident: 10.1016/j.jcis.2019.12.095_b0320
  article-title: Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes
  publication-title: Nanoscale
  doi: 10.1039/C2NR33136E
– volume: 8
  start-page: 1130
  year: 2012
  ident: 10.1016/j.jcis.2019.12.095_b0025
  article-title: Carbon nanomaterials for advanced energy conversion and storage
  publication-title: Small
  doi: 10.1002/smll.201101594
– volume: 22
  start-page: 25207
  year: 2012
  ident: 10.1016/j.jcis.2019.12.095_b0330
  article-title: Reduced graphene Oxide–MnO2 hollow sphere hybrid nanostructures as high-performance electrochemical capacitors
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35054h
– start-page: 523
  year: 2013
  ident: 10.1016/j.jcis.2019.12.095_b0305
  article-title: Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.11.089
– volume: 6
  start-page: 2690
  year: 2006
  ident: 10.1016/j.jcis.2019.12.095_b0035
  article-title: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors
  publication-title: Nano Lett.
  doi: 10.1021/nl061576a
– volume: 2
  start-page: 1663
  year: 2012
  ident: 10.1016/j.jcis.2019.12.095_b0130
  article-title: Hierarchical Co3O4 nanosheet@nanowire arrays with enhanced pseudocapacitive performance
  publication-title: Rsc Adv.
  doi: 10.1039/C1RA01008E
– volume: 197
  start-page: 330
  year: 2012
  ident: 10.1016/j.jcis.2019.12.095_b0345
  article-title: A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2011.09.050
– volume: 130
  start-page: 2942
  year: 2008
  ident: 10.1016/j.jcis.2019.12.095_b0045
  article-title: MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja7112382
– volume: 112
  start-page: 203
  year: 2013
  ident: 10.1016/j.jcis.2019.12.095_b0255
  article-title: One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.09.032
– volume: 196
  start-page: 5779
  year: 2011
  ident: 10.1016/j.jcis.2019.12.095_b0275
  article-title: Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2011.02.029
– volume: 1
  start-page: 1130
  year: 2009
  ident: 10.1016/j.jcis.2019.12.095_b0040
  article-title: Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/am900094e
– volume: 210
  start-page: 329
  year: 2018
  ident: 10.1016/j.jcis.2019.12.095_b0270
  article-title: Hydrothermal preparation of CS@MnO2 with different morphologies for supercapacitor electrode materials
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.09.062
– volume: 21
  start-page: 14706
  year: 2011
  ident: 10.1016/j.jcis.2019.12.095_b0280
  article-title: Flexible graphene/MnO2 composite papers for supercapacitor electrodes
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm11941a
– volume: 5
  start-page: 36656
  year: 2015
  ident: 10.1016/j.jcis.2019.12.095_b0145
  article-title: One-step synthesis of copper compounds on copper foil and their supercapacitive performance
  publication-title: Rsc Adv.
  doi: 10.1039/C5RA04889C
– volume: 21
  start-page: 16197
  year: 2011
  ident: 10.1016/j.jcis.2019.12.095_b0340
  article-title: High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12963e
– volume: 6
  start-page: 5531
  year: 2012
  ident: 10.1016/j.jcis.2019.12.095_b0120
  article-title: High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage
  publication-title: ACS Nano
  doi: 10.1021/nn301454q
– volume: 788
  start-page: 302
  year: 2019
  ident: 10.1016/j.jcis.2019.12.095_b0265
  article-title: Enhanced electrochemical performance of Sn-doped MnO2 and study on morphology evolution
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.02.171
– volume: 309
  start-page: 151
  year: 2017
  ident: 10.1016/j.jcis.2019.12.095_b0175
  article-title: Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.012
– volume: 11
  start-page: 1415
  year: 2018
  ident: 10.1016/j.jcis.2019.12.095_b0215
  article-title: Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1757-2
– volume: 5
  start-page: 1401882
  year: 2015
  ident: 10.1016/j.jcis.2019.12.095_b0325
  article-title: Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401882
– volume: 351
  start-page: 862
  year: 2015
  ident: 10.1016/j.jcis.2019.12.095_b0245
  article-title: Hydrothermal synthesis of urchin-like MnO2 nanostructures and its electrochemical character for supercapacitor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.06.045
– volume: 204
  start-page: 236
  year: 2012
  ident: 10.1016/j.jcis.2019.12.095_b0200
  article-title: Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2011.12.057
– volume: 4
  start-page: 9196
  year: 2016
  ident: 10.1016/j.jcis.2019.12.095_b0335
  article-title: Freestanding flexible graphene foams@polypyrrole@MnO2 electrodes for high-performance supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02835G
– volume: 5
  start-page: 10806
  year: 2013
  ident: 10.1016/j.jcis.2019.12.095_b0135
  article-title: Titanium dioxide@polypyrrole core–shell nanowires for all solid-state flexible supercapacitors
  publication-title: Nanoscale
  doi: 10.1039/c3nr03578f
– volume: 262
  start-page: 391
  year: 2014
  ident: 10.1016/j.jcis.2019.12.095_b0285
  article-title: High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2014.03.137
– volume: 6
  start-page: 3314
  year: 2013
  ident: 10.1016/j.jcis.2019.12.095_b0100
  article-title: Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41143e
– volume: 16
  start-page: 5460
  year: 2004
  ident: 10.1016/j.jcis.2019.12.095_b0080
  article-title: Copper foam structures with highly porous nanostructured walls
  publication-title: Chem. Mater.
  doi: 10.1021/cm048887b
– volume: 6
  start-page: 1079
  year: 2013
  ident: 10.1016/j.jcis.2019.12.095_b0115
  article-title: Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode
  publication-title: Nanoscale
– volume: 7
  start-page: 2453
  year: 2013
  ident: 10.1016/j.jcis.2019.12.095_b0015
  article-title: Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids
  publication-title: ACS Nano
  doi: 10.1021/nn305750s
– volume: 509
  start-page: 8306
  year: 2011
  ident: 10.1016/j.jcis.2019.12.095_b0060
  article-title: Structural-controlled synthesis of manganese oxide nanostructures and their electrochemical properties
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.05.085
– volume: 64
  start-page: 61
  year: 2010
  ident: 10.1016/j.jcis.2019.12.095_b0065
  article-title: Solution-combustion synthesis of ε-MnO2 for supercapacitors
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.10.007
– volume: 6
  start-page: 1185
  year: 2013
  ident: 10.1016/j.jcis.2019.12.095_b0235
  article-title: Flexible graphene-polyaniline composite paper for high-performance supercapacitor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee24203f
– volume: 10
  start-page: 1475
  year: 2017
  ident: 10.1016/j.jcis.2019.12.095_b0085
  article-title: Highly active three-dimensional NiFe/Cu2O nanowires/Cu foam electrode for water oxidation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601884
– volume: 112
  start-page: 15075
  year: 2008
  ident: 10.1016/j.jcis.2019.12.095_b0190
  article-title: Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp804044s
– volume: 62
  start-page: 1122
  year: 2017
  ident: 10.1016/j.jcis.2019.12.095_b0220
  article-title: Hierarchical CuCo2O4@nickel-cobalt hydroxides core/shell nanoarchitectures for high-performance hybrid supercapacitors
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.08.014
– volume: 6
  start-page: 10474
  year: 2018
  ident: 10.1016/j.jcis.2019.12.095_b0095
  article-title: Hierarchical CuO nanorod arrays: In situ generated on three-dimensional copper foam via cyclic voltammetry oxidation for high-performance supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00945G
– volume: 7
  start-page: 3815
  year: 2019
  ident: 10.1016/j.jcis.2019.12.095_b0090
  article-title: Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu2+1O hybrid materials based on a Cu(OH)2 precursor for high performance supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11396C
– volume: 26
  start-page: 4212
  year: 2015
  ident: 10.1016/j.jcis.2019.12.095_b0250
  article-title: Birnessite MnO2-decorated hollow dandelion-like CuO architectures for supercapacitor electrodes
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 6
  start-page: 10064
  year: 2018
  ident: 10.1016/j.jcis.2019.12.095_b0170
  article-title: Tubular Cu(OH)2 arrays decorated with nanothorny Co–Ni bimetallic carbonate hydroxide supported on Cu foam: a 3D hierarchical core–shell efficient electrocatalyst for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02492H
– volume: 6
  start-page: 11966
  year: 2018
  ident: 10.1016/j.jcis.2019.12.095_b0300
  article-title: In-situ generation of CoS1.097 nanoparticles on S/N Co-doped graphene/carbonized foam for mechanically tough and flexible all solid-state supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04307H
– volume: 3
  start-page: 5722
  year: 2015
  ident: 10.1016/j.jcis.2019.12.095_b0290
  article-title: Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06943A
– volume: 5
  start-page: 9960
  year: 2017
  ident: 10.1016/j.jcis.2019.12.095_b0150
  article-title: Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01805C
– volume: 197
  start-page: 330
  year: 2012
  ident: 10.1016/j.jcis.2019.12.095_b0310
  article-title: A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2011.09.050
– volume: 8
  start-page: 255
  year: 2014
  ident: 10.1016/j.jcis.2019.12.095_b0210
  article-title: Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.06.013
– volume: 28
  start-page: 6167
  year: 2016
  ident: 10.1016/j.jcis.2019.12.095_b0010
  article-title: Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504833
– volume: 56
  start-page: 207
  year: 2019
  ident: 10.1016/j.jcis.2019.12.095_b0225
  article-title: Construction of Longan–like hybrid structures by anchoring nickel hydroxide on yolk–shell polypyrrole for asymmetric supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.048
– volume: 46
  start-page: 5021
  year: 2010
  ident: 10.1016/j.jcis.2019.12.095_b0070
  article-title: Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications
  publication-title: Chem. Commun.
  doi: 10.1039/c002126a
– volume: 7
  start-page: 1200
  year: 2013
  ident: 10.1016/j.jcis.2019.12.095_b0075
  article-title: Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties
  publication-title: ACS nano
  doi: 10.1021/nn3056077
– volume: 29
  start-page: 1731
  year: 2018
  ident: 10.1016/j.jcis.2019.12.095_b0230
  article-title: Nickel/cobalt based materials for supercapacitors
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.12.005
– volume: 44
  start-page: 2062
  year: 2009
  ident: 10.1016/j.jcis.2019.12.095_b0165
  article-title: Facile synthesis of α-MnO2 nanostructures for supercapacitors
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2009.07.012
– volume: 4
  start-page: 3412
  year: 2015
  ident: 10.1016/j.jcis.2019.12.095_b0030
  article-title: Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 4762
  year: 2016
  ident: 10.1016/j.jcis.2019.12.095_b0160
  article-title: Hierarchically MnO2-nanosheet covered submicron-FeCo2O4-tube forest as binder-free electrodes for high energy density all-solid-state supercapacitors
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.5b11367
– volume: 4
  start-page: 14781
  year: 2016
  ident: 10.1016/j.jcis.2019.12.095_b0195
  article-title: Commercial Dacron cloth supported Cu(OH)2 nanobelt arrays for wearable supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06634H
– volume: 12
  start-page: 4206
  year: 2012
  ident: 10.1016/j.jcis.2019.12.095_b0315
  article-title: Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors
  publication-title: Nano Lett.
  doi: 10.1021/nl301804c
– volume: 121
  start-page: 175
  year: 2014
  ident: 10.1016/j.jcis.2019.12.095_b0110
  article-title: Ultralong rutile TiO2 nanorod arrays with large surface area for CdS/CdSe quantum dot-sensitized solar cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.12.106
– volume: 4
  start-page: 2915
  year: 2011
  ident: 10.1016/j.jcis.2019.12.095_b0295
  article-title: Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01338f
– volume: 5
  start-page: 285
  year: 2010
  ident: 10.1016/j.jcis.2019.12.095_b0185
  article-title: Synthesis and characterisation of microstructural α-Mn2O3 materials
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080903495003
– volume: 46
  start-page: 1539
  year: 2017
  ident: 10.1016/j.jcis.2019.12.095_b0205
  article-title: Synthesis of 3D mesoporous wall-like MnO2 with improved electrochemical performance
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-016-5194-x
– volume: 6
  start-page: 2726
  year: 2014
  ident: 10.1016/j.jcis.2019.12.095_b0240
  article-title: Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/am405271q
– volume: 4
  start-page: 4496
  year: 2011
  ident: 10.1016/j.jcis.2019.12.095_b0125
  article-title: Hybrid structure of cobalt monoxide nanowire@nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01685g
– volume: 12
  start-page: 1857
  year: 2012
  ident: 10.1016/j.jcis.2019.12.095_b0020
  article-title: A nanostructured electrochromic supercapacitor
  publication-title: Nano Lett.
  doi: 10.1021/nl2042112
SSID ssj0011559
Score 2.5505636
Snippet [Display omitted] Manganese dioxide (MnO2) with high theoretical capacity (1380 F g−1), high natural abundance and low cost has been considered as one of the...
Manganese dioxide (MnO2) with high theoretical capacity (1380 F g-1), high natural abundance and low cost has been considered as one of the most competitive...
Manganese dioxide (MnO₂) with high theoretical capacity (1380 F g⁻¹), high natural abundance and low cost has been considered as one of the most competitive...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 394
SubjectTerms activated carbon
active sites
Asymmetric supercapcitors
capacitance
copper
copper hydroxide
copper nanoparticles
Core–shell hierarchical structure
Cu(OH)2 nanorods array
electrical conductivity
electrochemical capacitors
electrodes
energy density
foams
lamps
manganese dioxide
MnO2
nanorods
nanosheets
surface area
Title Hierarchical Cu(OH)2@MnO2 core-shell nanorods array in situ generated on three-dimensional copper foam for high-performance supercapacitors
URI https://dx.doi.org/10.1016/j.jcis.2019.12.095
https://www.proquest.com/docview/2331799084
https://www.proquest.com/docview/2400522306
Volume 563
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb5ZAEN807UE9mLZqrI9mTTxozFr2AQs3my9tUNP2YpPeyL4wNC0QPjh48R_wn3aGR33EfAcvBMgskJ1hHrszvyHkdaS8VEKULDHCMNCSjpkMzqQTwapEWT5W8Z-dJ_ml-nQVX22R1VILg2mVs-6fdPqorec7R_NsHrVVhTW-8LfpTIMLAkGIwLhdKY1S_v77XZoHx223Kc2DM6SeC2emHK9rVyFkN8_GJUHsMfFv4_SXmh5tz-kueTg7jfR4-q49shXqfXJvtfRq2ycPfoMVfER-5BWWFY9dTm7oanhzkb8VH87qC0ERtJKtMfmT1qZuQHuuqek6841WNV1X_UC_jjjU4IfSpqY9cDowjx0AJvQOeEDbho6WjbmFQ0cR7pi1v6oP6HqAKwcm2FXYyOcxuTw9-bLK2dx0gTmpdM-ciEpvRCysj7WIpfFJ5DKlhdfWyCyyTlptSs9DajxXXnAfycxkVlltwTeTT8h23dThKaEqtTLjUmdJ7EE12FSXQYoAthIss3HpAeHLbBduRiTHxhg3xZJ6dl0ghwrkUMFFARw6IO_uxrQTHsdG6nhhYvGHVBVgMDaOe7VwvABO4h6KqUMzAJGUiKEXpWoDjcLFdoztnv3n-5-T-wLjeswbjF-Q7b4bwktwfnp7OEr3Idk5_vg5P_8JUIMFeg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaq6aFwQFBAlLIYiQMIWU1sZ7tRjahS2pleWqk3y1tQqpJEmeTQ38Cf5r0sZRGaA5coiewk8nPeYr_3fYS8D6QTkvOCxZprBlrSMp3BmbDcGxlLEw5V_Kt1nF_Jr9fR9Q5ZzrUwmFY56f5Rpw_aerpzNI3mUVOWWOMLf1uSJeCCQBDCIW7fRXSqaEF2j0_P8vX9ZgLuvI2ZHiHDDlPtzJjmdWNLRO0Os2FVEGkm_m2f_tLUg_k5eUweTX4jPR4_7QnZ8dU-2VvOdG375OFvyIJPyY-8xMrigejkli77Dxf5R_55VV1wiriVbIP5n7TSVQ0KdEN12-o7WlZ0U3Y9_TZAUYMrSuuKdiBszxySAIwAHvCApvEtLWr9HQ4tRcRj1vwqQKCbHq4sWGFbIpfPM3J18uVymbOJd4FZIZOOWR4UTvOIGxclPBLaxYHNZMJdYrTIAmOFSXThQp9qF0rHQxeITGdGmsSAeyaek0VVV_4FoTI1IgtFksWRA-1g0qTwgnswl2CctU0PSDiPtrITKDlyY9yqOfvsRqGEFEpIhVyBhA7Ip_s-zQjJsbV1NAtR_TGxFNiMrf3ezRJXIEncRtGVr3toJATC6AWp3NJG4no7hncv__P9b8lefrk6V-en67ND8oBjmI9phNErsuja3r8GX6gzb6a5_hM5tQgr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Cu%28OH%292%40MnO2+core-shell+nanorods+array+in+situ+generated+on+three-dimensional+copper+foam+for+high-performance+supercapacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Wang%2C+Huining&rft.au=Yan%2C+Guowen&rft.au=Cao%2C+Xueying&rft.au=Liu%2C+Ying&rft.date=2020-03-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=563&rft.spage=394&rft_id=info:doi/10.1016%2Fj.jcis.2019.12.095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon