Hierarchical Cu(OH)2@MnO2 core-shell nanorods array in situ generated on three-dimensional copper foam for high-performance supercapacitors
[Display omitted] Manganese dioxide (MnO2) with high theoretical capacity (1380 F g−1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad a...
Saved in:
Published in | Journal of colloid and interface science Vol. 563; pp. 394 - 404 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Manganese dioxide (MnO2) with high theoretical capacity (1380 F g−1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)2@MnO2 core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)2 nanorod core provides the scaffold for the growth of MnO2 nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO2 nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)2@MnO2/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm−2 at the current density of 2 mA cm−2 (283.45 F g−1 at 0.8 A g−1). Additionally, the assembled Cu(OH)2@MnO2/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg−1 at a power density of 750 W kg−1. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes. |
---|---|
AbstractList | [Display omitted]
Manganese dioxide (MnO2) with high theoretical capacity (1380 F g−1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)2@MnO2 core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)2 nanorod core provides the scaffold for the growth of MnO2 nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO2 nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)2@MnO2/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm−2 at the current density of 2 mA cm−2 (283.45 F g−1 at 0.8 A g−1). Additionally, the assembled Cu(OH)2@MnO2/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg−1 at a power density of 750 W kg−1. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes. Manganese dioxide (MnO₂) with high theoretical capacity (1380 F g⁻¹), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)₂@MnO₂ core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)₂ nanorod core provides the scaffold for the growth of MnO₂ nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO₂ nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)₂@MnO₂/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm⁻² at the current density of 2 mA cm⁻² (283.45 F g⁻¹ at 0.8 A g⁻¹). Additionally, the assembled Cu(OH)₂@MnO₂/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg⁻¹ at a power density of 750 W kg⁻¹. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes. Manganese dioxide (MnO2) with high theoretical capacity (1380 F g-1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)2@MnO2 core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)2 nanorod core provides the scaffold for the growth of MnO2 nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO2 nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)2@MnO2/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm-2 at the current density of 2 mA cm-2 (283.45 F g-1 at 0.8 A g-1). Additionally, the assembled Cu(OH)2@MnO2/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg-1 at a power density of 750 W kg-1. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes.Manganese dioxide (MnO2) with high theoretical capacity (1380 F g-1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)2@MnO2 core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)2 nanorod core provides the scaffold for the growth of MnO2 nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO2 nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)2@MnO2/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm-2 at the current density of 2 mA cm-2 (283.45 F g-1 at 0.8 A g-1). Additionally, the assembled Cu(OH)2@MnO2/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg-1 at a power density of 750 W kg-1. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes. |
Author | Zhong, Yuxue Liu, Ying Cao, Xueying Liu, Jingquan Wang, Huining Cui, Liang Yan, Guowen |
Author_xml | – sequence: 1 givenname: Huining surname: Wang fullname: Wang, Huining organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China – sequence: 2 givenname: Guowen surname: Yan fullname: Yan, Guowen organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China – sequence: 3 givenname: Xueying surname: Cao fullname: Cao, Xueying organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China – sequence: 4 givenname: Ying surname: Liu fullname: Liu, Ying organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China – sequence: 5 givenname: Yuxue surname: Zhong fullname: Zhong, Yuxue organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China – sequence: 6 givenname: Liang surname: Cui fullname: Cui, Liang email: cuiliang@lyu.edu.cn organization: College of Material Science and Engineering, Linyi University, Linyi 276000, Shandong, China – sequence: 7 givenname: Jingquan surname: Liu fullname: Liu, Jingquan email: jliu@qdu.edu.cn organization: College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China |
BookMark | eNqFkc9u1DAQxi1UJLaFF-DkYzkk9Z9kvZY4gFaFRSraC5ytiT1pvErsYCdIfQZeGq-WUw_lMjO2vt9I833X5CrEgIS856zmjG_vTvXJ-lwLxnXNRc10-4pseGmV4kxekQ1jgldaafWGXOd8YozzttUb8ufgMUGyg7cw0v16ezx8EJ--h6OgNias8oDjSAOEmKLLFFKCJ-oDzX5Z6SOGAi_oaAx0GRJi5fyEIfsYyjYb5xkT7SNMpSQ6-MehKj9lniBYpHktLwszWL_ElN-S1z2MGd_96zfk55f7H_tD9XD8-m3_-aGyslFLZQXrHYhWdK5VopXgtszqRgmnOpCadVZ2CnrHcQeON05wx6QG3TWd6hoh5Q25veydU_y1Yl7M5LMtd0LAuGYjGsZaISTb_l8qJVdas11TpOIitSnmnLA3c_ITpCfDmTmHZE7mHJI5h2S4MCWdAu2eQcUKWIp_SwI_vox-vKBYrPpdUjTZeiy2Op_QLsZF_xL-F7ThsbI |
CitedBy_id | crossref_primary_10_3390_mi13020237 crossref_primary_10_1002_celc_202101711 crossref_primary_10_1007_s11696_023_02860_x crossref_primary_10_1002_slct_202100588 crossref_primary_10_1016_j_jcis_2023_06_088 crossref_primary_10_1016_j_apsusc_2022_155183 crossref_primary_10_1021_acsami_2c21527 crossref_primary_10_1021_acsaelm_3c00152 crossref_primary_10_1016_j_jcis_2021_09_062 crossref_primary_10_1016_j_jcis_2024_07_136 crossref_primary_10_3390_mi14010125 crossref_primary_10_1007_s10853_020_05723_y crossref_primary_10_1016_j_apsusc_2023_158966 crossref_primary_10_1016_j_inoche_2024_113429 crossref_primary_10_1007_s11581_020_03616_3 crossref_primary_10_1016_j_est_2022_104148 crossref_primary_10_3390_coatings12040529 crossref_primary_10_1016_j_compositesb_2021_108756 crossref_primary_10_1016_j_envres_2024_120423 crossref_primary_10_3390_polym15030612 crossref_primary_10_1021_acs_inorgchem_3c03594 crossref_primary_10_1007_s10853_020_05475_9 crossref_primary_10_1016_j_surfin_2023_103316 crossref_primary_10_1016_j_electacta_2024_144964 crossref_primary_10_1016_j_jcis_2022_10_037 crossref_primary_10_1016_j_cej_2022_136922 crossref_primary_10_1007_s10853_020_05407_7 crossref_primary_10_2139_ssrn_4195407 crossref_primary_10_1016_j_cej_2025_160751 crossref_primary_10_1016_j_jallcom_2023_173095 crossref_primary_10_1016_j_diamond_2024_111732 crossref_primary_10_1016_j_susmat_2023_e00802 crossref_primary_10_1039_D2RA06664E crossref_primary_10_1016_j_jcis_2020_12_055 crossref_primary_10_1016_j_conbuildmat_2023_133469 crossref_primary_10_1016_j_jallcom_2022_168586 crossref_primary_10_1021_acsomega_1c03507 crossref_primary_10_1016_j_est_2024_110430 crossref_primary_10_1016_j_mtcomm_2022_104033 crossref_primary_10_1016_j_solidstatesciences_2020_106336 crossref_primary_10_1016_j_est_2024_113383 crossref_primary_10_1002_smll_202305136 crossref_primary_10_1016_j_mtchem_2021_100620 crossref_primary_10_1155_2024_2779104 crossref_primary_10_1016_j_jallcom_2025_178633 crossref_primary_10_1016_j_jallcom_2024_176296 crossref_primary_10_1016_j_cej_2023_145042 crossref_primary_10_1021_acs_inorgchem_4c03825 crossref_primary_10_1016_j_est_2022_104513 crossref_primary_10_1016_j_solmat_2020_110859 crossref_primary_10_1002_smll_202312179 crossref_primary_10_1016_j_colsurfa_2021_126652 crossref_primary_10_1016_j_jallcom_2021_161986 crossref_primary_10_1021_acssuschemeng_1c05164 crossref_primary_10_1557_s43578_021_00315_1 crossref_primary_10_1016_j_est_2023_110148 crossref_primary_10_1016_j_mtphys_2020_100337 crossref_primary_10_1016_j_electacta_2024_144985 crossref_primary_10_1021_acsaem_0c01004 crossref_primary_10_1016_j_jallcom_2021_160691 crossref_primary_10_1016_j_jpowsour_2022_231031 crossref_primary_10_1016_j_est_2023_108220 crossref_primary_10_1021_acsami_4c05421 crossref_primary_10_1016_j_jelechem_2024_118099 crossref_primary_10_1063_5_0238635 crossref_primary_10_1016_j_est_2021_103459 crossref_primary_10_1016_j_est_2023_108468 crossref_primary_10_1016_j_apsusc_2021_150715 crossref_primary_10_1016_j_jechem_2021_05_002 crossref_primary_10_1016_j_jallcom_2023_170483 crossref_primary_10_1016_j_nanoen_2020_105410 |
Cites_doi | 10.1016/j.jpowsour.2019.226897 10.1557/JMR.2010.0211 10.1016/j.cej.2015.04.064 10.1016/j.carbon.2018.11.034 10.1039/C0CS00127A 10.1016/j.electacta.2015.05.157 10.1002/smll.201201336 10.1039/C2NR33136E 10.1002/smll.201101594 10.1039/c2jm35054h 10.1016/j.electacta.2012.11.089 10.1021/nl061576a 10.1039/C1RA01008E 10.1016/j.jpowsour.2011.09.050 10.1021/ja7112382 10.1016/j.matlet.2013.09.032 10.1016/j.jpowsour.2011.02.029 10.1021/am900094e 10.1016/j.matlet.2017.09.062 10.1039/c1jm11941a 10.1039/C5RA04889C 10.1039/c1jm12963e 10.1021/nn301454q 10.1016/j.jallcom.2019.02.171 10.1016/j.cej.2016.10.012 10.1007/s12274-017-1757-2 10.1002/aenm.201401882 10.1016/j.apsusc.2015.06.045 10.1016/j.jpowsour.2011.12.057 10.1039/C6TA02835G 10.1039/c3nr03578f 10.1016/j.jpowsour.2014.03.137 10.1039/c3ee41143e 10.1021/cm048887b 10.1021/nn305750s 10.1016/j.jallcom.2011.05.085 10.1016/j.matlet.2009.10.007 10.1039/c2ee24203f 10.1002/cssc.201601884 10.1021/jp804044s 10.1016/j.scib.2017.08.014 10.1039/C8TA00945G 10.1039/C8TA11396C 10.1039/C8TA02492H 10.1039/C8TA04307H 10.1039/C4TA06943A 10.1039/C7TA01805C 10.1016/j.nanoen.2014.06.013 10.1002/adma.201504833 10.1016/j.nanoen.2018.11.048 10.1039/c002126a 10.1021/nn3056077 10.1016/j.cclet.2018.12.005 10.1016/j.materresbull.2009.07.012 10.1021/acsami.5b11367 10.1039/C6TA06634H 10.1021/nl301804c 10.1016/j.electacta.2013.12.106 10.1039/c1ee01338f 10.1080/17458080903495003 10.1007/s11664-016-5194-x 10.1021/am405271q 10.1039/c1ee01685g 10.1021/nl2042112 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2019.12.095 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 404 |
ExternalDocumentID | 10_1016_j_jcis_2019_12_095 S0021979719315620 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c347t-c20fda252bd57253ad60c9472d7ba390bc3b7afd1e8ad14d21d039a9b4b7b4233 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Thu Jul 10 23:19:02 EDT 2025 Fri Jul 11 05:32:09 EDT 2025 Tue Jul 01 01:18:49 EDT 2025 Thu Apr 24 23:00:47 EDT 2025 Fri Feb 23 02:47:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MnO2 Asymmetric supercapcitors Core–shell hierarchical structure Cu(OH)2 nanorods array |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-c20fda252bd57253ad60c9472d7ba390bc3b7afd1e8ad14d21d039a9b4b7b4233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2331799084 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2400522306 proquest_miscellaneous_2331799084 crossref_primary_10_1016_j_jcis_2019_12_095 crossref_citationtrail_10_1016_j_jcis_2019_12_095 elsevier_sciencedirect_doi_10_1016_j_jcis_2019_12_095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-15 |
PublicationDateYYYYMMDD | 2020-03-15 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Xu, Yang, Sun, Hu, Huang (b0325) 2015; 5 He, Zhao, Sun, Hou, Zhu, Wang, Li, Xu, Zhai (b0225) 2019; 56 Cao, Cui, Liu, Liu, Jia, Yang, Razal, Liu (b0090) 2019; 7 Weifeng, Xinwei, Weixing, Ivey (b0055) 2011; 40 Zhao, Liu, Shi, Zhang, Zeng, Li, Miao (b0245) 2015; 351 Wang, Liu, Bao, Binjia, Haifeng, Wen, Fan (b0060) 2011; 509 Xia, Tu, Zhang, Wang, Gu, Zhao, Fan (b0120) 2012; 6 Xu, Kang, Li, Du (b0050) 2011; 25 Lan, Huang, Ye, Qin, Yan, Wu (b0265) 2019; 788 Zheng, Li, Ou, Wang, Su, Tong (b0070) 2010; 46 Choi, Yang, Jung, Lee, Kim, Park, Park, Lee, Han, Huh (b0015) 2013; 7 Guan, Cheng, Li, Li, Zhou, Zhang, Fan (b0125) 2011; 4 Wang, He, Deng, Hou, Zhuge, Xu, Zhai (b0220) 2017; 62 Ashoka, Chithaiah, Tharamani, Chandrappa (b0185) 2010; 5 Duay, Sherrill, Gui, Gillette, Sang (b0075) 2013; 7 Zhang, Ma, Huang, Li, Zhu, Hua, Yu, Zheng, Hu, Zhang (b0250) 2015; 26 Cakici, Kakarla, Alonso-Marroquin (b0175) 2017; 309 Yu, Zeng, Zhang, Lu, Zeng, Yao, Yang, Tong (b0135) 2013; 5 Cheng, Zhang, Varanasi, Liu (b0315) 2012; 12 Chassaing, Specklin, Weibel, Pale (b0180) 2015; 276 Tang, Wang, Bai, Zhu, Sun, Yue, Wu, Zhu, Holze (b0310) 2012; 197 Lu, Zheng, Teng, Liu, Huang, Xie, Tong (b0295) 2011; 4 Guo, Li, Kuang, Yu, Zhang (b0155) 2015; 174 Han, Dou, Zhao, Wei, Evans, Duan (b0105) 2013; 9 Wang, Sun, Qu, Yin, Xu (b0230) 2018; 29 Xin Zhang, Li, Huang (b0255) 2013; 112 Guoyin, Zhi, Jun, Jin, Xiaomiao, Yanwen, Quli, Lianhui, Wei (b0115) 2013; 6 Yu, Zhang, Chen, Ma (b0065) 2010; 64 Yang, Chang, Zhu, Sun, Liu, Sun, Duan (b0130) 2012; 2 Kang, Sheng, Xie, Ye, Chen, Fu, Du, Rong, Wong (b0170) 2018; 6 Rakhi, Chen, Cha, Alshareef (b0340) 2011; 21 Ghodbane, Pascal, Favier (b0040) 2009; 1 Liu, Cao, Cui, Zhong, Zheng, Wei, Barrow, Razal, Yang, Liu (b0140) 2019; 437 Amade, Jover, Caglar, Mutlu, Bertran (b0275) 2011; 196 Bai, Yao, Duan (b0270) 2018; 210 Qin, Liu, Wen, Wang, Jiang, Wan, Peng, Cao, He (b0335) 2016; 4 Wei, Cui, Chen, Ivey (b0190) 2008; 112 Lei, Yan, Fei, Song, Huang (b0195) 2016; 4 He, Chen (b0285) 2014; 262 Wei, Wang, Yang, Wang, Hou, Li (b0205) 2017; 46 Wang, Zhang, Lu, Wang, Peng, Zhang, Guo, Wang, Huo, Kim, Luo (b0260) 2019; 143 Hao, Zhou, Min, Wu (b0330) 2012; 22 He, Liang, Ji, Sun, Zhai, Xu (b0215) 2018; 11 Qu, Hu, Song, Zhang, Feng (b0005) 2014; 8 Yin, Jiang, Qu, Wu (b0290) 2015; 3 Shin, Liu (b0080) 2004; 16 Dai, Chang, Baek, Lu (b0025) 2012; 8 Chang, Ye, Lv, Cheng, Guo, Lin (b0110) 2014; 121 Cheng, Zhang, Varanasi, Liu (b0100) 2013; 6 Zhang, Zhang, Zhang, Sun, Ma (b0305) 2013 Xu, Du, Liu, Cheng, Yin, Wang, Cao (b0145) 2015; 5 Sheng, Wang, Huang, Hui, Li (b0150) 2017; 5 Teng, Xie, Yu, Fang, Liang, Lu, Tong (b0210) 2014; 8 Tang, Hou, Wang, Bai, Zhu, Sun, Yue, Wu, Zhu, Holze (b0345) 2012; 197 Cong, Ren, Wang, Yu (b0235) 2013; 6 Hu, Chang, Lin, Wu (b0035) 2006; 6 Chen, Gao, Sun (b0085) 2017; 10 Zhu, Tang, Vongehr, Xie, Meng (b0160) 2016; 8 Jiang, Hui, Yan, Zheng, Liu (b0300) 2018; 6 Wang, Ying, Huang, Kang (b0200) 2012; 204 Ran, Bok (b0045) 2008; 130 Li, Lu, Xu, Tong, Li (b0240) 2014; 6 Ying, Cao, Jiang, Jia, Liu (b0095) 2018; 6 Tang, Tian, Chao, Pi (b0165) 2009; 44 Li, Mi, Liu, Liu, Yang, Wang (b0280) 2011; 21 Cheng, Lu, Varanasi, Liu (b0320) 2013; 5 Cao, Tan, Zhang, Zhao, Zhang (b0010) 2016; 28 Wei, Scherer, Bower, Andrew, Ryhanen, Steiner (b0020) 2012; 12 Foo, Sumboja, Tan, Wang, Lee (b0030) 2015; 4 Cheng (10.1016/j.jcis.2019.12.095_b0100) 2013; 6 Tang (10.1016/j.jcis.2019.12.095_b0165) 2009; 44 Zhu (10.1016/j.jcis.2019.12.095_b0160) 2016; 8 He (10.1016/j.jcis.2019.12.095_b0215) 2018; 11 Wei (10.1016/j.jcis.2019.12.095_b0190) 2008; 112 Chang (10.1016/j.jcis.2019.12.095_b0110) 2014; 121 Tang (10.1016/j.jcis.2019.12.095_b0345) 2012; 197 Hao (10.1016/j.jcis.2019.12.095_b0330) 2012; 22 Zheng (10.1016/j.jcis.2019.12.095_b0070) 2010; 46 Wang (10.1016/j.jcis.2019.12.095_b0220) 2017; 62 Li (10.1016/j.jcis.2019.12.095_b0280) 2011; 21 Cheng (10.1016/j.jcis.2019.12.095_b0315) 2012; 12 Wang (10.1016/j.jcis.2019.12.095_b0260) 2019; 143 Choi (10.1016/j.jcis.2019.12.095_b0015) 2013; 7 Zhang (10.1016/j.jcis.2019.12.095_b0305) 2013 Cheng (10.1016/j.jcis.2019.12.095_b0320) 2013; 5 Kang (10.1016/j.jcis.2019.12.095_b0170) 2018; 6 Yu (10.1016/j.jcis.2019.12.095_b0065) 2010; 64 Liu (10.1016/j.jcis.2019.12.095_b0140) 2019; 437 Lu (10.1016/j.jcis.2019.12.095_b0295) 2011; 4 Zhao (10.1016/j.jcis.2019.12.095_b0245) 2015; 351 Bai (10.1016/j.jcis.2019.12.095_b0270) 2018; 210 Amade (10.1016/j.jcis.2019.12.095_b0275) 2011; 196 Cong (10.1016/j.jcis.2019.12.095_b0235) 2013; 6 Yin (10.1016/j.jcis.2019.12.095_b0290) 2015; 3 Yu (10.1016/j.jcis.2019.12.095_b0135) 2013; 5 Teng (10.1016/j.jcis.2019.12.095_b0210) 2014; 8 Jiang (10.1016/j.jcis.2019.12.095_b0300) 2018; 6 Tang (10.1016/j.jcis.2019.12.095_b0310) 2012; 197 Wei (10.1016/j.jcis.2019.12.095_b0205) 2017; 46 Guoyin (10.1016/j.jcis.2019.12.095_b0115) 2013; 6 Weifeng (10.1016/j.jcis.2019.12.095_b0055) 2011; 40 Qin (10.1016/j.jcis.2019.12.095_b0335) 2016; 4 Rakhi (10.1016/j.jcis.2019.12.095_b0340) 2011; 21 Xin Zhang (10.1016/j.jcis.2019.12.095_b0255) 2013; 112 Xu (10.1016/j.jcis.2019.12.095_b0325) 2015; 5 Wei (10.1016/j.jcis.2019.12.095_b0020) 2012; 12 Wang (10.1016/j.jcis.2019.12.095_b0060) 2011; 509 Chen (10.1016/j.jcis.2019.12.095_b0085) 2017; 10 Foo (10.1016/j.jcis.2019.12.095_b0030) 2015; 4 Han (10.1016/j.jcis.2019.12.095_b0105) 2013; 9 Dai (10.1016/j.jcis.2019.12.095_b0025) 2012; 8 Ran (10.1016/j.jcis.2019.12.095_b0045) 2008; 130 Ghodbane (10.1016/j.jcis.2019.12.095_b0040) 2009; 1 Ying (10.1016/j.jcis.2019.12.095_b0095) 2018; 6 Chassaing (10.1016/j.jcis.2019.12.095_b0180) 2015; 276 Xia (10.1016/j.jcis.2019.12.095_b0120) 2012; 6 Cao (10.1016/j.jcis.2019.12.095_b0090) 2019; 7 Wang (10.1016/j.jcis.2019.12.095_b0200) 2012; 204 Wang (10.1016/j.jcis.2019.12.095_b0230) 2018; 29 He (10.1016/j.jcis.2019.12.095_b0285) 2014; 262 Guan (10.1016/j.jcis.2019.12.095_b0125) 2011; 4 Yang (10.1016/j.jcis.2019.12.095_b0130) 2012; 2 He (10.1016/j.jcis.2019.12.095_b0225) 2019; 56 Lan (10.1016/j.jcis.2019.12.095_b0265) 2019; 788 Cao (10.1016/j.jcis.2019.12.095_b0010) 2016; 28 Shin (10.1016/j.jcis.2019.12.095_b0080) 2004; 16 Cakici (10.1016/j.jcis.2019.12.095_b0175) 2017; 309 Zhang (10.1016/j.jcis.2019.12.095_b0250) 2015; 26 Ashoka (10.1016/j.jcis.2019.12.095_b0185) 2010; 5 Lei (10.1016/j.jcis.2019.12.095_b0195) 2016; 4 Sheng (10.1016/j.jcis.2019.12.095_b0150) 2017; 5 Guo (10.1016/j.jcis.2019.12.095_b0155) 2015; 174 Qu (10.1016/j.jcis.2019.12.095_b0005) 2014; 8 Xu (10.1016/j.jcis.2019.12.095_b0145) 2015; 5 Hu (10.1016/j.jcis.2019.12.095_b0035) 2006; 6 Xu (10.1016/j.jcis.2019.12.095_b0050) 2011; 25 Duay (10.1016/j.jcis.2019.12.095_b0075) 2013; 7 Li (10.1016/j.jcis.2019.12.095_b0240) 2014; 6 |
References_xml | – volume: 64 start-page: 61 year: 2010 end-page: 64 ident: b0065 article-title: Solution-combustion synthesis of ε-MnO publication-title: Mater. Lett. – volume: 121 start-page: 175 year: 2014 end-page: 182 ident: b0110 article-title: Ultralong rutile TiO publication-title: Electrochim. Acta – volume: 197 start-page: 330 year: 2012 end-page: 333 ident: b0310 article-title: A hybrid of MnO publication-title: J. Power Sour. – volume: 6 start-page: 5531 year: 2012 end-page: 5538 ident: b0120 article-title: High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage publication-title: ACS Nano – volume: 56 start-page: 207 year: 2019 end-page: 215 ident: b0225 article-title: Construction of Longan–like hybrid structures by anchoring nickel hydroxide on yolk–shell polypyrrole for asymmetric supercapacitors publication-title: Nano Energy – volume: 6 start-page: 10064 year: 2018 end-page: 10073 ident: b0170 article-title: Tubular Cu(OH) publication-title: J. Mater. Chem. A – volume: 8 start-page: 255 year: 2014 end-page: 263 ident: b0210 article-title: Oxygen vacancies enhancing capacitive properties of MnO publication-title: Nano Energy – volume: 262 start-page: 391 year: 2014 end-page: 400 ident: b0285 article-title: High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites publication-title: Journal of Power Sources – volume: 8 start-page: 1130 year: 2012 end-page: 1166 ident: b0025 article-title: Carbon nanomaterials for advanced energy conversion and storage publication-title: Small – volume: 62 start-page: 1122 year: 2017 end-page: 1131 ident: b0220 article-title: Hierarchical CuCo publication-title: Sci. Bull. – volume: 276 start-page: 155 year: 2015 end-page: 165 ident: b0180 article-title: Tetracycline degradation in aquatic environment by highly porous MnO publication-title: Chem. Eng. J. – volume: 7 start-page: 1200 year: 2013 end-page: 1214 ident: b0075 article-title: Self-limiting electrodeposition of hierarchical MnO publication-title: ACS nano – volume: 4 start-page: 2915 year: 2011 end-page: 2921 ident: b0295 article-title: Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor publication-title: Energy Environ. Sci. – volume: 5 start-page: 1401882 year: 2015 ident: b0325 article-title: Flexible asymmetric micro-supercapacitors based on Bi publication-title: Adv. Energy Mater. – volume: 112 start-page: 203 year: 2013 end-page: 206 ident: b0255 article-title: One-step hydrothermal synthesis of hierarchical MnO publication-title: Mater. Lett. – volume: 5 start-page: 10806 year: 2013 end-page: 10810 ident: b0135 article-title: Titanium dioxide@polypyrrole core–shell nanowires for all solid-state flexible supercapacitors publication-title: Nanoscale – volume: 22 start-page: 25207 year: 2012 end-page: 25216 ident: b0330 article-title: Reduced graphene Oxide–MnO publication-title: J. Mater. Chem. – volume: 309 start-page: 151 year: 2017 end-page: 158 ident: b0175 article-title: Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO publication-title: Chem. Eng. J. – volume: 40 start-page: 1697 year: 2011 end-page: 1721 ident: b0055 article-title: Manganese oxide-based materials as electrochemical supercapacitor electrodes publication-title: Chem. Soc. Rev. – volume: 26 start-page: 4212 year: 2015 end-page: 4220 ident: b0250 article-title: Birnessite MnO publication-title: J. Mater. Sci.: Mater. Electron. – volume: 21 start-page: 14706 year: 2011 end-page: 14711 ident: b0280 article-title: Flexible graphene/MnO2 composite papers for supercapacitor electrodes publication-title: J. Mater. Chem. – volume: 8 start-page: 4762 year: 2016 end-page: 4770 ident: b0160 article-title: Hierarchically MnO publication-title: ACS Appl. Mater. Interf. – volume: 4 start-page: 14781 year: 2016 end-page: 14788 ident: b0195 article-title: Commercial Dacron cloth supported Cu(OH) publication-title: J. Mater. Chem. A – volume: 46 start-page: 1539 year: 2017 end-page: 1545 ident: b0205 article-title: Synthesis of 3D mesoporous wall-like MnO publication-title: J. Electron. Mater. – volume: 6 start-page: 1185 year: 2013 end-page: 1191 ident: b0235 article-title: Flexible graphene-polyaniline composite paper for high-performance supercapacitor publication-title: Energy Environ. Sci. – volume: 6 start-page: 2726 year: 2014 end-page: 2733 ident: b0240 article-title: Carbon/MnO publication-title: ACS Appl. Mater. Interf. – volume: 21 start-page: 16197 year: 2011 end-page: 16204 ident: b0340 article-title: High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes publication-title: J. Mater. Chem. – volume: 351 start-page: 862 year: 2015 end-page: 868 ident: b0245 article-title: Hydrothermal synthesis of urchin-like MnO publication-title: Appl. Surf. Sci. – volume: 11 start-page: 1415 year: 2018 end-page: 1425 ident: b0215 article-title: Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors publication-title: Nano Res. – start-page: 523 year: 2013 end-page: 529 ident: b0305 article-title: Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO publication-title: Electrochim. Acta – volume: 8 start-page: 31 year: 2014 end-page: 54 ident: b0005 article-title: Tailored graphene systems for unconventional applications in energy conversion and storage devices publication-title: Energy Environ. Sci. – volume: 197 start-page: 330 year: 2012 end-page: 333 ident: b0345 article-title: A hybrid of MnO publication-title: J. Power Sour. – volume: 9 start-page: 98 year: 2013 end-page: 106 ident: b0105 article-title: Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage publication-title: Small – volume: 4 start-page: 3412 year: 2015 end-page: 3420 ident: b0030 article-title: Flexible and highly scalable V publication-title: Adv. Energy Mater. – volume: 6 start-page: 10474 year: 2018 end-page: 10483 ident: b0095 article-title: Hierarchical CuO nanorod arrays: In situ generated on three-dimensional copper foam via cyclic voltammetry oxidation for high-performance supercapacitors publication-title: J. Mater. Chem. A – volume: 6 start-page: 2690 year: 2006 end-page: 2695 ident: b0035 article-title: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO publication-title: Nano Lett. – volume: 2 start-page: 1663 year: 2012 end-page: 1668 ident: b0130 article-title: Hierarchical Co publication-title: Rsc Adv. – volume: 1 start-page: 1130 year: 2009 end-page: 1139 ident: b0040 article-title: Microstructural effects on charge-storage properties in MnO publication-title: ACS Appl. Mater. Interf. – volume: 509 start-page: 8306 year: 2011 end-page: 8312 ident: b0060 article-title: Structural-controlled synthesis of manganese oxide nanostructures and their electrochemical properties publication-title: J. Alloys Compd. – volume: 4 start-page: 4496 year: 2011 end-page: 4499 ident: b0125 article-title: Hybrid structure of cobalt monoxide nanowire@nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor publication-title: Energy Environ. Sci. – volume: 788 start-page: 302 year: 2019 end-page: 310 ident: b0265 article-title: Enhanced electrochemical performance of Sn-doped MnO publication-title: J. Alloys Compd. – volume: 12 start-page: 4206 year: 2012 end-page: 4211 ident: b0315 article-title: Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors publication-title: Nano Lett. – volume: 5 year: 2013 ident: b0320 article-title: Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes publication-title: Nanoscale – volume: 3 start-page: 5722 year: 2015 end-page: 5729 ident: b0290 article-title: Phase-controlled synthesis of polymorphic MnO publication-title: J. Mater. Chem. A – volume: 5 start-page: 285 year: 2010 end-page: 293 ident: b0185 article-title: Synthesis and characterisation of microstructural α-Mn publication-title: J. Exp. Nanosci. – volume: 204 start-page: 236 year: 2012 end-page: 243 ident: b0200 article-title: Interfacial synthesis of mesoporous MnO publication-title: J. Power Sour. – volume: 6 start-page: 11966 year: 2018 end-page: 11977 ident: b0300 article-title: In-situ generation of CoS publication-title: J. Mater. Chem. A – volume: 437 start-page: 226897 year: 2019 ident: b0140 article-title: Zn-Ni-Co trimetallic carbonate hydroxide nanothorns branched on Cu(OH)2 nanorods array based on Cu foam for high-performance asymmetric supercapacitors publication-title: J. Power Sour. – volume: 44 start-page: 2062 year: 2009 end-page: 2067 ident: b0165 article-title: Facile synthesis of α-MnO publication-title: Mater. Res. Bull. – volume: 12 start-page: 1857 year: 2012 end-page: 1862 ident: b0020 article-title: A nanostructured electrochromic supercapacitor publication-title: Nano Lett. – volume: 6 start-page: 1079 year: 2013 end-page: 1085 ident: b0115 article-title: Highly conductive three-dimensional MnO publication-title: Nanoscale – volume: 25 start-page: 1421 year: 2011 end-page: 1432 ident: b0050 article-title: Recent progress on manganese dioxide based supercapacitors publication-title: J. Mater. Res. – volume: 7 start-page: 3815 year: 2019 end-page: 3827 ident: b0090 article-title: Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu publication-title: J. Mater. Chem. A – volume: 5 start-page: 9960 year: 2017 end-page: 9969 ident: b0150 article-title: Hierarchical Cu(OH) publication-title: J. Mater. Chem. A – volume: 28 start-page: 6167 year: 2016 end-page: 6196 ident: b0010 article-title: Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion publication-title: Adv. Mater. – volume: 7 start-page: 2453 year: 2013 end-page: 2460 ident: b0015 article-title: Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids publication-title: ACS Nano – volume: 16 start-page: 5460 year: 2004 end-page: 5464 ident: b0080 article-title: Copper foam structures with highly porous nanostructured walls publication-title: Chem. Mater. – volume: 5 start-page: 36656 year: 2015 end-page: 36664 ident: b0145 article-title: One-step synthesis of copper compounds on copper foil and their supercapacitive performance publication-title: Rsc Adv. – volume: 130 start-page: 2942 year: 2008 end-page: 2943 ident: b0045 article-title: MnO publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1475 year: 2017 end-page: 1481 ident: b0085 article-title: Highly active three-dimensional NiFe/Cu publication-title: ChemSusChem – volume: 174 start-page: 87 year: 2015 end-page: 92 ident: b0155 article-title: Tailoring kirkendall effect of the KCu publication-title: Electrochim. Acta – volume: 29 start-page: 1731 year: 2018 end-page: 1740 ident: b0230 article-title: Nickel/cobalt based materials for supercapacitors publication-title: Chin. Chem. Lett. – volume: 4 start-page: 9196 year: 2016 end-page: 9203 ident: b0335 article-title: Freestanding flexible graphene foams@polypyrrole@MnO publication-title: J. Mater. Chem. A – volume: 6 start-page: 3314 year: 2013 end-page: 3321 ident: b0100 article-title: Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches publication-title: Energy Environ. Sci. – volume: 210 start-page: 329 year: 2018 end-page: 332 ident: b0270 article-title: Hydrothermal preparation of CS@MnO publication-title: Mater. Lett. – volume: 112 start-page: 15075 year: 2008 end-page: 15083 ident: b0190 article-title: Phase-controlled synthesis of MnO publication-title: J. Phys. Chem. C – volume: 143 start-page: 335 year: 2019 end-page: 342 ident: b0260 article-title: Cable-like double-carbon layers for fast ion and electron transport: An example of CNT@NCT@MnO publication-title: Carbon – volume: 196 start-page: 5779 year: 2011 end-page: 5783 ident: b0275 article-title: Optimization of MnO publication-title: J. Power Sour. – volume: 46 start-page: 5021 year: 2010 end-page: 5023 ident: b0070 article-title: Synthesis of hierarchical rippled Bi publication-title: Chem. Commun. – volume: 437 start-page: 226897 year: 2019 ident: 10.1016/j.jcis.2019.12.095_b0140 article-title: Zn-Ni-Co trimetallic carbonate hydroxide nanothorns branched on Cu(OH)2 nanorods array based on Cu foam for high-performance asymmetric supercapacitors publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2019.226897 – volume: 25 start-page: 1421 year: 2011 ident: 10.1016/j.jcis.2019.12.095_b0050 article-title: Recent progress on manganese dioxide based supercapacitors publication-title: J. Mater. Res. doi: 10.1557/JMR.2010.0211 – volume: 276 start-page: 155 year: 2015 ident: 10.1016/j.jcis.2019.12.095_b0180 article-title: Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.04.064 – volume: 143 start-page: 335 year: 2019 ident: 10.1016/j.jcis.2019.12.095_b0260 article-title: Cable-like double-carbon layers for fast ion and electron transport: An example of CNT@NCT@MnO2 3D nanostructure for high-performance supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2018.11.034 – volume: 8 start-page: 31 year: 2014 ident: 10.1016/j.jcis.2019.12.095_b0005 article-title: Tailored graphene systems for unconventional applications in energy conversion and storage devices publication-title: Energy Environ. Sci. – volume: 40 start-page: 1697 year: 2011 ident: 10.1016/j.jcis.2019.12.095_b0055 article-title: Manganese oxide-based materials as electrochemical supercapacitor electrodes publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00127A – volume: 174 start-page: 87 year: 2015 ident: 10.1016/j.jcis.2019.12.095_b0155 article-title: Tailoring kirkendall effect of the KCu7S4 microwires towards CuO@MnO2 core-shell nanostructures for supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.05.157 – volume: 9 start-page: 98 year: 2013 ident: 10.1016/j.jcis.2019.12.095_b0105 article-title: Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage publication-title: Small doi: 10.1002/smll.201201336 – volume: 5 year: 2013 ident: 10.1016/j.jcis.2019.12.095_b0320 article-title: Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes publication-title: Nanoscale doi: 10.1039/C2NR33136E – volume: 8 start-page: 1130 year: 2012 ident: 10.1016/j.jcis.2019.12.095_b0025 article-title: Carbon nanomaterials for advanced energy conversion and storage publication-title: Small doi: 10.1002/smll.201101594 – volume: 22 start-page: 25207 year: 2012 ident: 10.1016/j.jcis.2019.12.095_b0330 article-title: Reduced graphene Oxide–MnO2 hollow sphere hybrid nanostructures as high-performance electrochemical capacitors publication-title: J. Mater. Chem. doi: 10.1039/c2jm35054h – start-page: 523 year: 2013 ident: 10.1016/j.jcis.2019.12.095_b0305 article-title: Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.11.089 – volume: 6 start-page: 2690 year: 2006 ident: 10.1016/j.jcis.2019.12.095_b0035 article-title: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors publication-title: Nano Lett. doi: 10.1021/nl061576a – volume: 2 start-page: 1663 year: 2012 ident: 10.1016/j.jcis.2019.12.095_b0130 article-title: Hierarchical Co3O4 nanosheet@nanowire arrays with enhanced pseudocapacitive performance publication-title: Rsc Adv. doi: 10.1039/C1RA01008E – volume: 197 start-page: 330 year: 2012 ident: 10.1016/j.jcis.2019.12.095_b0345 article-title: A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2011.09.050 – volume: 130 start-page: 2942 year: 2008 ident: 10.1016/j.jcis.2019.12.095_b0045 article-title: MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage publication-title: J. Am. Chem. Soc. doi: 10.1021/ja7112382 – volume: 112 start-page: 203 year: 2013 ident: 10.1016/j.jcis.2019.12.095_b0255 article-title: One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.09.032 – volume: 196 start-page: 5779 year: 2011 ident: 10.1016/j.jcis.2019.12.095_b0275 article-title: Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2011.02.029 – volume: 1 start-page: 1130 year: 2009 ident: 10.1016/j.jcis.2019.12.095_b0040 article-title: Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors publication-title: ACS Appl. Mater. Interf. doi: 10.1021/am900094e – volume: 210 start-page: 329 year: 2018 ident: 10.1016/j.jcis.2019.12.095_b0270 article-title: Hydrothermal preparation of CS@MnO2 with different morphologies for supercapacitor electrode materials publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.09.062 – volume: 21 start-page: 14706 year: 2011 ident: 10.1016/j.jcis.2019.12.095_b0280 article-title: Flexible graphene/MnO2 composite papers for supercapacitor electrodes publication-title: J. Mater. Chem. doi: 10.1039/c1jm11941a – volume: 5 start-page: 36656 year: 2015 ident: 10.1016/j.jcis.2019.12.095_b0145 article-title: One-step synthesis of copper compounds on copper foil and their supercapacitive performance publication-title: Rsc Adv. doi: 10.1039/C5RA04889C – volume: 21 start-page: 16197 year: 2011 ident: 10.1016/j.jcis.2019.12.095_b0340 article-title: High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes publication-title: J. Mater. Chem. doi: 10.1039/c1jm12963e – volume: 6 start-page: 5531 year: 2012 ident: 10.1016/j.jcis.2019.12.095_b0120 article-title: High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage publication-title: ACS Nano doi: 10.1021/nn301454q – volume: 788 start-page: 302 year: 2019 ident: 10.1016/j.jcis.2019.12.095_b0265 article-title: Enhanced electrochemical performance of Sn-doped MnO2 and study on morphology evolution publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.02.171 – volume: 309 start-page: 151 year: 2017 ident: 10.1016/j.jcis.2019.12.095_b0175 article-title: Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.012 – volume: 11 start-page: 1415 year: 2018 ident: 10.1016/j.jcis.2019.12.095_b0215 article-title: Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors publication-title: Nano Res. doi: 10.1007/s12274-017-1757-2 – volume: 5 start-page: 1401882 year: 2015 ident: 10.1016/j.jcis.2019.12.095_b0325 article-title: Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401882 – volume: 351 start-page: 862 year: 2015 ident: 10.1016/j.jcis.2019.12.095_b0245 article-title: Hydrothermal synthesis of urchin-like MnO2 nanostructures and its electrochemical character for supercapacitor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.06.045 – volume: 204 start-page: 236 year: 2012 ident: 10.1016/j.jcis.2019.12.095_b0200 article-title: Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2011.12.057 – volume: 4 start-page: 9196 year: 2016 ident: 10.1016/j.jcis.2019.12.095_b0335 article-title: Freestanding flexible graphene foams@polypyrrole@MnO2 electrodes for high-performance supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02835G – volume: 5 start-page: 10806 year: 2013 ident: 10.1016/j.jcis.2019.12.095_b0135 article-title: Titanium dioxide@polypyrrole core–shell nanowires for all solid-state flexible supercapacitors publication-title: Nanoscale doi: 10.1039/c3nr03578f – volume: 262 start-page: 391 year: 2014 ident: 10.1016/j.jcis.2019.12.095_b0285 article-title: High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2014.03.137 – volume: 6 start-page: 3314 year: 2013 ident: 10.1016/j.jcis.2019.12.095_b0100 article-title: Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41143e – volume: 16 start-page: 5460 year: 2004 ident: 10.1016/j.jcis.2019.12.095_b0080 article-title: Copper foam structures with highly porous nanostructured walls publication-title: Chem. Mater. doi: 10.1021/cm048887b – volume: 6 start-page: 1079 year: 2013 ident: 10.1016/j.jcis.2019.12.095_b0115 article-title: Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode publication-title: Nanoscale – volume: 7 start-page: 2453 year: 2013 ident: 10.1016/j.jcis.2019.12.095_b0015 article-title: Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids publication-title: ACS Nano doi: 10.1021/nn305750s – volume: 509 start-page: 8306 year: 2011 ident: 10.1016/j.jcis.2019.12.095_b0060 article-title: Structural-controlled synthesis of manganese oxide nanostructures and their electrochemical properties publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.05.085 – volume: 64 start-page: 61 year: 2010 ident: 10.1016/j.jcis.2019.12.095_b0065 article-title: Solution-combustion synthesis of ε-MnO2 for supercapacitors publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.10.007 – volume: 6 start-page: 1185 year: 2013 ident: 10.1016/j.jcis.2019.12.095_b0235 article-title: Flexible graphene-polyaniline composite paper for high-performance supercapacitor publication-title: Energy Environ. Sci. doi: 10.1039/c2ee24203f – volume: 10 start-page: 1475 year: 2017 ident: 10.1016/j.jcis.2019.12.095_b0085 article-title: Highly active three-dimensional NiFe/Cu2O nanowires/Cu foam electrode for water oxidation publication-title: ChemSusChem doi: 10.1002/cssc.201601884 – volume: 112 start-page: 15075 year: 2008 ident: 10.1016/j.jcis.2019.12.095_b0190 article-title: Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors publication-title: J. Phys. Chem. C doi: 10.1021/jp804044s – volume: 62 start-page: 1122 year: 2017 ident: 10.1016/j.jcis.2019.12.095_b0220 article-title: Hierarchical CuCo2O4@nickel-cobalt hydroxides core/shell nanoarchitectures for high-performance hybrid supercapacitors publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.08.014 – volume: 6 start-page: 10474 year: 2018 ident: 10.1016/j.jcis.2019.12.095_b0095 article-title: Hierarchical CuO nanorod arrays: In situ generated on three-dimensional copper foam via cyclic voltammetry oxidation for high-performance supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00945G – volume: 7 start-page: 3815 year: 2019 ident: 10.1016/j.jcis.2019.12.095_b0090 article-title: Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu2+1O hybrid materials based on a Cu(OH)2 precursor for high performance supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11396C – volume: 26 start-page: 4212 year: 2015 ident: 10.1016/j.jcis.2019.12.095_b0250 article-title: Birnessite MnO2-decorated hollow dandelion-like CuO architectures for supercapacitor electrodes publication-title: J. Mater. Sci.: Mater. Electron. – volume: 6 start-page: 10064 year: 2018 ident: 10.1016/j.jcis.2019.12.095_b0170 article-title: Tubular Cu(OH)2 arrays decorated with nanothorny Co–Ni bimetallic carbonate hydroxide supported on Cu foam: a 3D hierarchical core–shell efficient electrocatalyst for the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02492H – volume: 6 start-page: 11966 year: 2018 ident: 10.1016/j.jcis.2019.12.095_b0300 article-title: In-situ generation of CoS1.097 nanoparticles on S/N Co-doped graphene/carbonized foam for mechanically tough and flexible all solid-state supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04307H – volume: 3 start-page: 5722 year: 2015 ident: 10.1016/j.jcis.2019.12.095_b0290 article-title: Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06943A – volume: 5 start-page: 9960 year: 2017 ident: 10.1016/j.jcis.2019.12.095_b0150 article-title: Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01805C – volume: 197 start-page: 330 year: 2012 ident: 10.1016/j.jcis.2019.12.095_b0310 article-title: A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2011.09.050 – volume: 8 start-page: 255 year: 2014 ident: 10.1016/j.jcis.2019.12.095_b0210 article-title: Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.06.013 – volume: 28 start-page: 6167 year: 2016 ident: 10.1016/j.jcis.2019.12.095_b0010 article-title: Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion publication-title: Adv. Mater. doi: 10.1002/adma.201504833 – volume: 56 start-page: 207 year: 2019 ident: 10.1016/j.jcis.2019.12.095_b0225 article-title: Construction of Longan–like hybrid structures by anchoring nickel hydroxide on yolk–shell polypyrrole for asymmetric supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.048 – volume: 46 start-page: 5021 year: 2010 ident: 10.1016/j.jcis.2019.12.095_b0070 article-title: Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications publication-title: Chem. Commun. doi: 10.1039/c002126a – volume: 7 start-page: 1200 year: 2013 ident: 10.1016/j.jcis.2019.12.095_b0075 article-title: Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties publication-title: ACS nano doi: 10.1021/nn3056077 – volume: 29 start-page: 1731 year: 2018 ident: 10.1016/j.jcis.2019.12.095_b0230 article-title: Nickel/cobalt based materials for supercapacitors publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2018.12.005 – volume: 44 start-page: 2062 year: 2009 ident: 10.1016/j.jcis.2019.12.095_b0165 article-title: Facile synthesis of α-MnO2 nanostructures for supercapacitors publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2009.07.012 – volume: 4 start-page: 3412 year: 2015 ident: 10.1016/j.jcis.2019.12.095_b0030 article-title: Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices publication-title: Adv. Energy Mater. – volume: 8 start-page: 4762 year: 2016 ident: 10.1016/j.jcis.2019.12.095_b0160 article-title: Hierarchically MnO2-nanosheet covered submicron-FeCo2O4-tube forest as binder-free electrodes for high energy density all-solid-state supercapacitors publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.5b11367 – volume: 4 start-page: 14781 year: 2016 ident: 10.1016/j.jcis.2019.12.095_b0195 article-title: Commercial Dacron cloth supported Cu(OH)2 nanobelt arrays for wearable supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06634H – volume: 12 start-page: 4206 year: 2012 ident: 10.1016/j.jcis.2019.12.095_b0315 article-title: Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors publication-title: Nano Lett. doi: 10.1021/nl301804c – volume: 121 start-page: 175 year: 2014 ident: 10.1016/j.jcis.2019.12.095_b0110 article-title: Ultralong rutile TiO2 nanorod arrays with large surface area for CdS/CdSe quantum dot-sensitized solar cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.12.106 – volume: 4 start-page: 2915 year: 2011 ident: 10.1016/j.jcis.2019.12.095_b0295 article-title: Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01338f – volume: 5 start-page: 285 year: 2010 ident: 10.1016/j.jcis.2019.12.095_b0185 article-title: Synthesis and characterisation of microstructural α-Mn2O3 materials publication-title: J. Exp. Nanosci. doi: 10.1080/17458080903495003 – volume: 46 start-page: 1539 year: 2017 ident: 10.1016/j.jcis.2019.12.095_b0205 article-title: Synthesis of 3D mesoporous wall-like MnO2 with improved electrochemical performance publication-title: J. Electron. Mater. doi: 10.1007/s11664-016-5194-x – volume: 6 start-page: 2726 year: 2014 ident: 10.1016/j.jcis.2019.12.095_b0240 article-title: Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors publication-title: ACS Appl. Mater. Interf. doi: 10.1021/am405271q – volume: 4 start-page: 4496 year: 2011 ident: 10.1016/j.jcis.2019.12.095_b0125 article-title: Hybrid structure of cobalt monoxide nanowire@nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01685g – volume: 12 start-page: 1857 year: 2012 ident: 10.1016/j.jcis.2019.12.095_b0020 article-title: A nanostructured electrochromic supercapacitor publication-title: Nano Lett. doi: 10.1021/nl2042112 |
SSID | ssj0011559 |
Score | 2.5505636 |
Snippet | [Display omitted]
Manganese dioxide (MnO2) with high theoretical capacity (1380 F g−1), high natural abundance and low cost has been considered as one of the... Manganese dioxide (MnO2) with high theoretical capacity (1380 F g-1), high natural abundance and low cost has been considered as one of the most competitive... Manganese dioxide (MnO₂) with high theoretical capacity (1380 F g⁻¹), high natural abundance and low cost has been considered as one of the most competitive... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 394 |
SubjectTerms | activated carbon active sites Asymmetric supercapcitors capacitance copper copper hydroxide copper nanoparticles Core–shell hierarchical structure Cu(OH)2 nanorods array electrical conductivity electrochemical capacitors electrodes energy density foams lamps manganese dioxide MnO2 nanorods nanosheets surface area |
Title | Hierarchical Cu(OH)2@MnO2 core-shell nanorods array in situ generated on three-dimensional copper foam for high-performance supercapacitors |
URI | https://dx.doi.org/10.1016/j.jcis.2019.12.095 https://www.proquest.com/docview/2331799084 https://www.proquest.com/docview/2400522306 |
Volume | 563 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb5ZAEN807UE9mLZqrI9mTTxozFr2AQs3my9tUNP2YpPeyL4wNC0QPjh48R_wn3aGR33EfAcvBMgskJ1hHrszvyHkdaS8VEKULDHCMNCSjpkMzqQTwapEWT5W8Z-dJ_ml-nQVX22R1VILg2mVs-6fdPqorec7R_NsHrVVhTW-8LfpTIMLAkGIwLhdKY1S_v77XZoHx223Kc2DM6SeC2emHK9rVyFkN8_GJUHsMfFv4_SXmh5tz-kueTg7jfR4-q49shXqfXJvtfRq2ycPfoMVfER-5BWWFY9dTm7oanhzkb8VH87qC0ERtJKtMfmT1qZuQHuuqek6841WNV1X_UC_jjjU4IfSpqY9cDowjx0AJvQOeEDbho6WjbmFQ0cR7pi1v6oP6HqAKwcm2FXYyOcxuTw9-bLK2dx0gTmpdM-ciEpvRCysj7WIpfFJ5DKlhdfWyCyyTlptSs9DajxXXnAfycxkVlltwTeTT8h23dThKaEqtTLjUmdJ7EE12FSXQYoAthIss3HpAeHLbBduRiTHxhg3xZJ6dl0ghwrkUMFFARw6IO_uxrQTHsdG6nhhYvGHVBVgMDaOe7VwvABO4h6KqUMzAJGUiKEXpWoDjcLFdoztnv3n-5-T-wLjeswbjF-Q7b4bwktwfnp7OEr3Idk5_vg5P_8JUIMFeg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaq6aFwQFBAlLIYiQMIWU1sZ7tRjahS2pleWqk3y1tQqpJEmeTQ38Cf5r0sZRGaA5coiewk8nPeYr_3fYS8D6QTkvOCxZprBlrSMp3BmbDcGxlLEw5V_Kt1nF_Jr9fR9Q5ZzrUwmFY56f5Rpw_aerpzNI3mUVOWWOMLf1uSJeCCQBDCIW7fRXSqaEF2j0_P8vX9ZgLuvI2ZHiHDDlPtzJjmdWNLRO0Os2FVEGkm_m2f_tLUg_k5eUweTX4jPR4_7QnZ8dU-2VvOdG375OFvyIJPyY-8xMrigejkli77Dxf5R_55VV1wiriVbIP5n7TSVQ0KdEN12-o7WlZ0U3Y9_TZAUYMrSuuKdiBszxySAIwAHvCApvEtLWr9HQ4tRcRj1vwqQKCbHq4sWGFbIpfPM3J18uVymbOJd4FZIZOOWR4UTvOIGxclPBLaxYHNZMJdYrTIAmOFSXThQp9qF0rHQxeITGdGmsSAeyaek0VVV_4FoTI1IgtFksWRA-1g0qTwgnswl2CctU0PSDiPtrITKDlyY9yqOfvsRqGEFEpIhVyBhA7Ip_s-zQjJsbV1NAtR_TGxFNiMrf3ezRJXIEncRtGVr3toJATC6AWp3NJG4no7hncv__P9b8lefrk6V-en67ND8oBjmI9phNErsuja3r8GX6gzb6a5_hM5tQgr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Cu%28OH%292%40MnO2+core-shell+nanorods+array+in+situ+generated+on+three-dimensional+copper+foam+for+high-performance+supercapacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Wang%2C+Huining&rft.au=Yan%2C+Guowen&rft.au=Cao%2C+Xueying&rft.au=Liu%2C+Ying&rft.date=2020-03-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=563&rft.spage=394&rft_id=info:doi/10.1016%2Fj.jcis.2019.12.095&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |