Qualitative Analysis on a Reaction-Diffusion Prey-Predator Model and the Corresponding Steady-States
The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem. The local and global stability of the positive constant steady-sta...
Saved in:
Published in | Chinese annals of mathematics. Serie B Vol. 30; no. 2; pp. 207 - 220 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.03.2009
Department of Mathematics,College of Science,China Three Gorges University,Yichang 443002,Hubei,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem. The local and global stability of the positive constant steady-state are discussed, and then some results for nonexistence of positive non-constant steady-states are derived. |
---|---|
AbstractList | The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem. The local and global stability of the positive constant steady-state are discussed, and then some results for nonexistence of positive non-constant steady-states are derived. O1; The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem.The local and global stability of the positive constant steady-state are discussed,and then some results for nonexistence of positive non-constant steady-states are derived. The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem. The local and global stability of the positive constant steady-state are discussed, and then some results for non-existence of positive non-constant steady-states are derived. |
Author | Qunyi BIE Rui PENG |
AuthorAffiliation | Department of Mathematics, College of Science, China Three Gorges University, Yichang 443002, Hubei, China |
AuthorAffiliation_xml | – name: Department of Mathematics,College of Science,China Three Gorges University,Yichang 443002,Hubei,China |
Author_xml | – sequence: 1 givenname: Qunyi surname: Bie fullname: Bie, Qunyi email: qybie@126.com organization: Department of Mathematics, College of Science, China Three Gorges University – sequence: 2 givenname: Rui surname: Peng fullname: Peng, Rui organization: Department of Mathematics, College of Science, China Three Gorges University |
BookMark | eNp9kE1vFDEMhiPUSt0WfkBvEZeeAk5mk8wcq235kIqgFM6RZ8bZph2SNpkF9t-TZSshcejB9nvw44_3mB3EFImxUwlvJIB9W6RcghRV1lA1vWAL2RoQRhl5wBagtBKd7rojdlzKHYBcWg0LNl5vcAozzuEn8fOI07aEwlPkyL8SDnNIUVwE7zelKv4l01bUNOKcMv-URpo4xpHPt8RXKWcqDymOIa75zUw4bsVNnUzlJTv0OBV69VRP2Pd3l99WH8TV5_cfV-dXYmiWdhYD9Kh8p5X1PfTjoG3jEdsOrOlVS8Zr6tBSY3UVS982zWBakNrYVqI22Jyws_3cXxg9xrW7S5tcfyqu_I73jhRABwok1E657xxyKiWTdw85_MC8dRLczlC3N9Tt5M5Qt2Psf8zw17gU54xhepZUe7LULXFN-d9hz0Gvn9bdprh-rJzrcbj3YSKnOtM2IE3zB4QGl5U |
CitedBy_id | crossref_primary_10_1016_j_amc_2014_08_088 crossref_primary_10_1016_j_matcom_2015_05_006 crossref_primary_10_11948_2011032 crossref_primary_10_1007_s11071_024_09796_1 |
Cites_doi | 10.1016/j.aml.2006.08.020 10.1016/S0022-0396(02)00100-6 10.1006/jdeq.1996.0157 10.1016/j.jde.2004.05.010 10.1126/science.171.3969.385 10.1017/S0308210500004704 10.1016/0022-0396(88)90147-7 10.1137/S0036139901393494 10.2307/1936296 10.1017/S0308210500002742 10.1016/j.jde.2004.01.004 10.1017/S0308210500003814 10.1137/S0036139993253201 10.1137/S0036139997318457 10.1007/BF02459707 10.1007/BFb0089647 |
ClassificationCodes | O1 |
ContentType | Journal Article |
Copyright | Editorial Office of CAM (Fudan University) and Springer-Verlag Berlin Heidelberg 2009 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Editorial Office of CAM (Fudan University) and Springer-Verlag Berlin Heidelberg 2009 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s11401-007-0027-0 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Qualitative Analysis on a Reaction-Diffusion Prey-Predator Model and the Corresponding Steady-States |
EISSN | 1860-6261 |
EndPage | 220 |
ExternalDocumentID | sxnk_e200902010 10_1007_s11401_007_0027_0 29683016 |
GrantInformation_xml | – fundername: 国家自然科学基金(10801090; 10726016) funderid: 国家自然科学基金(10801090; 10726016) |
GroupedDBID | -01 -0A -5D -5G -BR -EM -SA -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 29B 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 5XL 6NX 78A 8TC 92E 92I 92L 92M 92Q 93N 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABBBX ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTMW ABULA ABXPI ACBMV ACBRV ACBXY ACDSR ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESTI AETLH AEVTX AEXYK AFGCZ AFLOW AFMKY AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYLF AMYQR ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA CAG CAJEA CAJUS CCEZO CCVFK CDYEO CHBEP CIAHI COF CQIGP CS3 CSCUP CW9 DNIVK DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ IHE IJ- IPNFZ ITM I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NQJWS NU0 O9- O93 O9J P9R PF0 PT4 Q-- Q-0 QOS R-A R89 R9I REI ROL RPX RSV RT1 RWJ S.. S16 S1Z S27 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T8Q TCJ TGP TSG TUC TUS U1F U1G U2A U5A U5K UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W94 WK8 WSM YLTOR ZMTXR ZWQNP ~L9 ~WA AACDK AAJBT AASML AATNV AAXDM AAYZH ABAKF ABQSL ABTKH ABWNU ACAOD ACDTI ACPIV ACUHS ACZOJ ADTPH AEFQL AEMSY AESKC AEVLU AGQEE AGRTI AIGIU AMXSW AOCGG BSONS DDRTE DPUIP IKXTQ IWAJR NPVJJ SNPRN SOHCF ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION 4A8 PSX |
ID | FETCH-LOGICAL-c347t-c0ba2f9527fb0bdc573faa89076b28e6f5e9a7e3755e94f833c680156781a56a3 |
IEDL.DBID | U2A |
ISSN | 0252-9599 |
IngestDate | Thu May 29 03:54:51 EDT 2025 Tue Jul 01 03:12:53 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 Fri Feb 21 02:34:01 EST 2025 Thu Nov 24 20:35:04 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 92D25 Global stability Non-existence 37B25 Steady-state Prey-predator model 35J55 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-c0ba2f9527fb0bdc573faa89076b28e6f5e9a7e3755e94f833c680156781a56a3 |
Notes | Q141 31-1329/O1 Prey-predator model, Steady-state, Global stability, Non-existence O175.2 |
PageCount | 14 |
ParticipantIDs | wanfang_journals_sxnk_e200902010 crossref_primary_10_1007_s11401_007_0027_0 crossref_citationtrail_10_1007_s11401_007_0027_0 springer_journals_10_1007_s11401_007_0027_0 chongqing_backfile_29683016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03-01 |
PublicationDateYYYYMMDD | 2009-03-01 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | Chinese Annals of Mathematics, Series B |
PublicationTitle | Chinese annals of mathematics. Serie B |
PublicationTitleAbbrev | Chin. Ann. Math. Ser. B |
PublicationTitleAlternate | Chinese Annals of Mathematics |
PublicationTitle_FL | CHINESE ANNALS OF MATHEMATICS,SERIES B |
PublicationYear | 2009 |
Publisher | Springer-Verlag Department of Mathematics,College of Science,China Three Gorges University,Yichang 443002,Hubei,China |
Publisher_xml | – name: Springer-Verlag – name: Department of Mathematics,College of Science,China Three Gorges University,Yichang 443002,Hubei,China |
References | Lou, Ni (CR7) 1996; 131 Tanner (CR15) 1975; 56 Pang, Wang (CR10) 2004; 200 Peng, Wang (CR12) 2007; 20 Wang (CR16) 2003; 190 Wollkind, Collings, Logan (CR17) 1988; 50 Lin, Ni, Takagi (CR6) 1988; 72 May (CR8) 1973 Saez, Gonzalez-Olivares (CR14) 1999; 59 Braza (CR1) 2003; 63 Hsu, Huang (CR5) 1995; 55 Peng, Wang (CR11) 2005; 135 Du, Wang (CR3) 2006; 136 Pang, Wang (CR9) 2003; 133 Du, Hsu (CR2) 2004; 203 Rosenzweig (CR13) 1969; 171 Henry (CR4) 1981 Y. H. Du (27_CR3) 2006; 136 Y. H. Du (27_CR2) 2004; 203 R. Peng (27_CR12) 2007; 20 P. Y. H. Pang (27_CR10) 2004; 200 M. X. Wang (27_CR16) 2003; 190 M. L. Rosenzweig (27_CR13) 1969; 171 Y. Lou (27_CR7) 1996; 131 D. Henry (27_CR4) 1981 E. Saez (27_CR14) 1999; 59 R. Peng (27_CR11) 2005; 135 C. S. Lin (27_CR6) 1988; 72 P. Y. H. Pang (27_CR9) 2003; 133 J. T. Tanner (27_CR15) 1975; 56 P. A. Braza (27_CR1) 2003; 63 S. B. Hsu (27_CR5) 1995; 55 R. M. May (27_CR8) 1973 D. J. Wollkind (27_CR17) 1988; 50 |
References_xml | – year: 1981 ident: CR4 publication-title: Geometric theory of semilinear parabolic equations – volume: 20 start-page: 664 year: 2007 end-page: 670 ident: CR12 article-title: Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2006.08.020 – volume: 190 start-page: 600 year: 2003 end-page: 620 ident: CR16 article-title: Non-constant positive steady states of the Sel’kov model publication-title: J. Diff. Eqs. doi: 10.1016/S0022-0396(02)00100-6 – volume: 131 start-page: 79 year: 1996 end-page: 131 ident: CR7 article-title: Diffusion, self-diffusion and cross-diffusion publication-title: J. Diff. Eqs. doi: 10.1006/jdeq.1996.0157 – volume: 203 start-page: 331 year: 2004 end-page: 364 ident: CR2 article-title: A diffusive predator-prey model in heterogeneous environment publication-title: J. Diff. Eqs. doi: 10.1016/j.jde.2004.05.010 – volume: 171 start-page: 385 year: 1969 end-page: 387 ident: CR13 article-title: Paradox of enrichment: destabilization of exploitation systems in ecological time publication-title: Science doi: 10.1126/science.171.3969.385 – volume: 136 start-page: 759 year: 2006 end-page: 778 ident: CR3 article-title: Asymptotic behavior of positive steady-states to a predator-prey model publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S0308210500004704 – volume: 72 start-page: 1 year: 1988 end-page: 27 ident: CR6 article-title: Large amplitude stationary solutions to a chemotais systems publication-title: J. Diff. Eqs. doi: 10.1016/0022-0396(88)90147-7 – volume: 63 start-page: 889 year: 2003 end-page: 904 ident: CR1 article-title: The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139901393494 – volume: 56 start-page: 855 year: 1975 end-page: 867 ident: CR15 article-title: The stability and the intrinsic growth rates of prey and predator populations publication-title: Ecology doi: 10.2307/1936296 – volume: 133 start-page: 919 year: 2003 end-page: 942 ident: CR9 article-title: Qualitative analysis of a ratio-dependent predator-prey system with diffusion publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S0308210500002742 – volume: 200 start-page: 245 issue: 2 year: 2004 end-page: 273 ident: CR10 article-title: Strategy and stationary pattern in a three-species predator-prey model publication-title: J. Diff. Eqs. doi: 10.1016/j.jde.2004.01.004 – volume: 135 start-page: 149 year: 2005 end-page: 164 ident: CR11 article-title: Positive steady-states of the Holling-Tanner prey-predator model with diffusion publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S0308210500003814 – volume: 55 start-page: 763 year: 1995 end-page: 783 ident: CR5 article-title: Global stability for a class of predator-prey systems publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139993253201 – volume: 50 start-page: 379 year: 1988 end-page: 409 ident: CR17 article-title: Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies publication-title: Bull. Math. Biol. – volume: 59 start-page: 1867 year: 1999 end-page: 1878 ident: CR14 article-title: Dynamics of a predator-prey model publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139997318457 – year: 1973 ident: CR8 publication-title: Stability and Complexity in Model Ecosystems – volume: 133 start-page: 919 year: 2003 ident: 27_CR9 publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S0308210500002742 – volume: 50 start-page: 379 year: 1988 ident: 27_CR17 publication-title: Bull. Math. Biol. doi: 10.1007/BF02459707 – volume-title: Stability and Complexity in Model Ecosystems year: 1973 ident: 27_CR8 – volume: 56 start-page: 855 year: 1975 ident: 27_CR15 publication-title: Ecology doi: 10.2307/1936296 – volume: 55 start-page: 763 year: 1995 ident: 27_CR5 publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139993253201 – volume: 190 start-page: 600 year: 2003 ident: 27_CR16 publication-title: J. Diff. Eqs. doi: 10.1016/S0022-0396(02)00100-6 – volume: 200 start-page: 245 issue: 2 year: 2004 ident: 27_CR10 publication-title: J. Diff. Eqs. doi: 10.1016/j.jde.2004.01.004 – volume-title: Geometric theory of semilinear parabolic equations year: 1981 ident: 27_CR4 doi: 10.1007/BFb0089647 – volume: 203 start-page: 331 year: 2004 ident: 27_CR2 publication-title: J. Diff. Eqs. doi: 10.1016/j.jde.2004.05.010 – volume: 171 start-page: 385 year: 1969 ident: 27_CR13 publication-title: Science doi: 10.1126/science.171.3969.385 – volume: 136 start-page: 759 year: 2006 ident: 27_CR3 publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S0308210500004704 – volume: 20 start-page: 664 year: 2007 ident: 27_CR12 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2006.08.020 – volume: 72 start-page: 1 year: 1988 ident: 27_CR6 publication-title: J. Diff. Eqs. doi: 10.1016/0022-0396(88)90147-7 – volume: 135 start-page: 149 year: 2005 ident: 27_CR11 publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S0308210500003814 – volume: 63 start-page: 889 year: 2003 ident: 27_CR1 publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139901393494 – volume: 131 start-page: 79 year: 1996 ident: 27_CR7 publication-title: J. Diff. Eqs. doi: 10.1006/jdeq.1996.0157 – volume: 59 start-page: 1867 year: 1999 ident: 27_CR14 publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139997318457 |
SSID | ssj0014750 |
Score | 1.782815 |
Snippet | The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to... O1; The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions... |
SourceID | wanfang crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 207 |
SubjectTerms | Applications of Mathematics Mathematics Mathematics and Statistics Neumann边界条件 反应扩散系统 定性描述 捕食模型 稳定状态 非恒定 |
Title | Qualitative Analysis on a Reaction-Diffusion Prey-Predator Model and the Corresponding Steady-States |
URI | http://lib.cqvip.com/qk/87055X/20092/29683016.html https://link.springer.com/article/10.1007/s11401-007-0027-0 https://d.wanfangdata.com.cn/periodical/sxnk-e200902010 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS-wwEA6iFz2IP97jrT4lB09KoKZJkxzXp6soenJBTyVJEx8o3dWu4Pvv30za7iqI4KXtIUlLvjQzk5n5hpADGWOIglsWZWGY0Fwwrb1mlTWxkh5WUEzRFjfFxVhc3sm7Lo-76aPde5dk2qkXyW5oC7B0tAa2FAM7fUWC6Y5xXGM-nLsOhJLtwYrkzEhjelfmZ0MgocLfSf3wDK_7KJj6T0i5PHW09cM7sTPaIOudvkiHLcCbZCnUW2Ttek622myTquXBSAze1HYkI3RSU0tBI0x5CwzroLziwRidAnYMLhVa2zQVwoFOFYUBqU-lOqaTlOlCE_7_WEo5an6Q8ejs9s8F64onMJ8LNWM-c5ZHI7mKLnOVlyqP1mqwhQvHdSiiDMaqkCsJDyLqPPeFxrxqpY-tLGz-kyzXkzr8IrQyoAXZHKsmgvwXyljJhXLH3GXeOhcGZHc-iyB8_SNSSpXcFBp2j2JAsn5eS9_xjmP5i6dywZiMsJT4iLCU2YAczrtMW9KNrxof9WCV3f_XfNWadnguGjdv9WMZ0E2UYWzAzrcG3CWrrYMJw9J-k-XZy2vYAz1l5vbJyvDk9GSE9_P7q7P9tE7_A66Y4Q0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_UgPnFdHzl4UgLdNGmS4yLK-jy54K0kabKC0l3tLui_d5K2uwoieCk5JGnJl2ZmMjPfIHTKvXeeUU08zxRhkjIipZWk0MoX3MIO8jHa4iEbDNnNE39q8rirNtq9dUnGk3qR7BZsARKv1sCWImCnr4AuIMNWHtL-3HXABK8vVjgliivVujJ_myIQKjyPy9EbvO6nYGo_IebylF6Xo29i52oTbTT6Iu7XAG-hJVduo_X7OdlqtYOKmgcjMnhj3ZCM4HGJNQaNMOYtkFAHZRYuxvAEsCPwKIK1jWMhHBhUYJgQ21iqYzKOmS444v9JYspRtYuGV5ePFwPSFE8gNmViSmxiNPWKU-FNYgrLReq1lmALZ4ZKl3nulBYuFRwazMs0tZkMedVC9jTPdLqHlstx6fYRLhRoQToNVRNB_jOhNKdMmB41idXGuA7qzlcRhK99CZRSOVWZhNMj66CkXdfcNrzjofzFa75gTA6w5KEZYMmTDjqbD5nUpBt_dT5vwcqb_6_6qzdu8Fx0rj7Kl9wFN1ESYgMO_jXhCVodPN7f5XfXD7ddtFY7m0KI2iFanr7P3BHoLFNzHPfoF1a-4Po |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBYlhdIcQvoirpNWh55aRNZaaSUdTVPjvkwPNeS2SFophQTZ6TqQ_vvOaHftFoqhl0UHSbtoRqsZzXzfEPJGxhii4JZFWRkmNBdMa69ZY01spAcNijnbYlHNl-LTpbzs65y2Q7b7EJLsMA3I0pQ25-smnu-Ab-gXsHzNBn4VA5_9oUAwMCj0kk-3YQShZHfJIjkz0pghrPmvKZBc4ccqXd3Cq_8-pIbPybieFG26-uMImh2To952pNNO2E_Ig5CeksOvW-LV9hlpOk6MzOZNbU84QleJWgrWYcYwMKyJcoeXZHQNcmTwaNDzprkoDgxqKExIfS7bsV5l1AvNuvCLZfhR-5wsZx--v5-zvpAC86VQG-YLZ3k0kqvoCtd4qcporQa_uHJchyrKYKwKpZLQEFGXpa80YqyVnlhZ2fIFOUirFE4IbQxYRLbECopgCwhlrORCuQl3hbfOhREZb1cRDmJ_jfRSNTeVhj9JNSLFsK617znIsRTGTb1jT0ax1NhEsdTFiLzdDll3BBz7Or8bhFX3e7Hd15v28tx1bu_TdR0wZFRgnsDL_5rwNXn07WJWf_m4-Dwmj7u4E2arnZKDzc-7cAbmy8a9yir6G1qV5S0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qualitative+analysis+on+a+reaction-diffusion+prey-predator+model+and+the+corresponding+steady-states&rft.jtitle=Chinese+annals+of+mathematics.+Serie+B&rft.au=Bie%2C+Qunyi&rft.au=Peng%2C+Rui&rft.date=2009-03-01&rft.issn=0252-9599&rft.eissn=1860-6261&rft.volume=30&rft.issue=2&rft.spage=207&rft.epage=220&rft_id=info:doi/10.1007%2Fs11401-007-0027-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11401_007_0027_0 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87055X%2F87055X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxnk-e%2Fsxnk-e.jpg |