Anomalous percolation features in molecular evolution

Self-replication underlies every species of living beings and simple physical intuition dictates that some sort of autocatalysis invariably constitutes a necessary ingredient for the emergence of molecular life. This led Worst et al. [E. G. Worst, P. Zimmer, E. Wollrab, K. Kruse, and A. Ott, New J....

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E Vol. 98; no. 2-1; p. 022408
Main Authors Zimmer, P, Kruse, K, Nagler, J
Format Journal Article
LanguageEnglish
Published United States 01.08.2018
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Self-replication underlies every species of living beings and simple physical intuition dictates that some sort of autocatalysis invariably constitutes a necessary ingredient for the emergence of molecular life. This led Worst et al. [E. G. Worst, P. Zimmer, E. Wollrab, K. Kruse, and A. Ott, New J. Phys. 18, 103003 (2016)NJOPFM1367-263010.1088/1367-2630/18/10/103003] to study a model of molecular evolution of self-replicating molecules where spontaneous ligation and simple autocatalysis are in competition for their building blocks. We revisit this model, where irreversible aggregation leads to a transition from a regime of small molecules to macromolecules, and find an array of anomalous percolation features, some of them predicted for very specific percolation processes [R. M. D'Souza and J. Nagler, Nat. Phys. 11, 531 (2015)1745-247310.1038/nphys3378].
ISSN:2470-0053
DOI:10.1103/PhysRevE.98.022408