Exploiting Intra-Slice and Inter-Slice Redundancy for Learning-Based Lossless Volumetric Image Compression
3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the f...
Saved in:
Published in | IEEE transactions on image processing Vol. 31; pp. 1697 - 1707 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the first end-to-end optimized learning framework for losslessly compressing 3D volumetric data. Our approach builds upon a hierarchical compression scheme by additionally introducing the intra-slice auxiliary features and estimating the entropy model based on both intra-slice and inter-slice latent priors. Specifically, we first extract the hierarchical intra-slice auxiliary features through multi-scale feature extraction modules. Then, an Intra-slice and Inter-slice Conditional Entropy Coding module is proposed to fuse the intra-slice and inter-slice information from different scales as the context information. Based on such context information, we can predict the distributions for both intra-slice auxiliary features and the slice images. To further improve the lossless compression performance, we also introduce two new gating mechanisms called Intra-Gate and Inter-Gate to generate the optimal feature representations for better information fusion. Eventually, we can produce the bitstream for losslessly compressing volumetric images based on the estimated entropy model. Different from the existing lossless volumetric image codecs, our end-to-end optimized framework jointly learns both intra-slice auxiliary features at different scales for each slice and inter-slice latent features from previously encoded slices for better entropy estimation. The extensive experimental results indicate that our framework outperforms the state-of-the-art hand-crafted lossless volumetric image codecs ( e.g., JP3D) and the learning-based lossless image compression method on four volumetric image benchmarks for losslessly compressing both 3D Medical Images and Hyper-Spectral Images. |
---|---|
AbstractList | 3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the first end-to-end optimized learning framework for losslessly compressing 3D volumetric data. Our approach builds upon a hierarchical compression scheme by additionally introducing the intra-slice auxiliary features and estimating the entropy model based on both intra-slice and inter-slice latent priors. Specifically, we first extract the hierarchical intra-slice auxiliary features through multi-scale feature extraction modules. Then, an Intra-slice and Inter-slice Conditional Entropy Coding module is proposed to fuse the intra-slice and inter-slice information from different scales as the context information. Based on such context information, we can predict the distributions for both intra-slice auxiliary features and the slice images. To further improve the lossless compression performance, we also introduce two new gating mechanisms called Intra-Gate and Inter-Gate to generate the optimal feature representations for better information fusion. Eventually, we can produce the bitstream for losslessly compressing volumetric images based on the estimated entropy model. Different from the existing lossless volumetric image codecs, our end-to-end optimized framework jointly learns both intra-slice auxiliary features at different scales for each slice and inter-slice latent features from previously encoded slices for better entropy estimation. The extensive experimental results indicate that our framework outperforms the state-of-the-art hand-crafted lossless volumetric image codecs ( e.g., JP3D) and the learning-based lossless image compression method on four volumetric image benchmarks for losslessly compressing both 3D Medical Images and Hyper-Spectral Images. 3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the first end-to-end optimized learning framework for losslessly compressing 3D volumetric data. Our approach builds upon a hierarchical compression scheme by additionally introducing the intra-slice auxiliary features and estimating the entropy model based on both intra-slice and inter-slice latent priors. Specifically, we first extract the hierarchical intra-slice auxiliary features through multi-scale feature extraction modules. Then, an Intra-slice and Inter-slice Conditional Entropy Coding module is proposed to fuse the intra-slice and inter-slice information from different scales as the context information. Based on such context information, we can predict the distributions for both intra-slice auxiliary features and the slice images. To further improve the lossless compression performance, we also introduce two new gating mechanisms called Intra-Gate and Inter-Gate to generate the optimal feature representations for better information fusion. Eventually, we can produce the bitstream for losslessly compressing volumetric images based on the estimated entropy model. Different from the existing lossless volumetric image codecs, our end-to-end optimized framework jointly learns both intra-slice auxiliary features at different scales for each slice and inter-slice latent features from previously encoded slices for better entropy estimation. The extensive experimental results indicate that our framework outperforms the state-of-the-art hand-crafted lossless volumetric image codecs (e.g., JP3D) and the learning-based lossless image compression method on four volumetric image benchmarks for losslessly compressing both 3D Medical Images and Hyper-Spectral Images.3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the first end-to-end optimized learning framework for losslessly compressing 3D volumetric data. Our approach builds upon a hierarchical compression scheme by additionally introducing the intra-slice auxiliary features and estimating the entropy model based on both intra-slice and inter-slice latent priors. Specifically, we first extract the hierarchical intra-slice auxiliary features through multi-scale feature extraction modules. Then, an Intra-slice and Inter-slice Conditional Entropy Coding module is proposed to fuse the intra-slice and inter-slice information from different scales as the context information. Based on such context information, we can predict the distributions for both intra-slice auxiliary features and the slice images. To further improve the lossless compression performance, we also introduce two new gating mechanisms called Intra-Gate and Inter-Gate to generate the optimal feature representations for better information fusion. Eventually, we can produce the bitstream for losslessly compressing volumetric images based on the estimated entropy model. Different from the existing lossless volumetric image codecs, our end-to-end optimized framework jointly learns both intra-slice auxiliary features at different scales for each slice and inter-slice latent features from previously encoded slices for better entropy estimation. The extensive experimental results indicate that our framework outperforms the state-of-the-art hand-crafted lossless volumetric image codecs (e.g., JP3D) and the learning-based lossless image compression method on four volumetric image benchmarks for losslessly compressing both 3D Medical Images and Hyper-Spectral Images. |
Author | Chen, Zhenghao Lu, Guo Xu, Dong Gu, Shuhang |
Author_xml | – sequence: 1 givenname: Zhenghao orcidid: 0000-0003-0155-4462 surname: Chen fullname: Chen, Zhenghao email: zhenghao.chen@sydney.edu.au organization: School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia – sequence: 2 givenname: Shuhang orcidid: 0000-0002-1394-6642 surname: Gu fullname: Gu, Shuhang email: shuhanggu@gmail.com organization: School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia – sequence: 3 givenname: Guo surname: Lu fullname: Lu, Guo email: guo.lu@bit.edu.cn organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Dong orcidid: 0000-0003-2775-9730 surname: Xu fullname: Xu, Dong email: dong.xu@sydney.edu.au organization: School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35081025$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLJDEURoM4-Br3giAFbtxUm0clqSy18dHQMIPjzLZIJbckTVXSJlWg_9403bpwMavkcs-Xxz3HaN8HDwidETwjBKvr58XvGcWUzhipsMD1HjoiqiIlxhXdz3vMZSlJpQ7RcUorjEnFiThAh4zjmmDKj9Dq7m3dBzc6_1Is_Bh1-ad3Bgrt7aaGuKufwE7eam_eiy7EYgk6-pwpb3UCWyxDSj2kVPwL_TTAGJ0pFoN-gWIehnXMHRf8T_Sj032C0916gv7e3z3PH8vlr4fF_GZZGlbJsWx13YJlIBUVBLjgAqjiXW14B9zWlZZW1UbatsstU3HW5s8I1TLGQbe1ZCfoanvuOobXCdLYDC4Z6HvtIUypoYIyRpkSOKOX39BVmKLPr9tQQknJeJ2pix01tQPYZh3doON78znFDOAtYGIeRITuCyG42YhqsqhmI6rZicoR8S1i3KjHPKbswPX_C55vgw4Avu5RQmW1hH0A3hefEw |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1016_j_patcog_2024_110632 crossref_primary_10_1109_LSP_2023_3279780 crossref_primary_10_1109_TMI_2022_3212780 crossref_primary_10_1109_ACCESS_2024_3514215 crossref_primary_10_1016_j_jvcir_2024_104306 crossref_primary_10_1109_ACCESS_2023_3246948 crossref_primary_10_1117_1_JRS_17_046509 crossref_primary_10_1109_TIP_2024_3378910 crossref_primary_10_1016_j_eswa_2022_119449 crossref_primary_10_1109_ACCESS_2024_3355195 crossref_primary_10_3390_technologies11050132 crossref_primary_10_1109_TIP_2023_3319275 crossref_primary_10_1109_TIP_2024_3513156 crossref_primary_10_1016_j_procs_2023_10_633 crossref_primary_10_3390_f14091864 crossref_primary_10_1007_s11042_023_17633_7 crossref_primary_10_1109_ACCESS_2022_3166464 crossref_primary_10_2174_0118749445326668240801105910 |
Cites_doi | 10.1117/2.1200706.0779 10.1109/ICCV.2019.00652 10.1109/CVPR42600.2020.00360 10.1007/978-3-642-10850-1 10.1109/83.855427 10.1109/JPROC.2002.800725 10.1145/584091.584093 10.1016/j.compeleceng.2016.02.014 10.1109/TCSVT.2012.2221191 10.1609/aaai.v32i1.12259 10.1109/CVPR.2018.00461 10.1007/978-3-030-01237-3_26 10.1109/CVPR.2019.01088 10.1109/ICCV.2019.00713 10.1109/TMI.2009.2012899 10.1007/s00034-019-01110-4 10.1007/978-3-319-46478-7_2 10.1016/j.image.2014.12.007 10.1007/978-3-030-58536-5_12 10.1109/TIP.2015.2456509 10.1007/978-3-030-58536-5_27 10.1109/ICCV.2019.00260 10.1109/CVPR.2017.577 10.1109/CVPRW.2017.151 10.1109/TCSVT.2019.2892608 10.1109/83.846242 10.1109/CVPR42600.2020.00853 10.1109/ICIP.2019.8803037 10.1109/CVPR42600.2020.00666 10.1109/TMI.2017.2714640 10.1109/TIP.2010.2046811 10.1145/214762.214771 10.1109/LGRS.2003.822312 10.1109/ECCTD.2005.1522995 10.1109/CVPR46437.2021.00155 10.1109/CVPR.2019.01126 10.1371/journal.pmed.1002699 10.1109/CVPR42600.2020.00667 10.1109/CVPR.2018.00462 10.1109/JBHI.2017.2660482 10.1109/CVPR46437.2021.00598 10.1109/ISCAS.2006.1693474 10.1109/TPAMI.2020.2988453 10.1109/CVPR.2018.00339 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2022.3140608 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 1707 |
ExternalDocumentID | 35081025 10_1109_TIP_2022_3140608 9694511 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Australian Research Council (ARC) Future Fellowship grantid: FT180100116 funderid: 10.13039/501100000923 – fundername: National Natural Science Foundation of China grantid: 62102024 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM PKN Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c347t-ba8bed3e79261e5656e295f8c5fe5d84a7d98c7dbf656c453b50869b335eab873 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 05:50:40 EDT 2025 Mon Jun 30 10:16:11 EDT 2025 Wed Feb 19 02:27:44 EST 2025 Tue Jul 01 02:03:27 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Wed Aug 27 02:49:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-ba8bed3e79261e5656e295f8c5fe5d84a7d98c7dbf656c453b50869b335eab873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2775-9730 0000-0003-0155-4462 0000-0002-1394-6642 |
PMID | 35081025 |
PQID | 2626977358 |
PQPubID | 85429 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TIP_2022_3140608 pubmed_primary_35081025 crossref_citationtrail_10_1109_TIP_2022_3140608 ieee_primary_9694511 proquest_miscellaneous_2623323960 proquest_journals_2626977358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref12 ref56 ref15 ref14 ref58 ref11 ref10 ref54 ref16 ref19 ref18 Ballé (ref26) ref51 ref50 Chung (ref59) ref46 ref45 ref48 ref47 Lombardo (ref41) ref42 Agustsson (ref55) ref44 ref43 ref49 Van Oord (ref53) ref8 ref7 ref9 Hoogeboom (ref31) ref4 Theis (ref29) ref3 Roelofs (ref5) 1999 ref6 ref40 ref35 ref34 Van den Oord (ref52) Boliek (ref13) 2000 ref37 ref36 ref30 ref33 ref32 ref2 ref1 ref39 Minnen (ref25) Niedermayer (ref17) 2013 Ballé (ref24) ref23 ref20 ref22 ref21 (ref60) 2021 ref28 ref27 Rippel (ref38); 70 |
References_xml | – ident: ref19 doi: 10.1117/2.1200706.0779 – ident: ref45 doi: 10.1109/ICCV.2019.00652 – ident: ref39 doi: 10.1109/CVPR42600.2020.00360 – start-page: 9287 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref41 article-title: Deep generative video compression – ident: ref1 doi: 10.1007/978-3-642-10850-1 – ident: ref6 doi: 10.1109/83.855427 – ident: ref7 doi: 10.1109/JPROC.2002.800725 – ident: ref51 doi: 10.1145/584091.584093 – ident: ref9 doi: 10.1016/j.compeleceng.2016.02.014 – ident: ref12 doi: 10.1109/TCSVT.2012.2221191 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref26 article-title: Variational image compression with a scale hyperprior – ident: ref34 doi: 10.1609/aaai.v32i1.12259 – ident: ref23 doi: 10.1109/CVPR.2018.00461 – ident: ref37 doi: 10.1007/978-3-030-01237-3_26 – start-page: 4790 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref52 article-title: Conditional image generation with pixelcnn decoders – start-page: 1747 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref53 article-title: Pixel recurrent neural networks – ident: ref28 doi: 10.1109/CVPR.2019.01088 – ident: ref42 doi: 10.1109/ICCV.2019.00713 – ident: ref21 doi: 10.1109/TMI.2009.2012899 – ident: ref36 doi: 10.1007/s00034-019-01110-4 – volume-title: PNG: Definitive Guide year: 1999 ident: ref5 – ident: ref3 doi: 10.1007/978-3-319-46478-7_2 – ident: ref15 doi: 10.1016/j.image.2014.12.007 – volume-title: IXI Dataset year: 2021 ident: ref60 – ident: ref46 doi: 10.1007/978-3-030-58536-5_12 – ident: ref8 doi: 10.1109/TIP.2015.2456509 – volume-title: Information Technology: JPEG2000 Image Coding System year: 2000 ident: ref13 – ident: ref40 doi: 10.1007/978-3-030-58536-5_27 – volume: 70 start-page: 2922 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref38 article-title: Real-time adaptive image compression – start-page: 12134 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref31 article-title: Integer discrete flows and lossless compression – ident: ref58 doi: 10.1109/ICCV.2019.00260 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref29 article-title: Lossy image compression with compressive autoencoders – ident: ref22 doi: 10.1109/CVPR.2017.577 – ident: ref54 doi: 10.1109/CVPRW.2017.151 – ident: ref35 doi: 10.1109/TCSVT.2019.2892608 – ident: ref11 doi: 10.1109/83.846242 – ident: ref44 doi: 10.1109/CVPR42600.2020.00853 – ident: ref50 doi: 10.1109/ICIP.2019.8803037 – ident: ref47 doi: 10.1109/CVPR42600.2020.00666 – ident: ref20 doi: 10.1109/TMI.2017.2714640 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref24 article-title: End-to-end optimized image compression – start-page: 10771 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref25 article-title: Joint autoregressive and hierarchical priors for learned image compression – ident: ref4 doi: 10.1109/TIP.2010.2046811 – ident: ref57 doi: 10.1145/214762.214771 – ident: ref18 doi: 10.1109/LGRS.2003.822312 – ident: ref10 doi: 10.1109/ECCTD.2005.1522995 – ident: ref48 doi: 10.1109/CVPR46437.2021.00155 – start-page: 1 volume-title: Proc. NIPS ident: ref59 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – ident: ref43 doi: 10.1109/CVPR.2019.01126 – start-page: 1141 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref55 article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations – ident: ref56 doi: 10.1145/214762.214771 – ident: ref2 doi: 10.1371/journal.pmed.1002699 – ident: ref32 doi: 10.1109/CVPR42600.2020.00667 – ident: ref27 doi: 10.1109/CVPR.2018.00462 – ident: ref16 doi: 10.1109/JBHI.2017.2660482 – ident: ref49 doi: 10.1109/CVPR46437.2021.00598 – ident: ref14 doi: 10.1109/ISCAS.2006.1693474 – volume-title: FFV1 Video Codec Specification year: 2013 ident: ref17 – ident: ref33 doi: 10.1109/TPAMI.2020.2988453 – ident: ref30 doi: 10.1109/CVPR.2018.00339 |
SSID | ssj0014516 |
Score | 2.5799649 |
Snippet | 3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1697 |
SubjectTerms | Codec Context Data integration Entropy Entropy coding Estimation Feature extraction hyper-spectral image compression Image coding Image compression Image processing Image transmission Learning Lossless equipment Magnetic resonance imaging medical image compression Medical imaging Modules Redundancy Three-dimensional displays Volumetric image compression |
Title | Exploiting Intra-Slice and Inter-Slice Redundancy for Learning-Based Lossless Volumetric Image Compression |
URI | https://ieeexplore.ieee.org/document/9694511 https://www.ncbi.nlm.nih.gov/pubmed/35081025 https://www.proquest.com/docview/2626977358 https://www.proquest.com/docview/2623323960 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61PcGBvniEtshIXJBwkvqxXh8BUTWIIgQt6m3lVxA03SCaXPj1zHi9K0CAuG203ldmPPN9nvEMwBPnrXa6ktwEY7iqheROG8WFj6p2yJpdTXuHz95Wpxfq9aW-3IBnw16YlFJOPktjOsyx_LgMa1oqm9jKUjmtTdhE4tbt1RoiBtRwNkc2teEGYX8fkpzayfnsHRJBIZCfovuaUos-ibgEXav-xRvl9ip_R5rZ45xsw1n_rl2iydV4vfLj8P23Mo7_-zE7cKdAT_a805Vd2EjtHmwXGMrKJL_Zg9s_1Sjchy85S-8zZUezGa0E8w8LNC7MtZHl5cTy-32i_WhkqxniYFbqtn7iL9BNRvYGv36BRpV9zNaQ2gKw2TXaMkYGqcvFbe_Cxcmr85envDRo4EEqs-Le1T5FmYxFHpYIGiZh9bymDDYda-VMtHUw0c_xVFBaevzbK-ul1Mn52sh7sNUu2_QAmJHzdKwC0ikh1Vxoh_KqXIVkMwaHNx_BpBdUE0r1cmqisWgyi5naBqXckJSbIuURPB2u-NpV7vjH2H0S0DCuyGYEh70uNGVq3zQCKSCCZqnxqsfDaZyUFGlxbVqu8xgphUR2OIL7nQ4N9-5V7-Gfn3kAt-jNulWeQ9hafVunI8Q9K_8oK_wPMan7Yw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB2VcgAOFFpoAwWMBAcOTlJ7vd49cOCrytK0QpCi3hZ77SBo2CCSCMFv4a_w35jxeleAgFslbonW6yTO25n3POMZgHvG5sqoVHJdac2TTEhulE64sC7JDKpmk9HZ4cOjdHScPD9RJ2vwrTsL470PyWe-Ty9DLN_NqxVtlQ3yNKdyWjGF8sB_-YwCbfGweIr_5n0h9p9Nnox47CHAK5noJbcms95Jr3OUCp7Yixe5mmaUZKVclhjt8qzSzk7xUpUoaZGxpLmVUnljMy1x3nNwHnmGEs3psC5GQS1uQyxVaa5RaLRB0GE-mBQvUHoKgYoYHeaQmgJKnBedufrF_4WGLn_ntsHH7W_A93Z1mtSW0_5qafvV198KR_6vy3cFLkdyzR41T8NVWPP1JmxEos2iGVtswqWfqjBuwfuQh_iO8r9ZQXvd_NUMzScztWNhwzS-f-npxB15I4ZMn8XKtG_5YyQCjo1xtWfoNtjrYO-p8QErPqC1ZmRym2zj-hocn8nvvw7r9bz2O8C0nPq9pELBKGQyFcogPlKTopx2lcHJezBogVFWsT47tQmZlUGnDfMSUVUSqsqIqh486O742NQm-cfYLQJENy5ioQe7LfbKaLwWpUCRi7JAKrzrbncZzQ7Fkkzt56swRkohUf_2YLvBbDd3C_Ubf_7MO3BhNDkcl-Pi6OAmXKRv2exp7cL68tPK30KWt7S3w8PG4M1Zw_MHbKJZug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+Intra-Slice+and+Inter-Slice+Redundancy+for+Learning-Based+Lossless+Volumetric+Image+Compression&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Chen%2C+Zhenghao&rft.au=Gu%2C+Shuhang&rft.au=Lu%2C+Guo&rft.au=Xu%2C+Dong&rft.date=2022&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=31&rft.spage=1697&rft.epage=1707&rft_id=info:doi/10.1109%2FTIP.2022.3140608&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2022_3140608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |