Exploiting Intra-Slice and Inter-Slice Redundancy for Learning-Based Lossless Volumetric Image Compression

3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 31; pp. 1697 - 1707
Main Authors Chen, Zhenghao, Gu, Shuhang, Lu, Guo, Xu, Dong
Format Journal Article
LanguageEnglish
Published United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the first end-to-end optimized learning framework for losslessly compressing 3D volumetric data. Our approach builds upon a hierarchical compression scheme by additionally introducing the intra-slice auxiliary features and estimating the entropy model based on both intra-slice and inter-slice latent priors. Specifically, we first extract the hierarchical intra-slice auxiliary features through multi-scale feature extraction modules. Then, an Intra-slice and Inter-slice Conditional Entropy Coding module is proposed to fuse the intra-slice and inter-slice information from different scales as the context information. Based on such context information, we can predict the distributions for both intra-slice auxiliary features and the slice images. To further improve the lossless compression performance, we also introduce two new gating mechanisms called Intra-Gate and Inter-Gate to generate the optimal feature representations for better information fusion. Eventually, we can produce the bitstream for losslessly compressing volumetric images based on the estimated entropy model. Different from the existing lossless volumetric image codecs, our end-to-end optimized framework jointly learns both intra-slice auxiliary features at different scales for each slice and inter-slice latent features from previously encoded slices for better entropy estimation. The extensive experimental results indicate that our framework outperforms the state-of-the-art hand-crafted lossless volumetric image codecs ( e.g., JP3D) and the learning-based lossless image compression method on four volumetric image benchmarks for losslessly compressing both 3D Medical Images and Hyper-Spectral Images.
AbstractList 3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the first end-to-end optimized learning framework for losslessly compressing 3D volumetric data. Our approach builds upon a hierarchical compression scheme by additionally introducing the intra-slice auxiliary features and estimating the entropy model based on both intra-slice and inter-slice latent priors. Specifically, we first extract the hierarchical intra-slice auxiliary features through multi-scale feature extraction modules. Then, an Intra-slice and Inter-slice Conditional Entropy Coding module is proposed to fuse the intra-slice and inter-slice information from different scales as the context information. Based on such context information, we can predict the distributions for both intra-slice auxiliary features and the slice images. To further improve the lossless compression performance, we also introduce two new gating mechanisms called Intra-Gate and Inter-Gate to generate the optimal feature representations for better information fusion. Eventually, we can produce the bitstream for losslessly compressing volumetric images based on the estimated entropy model. Different from the existing lossless volumetric image codecs, our end-to-end optimized framework jointly learns both intra-slice auxiliary features at different scales for each slice and inter-slice latent features from previously encoded slices for better entropy estimation. The extensive experimental results indicate that our framework outperforms the state-of-the-art hand-crafted lossless volumetric image codecs ( e.g., JP3D) and the learning-based lossless image compression method on four volumetric image benchmarks for losslessly compressing both 3D Medical Images and Hyper-Spectral Images.
3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the first end-to-end optimized learning framework for losslessly compressing 3D volumetric data. Our approach builds upon a hierarchical compression scheme by additionally introducing the intra-slice auxiliary features and estimating the entropy model based on both intra-slice and inter-slice latent priors. Specifically, we first extract the hierarchical intra-slice auxiliary features through multi-scale feature extraction modules. Then, an Intra-slice and Inter-slice Conditional Entropy Coding module is proposed to fuse the intra-slice and inter-slice information from different scales as the context information. Based on such context information, we can predict the distributions for both intra-slice auxiliary features and the slice images. To further improve the lossless compression performance, we also introduce two new gating mechanisms called Intra-Gate and Inter-Gate to generate the optimal feature representations for better information fusion. Eventually, we can produce the bitstream for losslessly compressing volumetric images based on the estimated entropy model. Different from the existing lossless volumetric image codecs, our end-to-end optimized framework jointly learns both intra-slice auxiliary features at different scales for each slice and inter-slice latent features from previously encoded slices for better entropy estimation. The extensive experimental results indicate that our framework outperforms the state-of-the-art hand-crafted lossless volumetric image codecs (e.g., JP3D) and the learning-based lossless image compression method on four volumetric image benchmarks for losslessly compressing both 3D Medical Images and Hyper-Spectral Images.3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the first end-to-end optimized learning framework for losslessly compressing 3D volumetric data. Our approach builds upon a hierarchical compression scheme by additionally introducing the intra-slice auxiliary features and estimating the entropy model based on both intra-slice and inter-slice latent priors. Specifically, we first extract the hierarchical intra-slice auxiliary features through multi-scale feature extraction modules. Then, an Intra-slice and Inter-slice Conditional Entropy Coding module is proposed to fuse the intra-slice and inter-slice information from different scales as the context information. Based on such context information, we can predict the distributions for both intra-slice auxiliary features and the slice images. To further improve the lossless compression performance, we also introduce two new gating mechanisms called Intra-Gate and Inter-Gate to generate the optimal feature representations for better information fusion. Eventually, we can produce the bitstream for losslessly compressing volumetric images based on the estimated entropy model. Different from the existing lossless volumetric image codecs, our end-to-end optimized framework jointly learns both intra-slice auxiliary features at different scales for each slice and inter-slice latent features from previously encoded slices for better entropy estimation. The extensive experimental results indicate that our framework outperforms the state-of-the-art hand-crafted lossless volumetric image codecs (e.g., JP3D) and the learning-based lossless image compression method on four volumetric image benchmarks for losslessly compressing both 3D Medical Images and Hyper-Spectral Images.
Author Chen, Zhenghao
Lu, Guo
Xu, Dong
Gu, Shuhang
Author_xml – sequence: 1
  givenname: Zhenghao
  orcidid: 0000-0003-0155-4462
  surname: Chen
  fullname: Chen, Zhenghao
  email: zhenghao.chen@sydney.edu.au
  organization: School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
– sequence: 2
  givenname: Shuhang
  orcidid: 0000-0002-1394-6642
  surname: Gu
  fullname: Gu, Shuhang
  email: shuhanggu@gmail.com
  organization: School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
– sequence: 3
  givenname: Guo
  surname: Lu
  fullname: Lu, Guo
  email: guo.lu@bit.edu.cn
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Dong
  orcidid: 0000-0003-2775-9730
  surname: Xu
  fullname: Xu, Dong
  email: dong.xu@sydney.edu.au
  organization: School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35081025$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLJDEURoM4-Br3giAFbtxUm0clqSy18dHQMIPjzLZIJbckTVXSJlWg_9403bpwMavkcs-Xxz3HaN8HDwidETwjBKvr58XvGcWUzhipsMD1HjoiqiIlxhXdz3vMZSlJpQ7RcUorjEnFiThAh4zjmmDKj9Dq7m3dBzc6_1Is_Bh1-ad3Bgrt7aaGuKufwE7eam_eiy7EYgk6-pwpb3UCWyxDSj2kVPwL_TTAGJ0pFoN-gWIehnXMHRf8T_Sj032C0916gv7e3z3PH8vlr4fF_GZZGlbJsWx13YJlIBUVBLjgAqjiXW14B9zWlZZW1UbatsstU3HW5s8I1TLGQbe1ZCfoanvuOobXCdLYDC4Z6HvtIUypoYIyRpkSOKOX39BVmKLPr9tQQknJeJ2pix01tQPYZh3doON78znFDOAtYGIeRITuCyG42YhqsqhmI6rZicoR8S1i3KjHPKbswPX_C55vgw4Avu5RQmW1hH0A3hefEw
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_patcog_2024_110632
crossref_primary_10_1109_LSP_2023_3279780
crossref_primary_10_1109_TMI_2022_3212780
crossref_primary_10_1109_ACCESS_2024_3514215
crossref_primary_10_1016_j_jvcir_2024_104306
crossref_primary_10_1109_ACCESS_2023_3246948
crossref_primary_10_1117_1_JRS_17_046509
crossref_primary_10_1109_TIP_2024_3378910
crossref_primary_10_1016_j_eswa_2022_119449
crossref_primary_10_1109_ACCESS_2024_3355195
crossref_primary_10_3390_technologies11050132
crossref_primary_10_1109_TIP_2023_3319275
crossref_primary_10_1109_TIP_2024_3513156
crossref_primary_10_1016_j_procs_2023_10_633
crossref_primary_10_3390_f14091864
crossref_primary_10_1007_s11042_023_17633_7
crossref_primary_10_1109_ACCESS_2022_3166464
crossref_primary_10_2174_0118749445326668240801105910
Cites_doi 10.1117/2.1200706.0779
10.1109/ICCV.2019.00652
10.1109/CVPR42600.2020.00360
10.1007/978-3-642-10850-1
10.1109/83.855427
10.1109/JPROC.2002.800725
10.1145/584091.584093
10.1016/j.compeleceng.2016.02.014
10.1109/TCSVT.2012.2221191
10.1609/aaai.v32i1.12259
10.1109/CVPR.2018.00461
10.1007/978-3-030-01237-3_26
10.1109/CVPR.2019.01088
10.1109/ICCV.2019.00713
10.1109/TMI.2009.2012899
10.1007/s00034-019-01110-4
10.1007/978-3-319-46478-7_2
10.1016/j.image.2014.12.007
10.1007/978-3-030-58536-5_12
10.1109/TIP.2015.2456509
10.1007/978-3-030-58536-5_27
10.1109/ICCV.2019.00260
10.1109/CVPR.2017.577
10.1109/CVPRW.2017.151
10.1109/TCSVT.2019.2892608
10.1109/83.846242
10.1109/CVPR42600.2020.00853
10.1109/ICIP.2019.8803037
10.1109/CVPR42600.2020.00666
10.1109/TMI.2017.2714640
10.1109/TIP.2010.2046811
10.1145/214762.214771
10.1109/LGRS.2003.822312
10.1109/ECCTD.2005.1522995
10.1109/CVPR46437.2021.00155
10.1109/CVPR.2019.01126
10.1371/journal.pmed.1002699
10.1109/CVPR42600.2020.00667
10.1109/CVPR.2018.00462
10.1109/JBHI.2017.2660482
10.1109/CVPR46437.2021.00598
10.1109/ISCAS.2006.1693474
10.1109/TPAMI.2020.2988453
10.1109/CVPR.2018.00339
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2022.3140608
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1707
ExternalDocumentID 35081025
10_1109_TIP_2022_3140608
9694511
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Australian Research Council (ARC) Future Fellowship
  grantid: FT180100116
  funderid: 10.13039/501100000923
– fundername: National Natural Science Foundation of China
  grantid: 62102024
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-ba8bed3e79261e5656e295f8c5fe5d84a7d98c7dbf656c453b50869b335eab873
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 05:50:40 EDT 2025
Mon Jun 30 10:16:11 EDT 2025
Wed Feb 19 02:27:44 EST 2025
Tue Jul 01 02:03:27 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Wed Aug 27 02:49:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-ba8bed3e79261e5656e295f8c5fe5d84a7d98c7dbf656c453b50869b335eab873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2775-9730
0000-0003-0155-4462
0000-0002-1394-6642
PMID 35081025
PQID 2626977358
PQPubID 85429
PageCount 11
ParticipantIDs crossref_primary_10_1109_TIP_2022_3140608
pubmed_primary_35081025
crossref_citationtrail_10_1109_TIP_2022_3140608
ieee_primary_9694511
proquest_miscellaneous_2623323960
proquest_journals_2626977358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
ref15
ref14
ref58
ref11
ref10
ref54
ref16
ref19
ref18
Ballé (ref26)
ref51
ref50
Chung (ref59)
ref46
ref45
ref48
ref47
Lombardo (ref41)
ref42
Agustsson (ref55)
ref44
ref43
ref49
Van Oord (ref53)
ref8
ref7
ref9
Hoogeboom (ref31)
ref4
Theis (ref29)
ref3
Roelofs (ref5) 1999
ref6
ref40
ref35
ref34
Van den Oord (ref52)
Boliek (ref13) 2000
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
Minnen (ref25)
Niedermayer (ref17) 2013
Ballé (ref24)
ref23
ref20
ref22
ref21
(ref60) 2021
ref28
ref27
Rippel (ref38); 70
References_xml – ident: ref19
  doi: 10.1117/2.1200706.0779
– ident: ref45
  doi: 10.1109/ICCV.2019.00652
– ident: ref39
  doi: 10.1109/CVPR42600.2020.00360
– start-page: 9287
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref41
  article-title: Deep generative video compression
– ident: ref1
  doi: 10.1007/978-3-642-10850-1
– ident: ref6
  doi: 10.1109/83.855427
– ident: ref7
  doi: 10.1109/JPROC.2002.800725
– ident: ref51
  doi: 10.1145/584091.584093
– ident: ref9
  doi: 10.1016/j.compeleceng.2016.02.014
– ident: ref12
  doi: 10.1109/TCSVT.2012.2221191
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref26
  article-title: Variational image compression with a scale hyperprior
– ident: ref34
  doi: 10.1609/aaai.v32i1.12259
– ident: ref23
  doi: 10.1109/CVPR.2018.00461
– ident: ref37
  doi: 10.1007/978-3-030-01237-3_26
– start-page: 4790
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref52
  article-title: Conditional image generation with pixelcnn decoders
– start-page: 1747
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref53
  article-title: Pixel recurrent neural networks
– ident: ref28
  doi: 10.1109/CVPR.2019.01088
– ident: ref42
  doi: 10.1109/ICCV.2019.00713
– ident: ref21
  doi: 10.1109/TMI.2009.2012899
– ident: ref36
  doi: 10.1007/s00034-019-01110-4
– volume-title: PNG: Definitive Guide
  year: 1999
  ident: ref5
– ident: ref3
  doi: 10.1007/978-3-319-46478-7_2
– ident: ref15
  doi: 10.1016/j.image.2014.12.007
– volume-title: IXI Dataset
  year: 2021
  ident: ref60
– ident: ref46
  doi: 10.1007/978-3-030-58536-5_12
– ident: ref8
  doi: 10.1109/TIP.2015.2456509
– volume-title: Information Technology: JPEG2000 Image Coding System
  year: 2000
  ident: ref13
– ident: ref40
  doi: 10.1007/978-3-030-58536-5_27
– volume: 70
  start-page: 2922
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref38
  article-title: Real-time adaptive image compression
– start-page: 12134
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref31
  article-title: Integer discrete flows and lossless compression
– ident: ref58
  doi: 10.1109/ICCV.2019.00260
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref29
  article-title: Lossy image compression with compressive autoencoders
– ident: ref22
  doi: 10.1109/CVPR.2017.577
– ident: ref54
  doi: 10.1109/CVPRW.2017.151
– ident: ref35
  doi: 10.1109/TCSVT.2019.2892608
– ident: ref11
  doi: 10.1109/83.846242
– ident: ref44
  doi: 10.1109/CVPR42600.2020.00853
– ident: ref50
  doi: 10.1109/ICIP.2019.8803037
– ident: ref47
  doi: 10.1109/CVPR42600.2020.00666
– ident: ref20
  doi: 10.1109/TMI.2017.2714640
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref24
  article-title: End-to-end optimized image compression
– start-page: 10771
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Joint autoregressive and hierarchical priors for learned image compression
– ident: ref4
  doi: 10.1109/TIP.2010.2046811
– ident: ref57
  doi: 10.1145/214762.214771
– ident: ref18
  doi: 10.1109/LGRS.2003.822312
– ident: ref10
  doi: 10.1109/ECCTD.2005.1522995
– ident: ref48
  doi: 10.1109/CVPR46437.2021.00155
– start-page: 1
  volume-title: Proc. NIPS
  ident: ref59
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– ident: ref43
  doi: 10.1109/CVPR.2019.01126
– start-page: 1141
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref55
  article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations
– ident: ref56
  doi: 10.1145/214762.214771
– ident: ref2
  doi: 10.1371/journal.pmed.1002699
– ident: ref32
  doi: 10.1109/CVPR42600.2020.00667
– ident: ref27
  doi: 10.1109/CVPR.2018.00462
– ident: ref16
  doi: 10.1109/JBHI.2017.2660482
– ident: ref49
  doi: 10.1109/CVPR46437.2021.00598
– ident: ref14
  doi: 10.1109/ISCAS.2006.1693474
– volume-title: FFV1 Video Codec Specification
  year: 2013
  ident: ref17
– ident: ref33
  doi: 10.1109/TPAMI.2020.2988453
– ident: ref30
  doi: 10.1109/CVPR.2018.00339
SSID ssj0014516
Score 2.5799649
Snippet 3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1697
SubjectTerms Codec
Context
Data integration
Entropy
Entropy coding
Estimation
Feature extraction
hyper-spectral image compression
Image coding
Image compression
Image processing
Image transmission
Learning
Lossless equipment
Magnetic resonance imaging
medical image compression
Medical imaging
Modules
Redundancy
Three-dimensional displays
Volumetric image compression
Title Exploiting Intra-Slice and Inter-Slice Redundancy for Learning-Based Lossless Volumetric Image Compression
URI https://ieeexplore.ieee.org/document/9694511
https://www.ncbi.nlm.nih.gov/pubmed/35081025
https://www.proquest.com/docview/2626977358
https://www.proquest.com/docview/2623323960
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61PcGBvniEtshIXJBwkvqxXh8BUTWIIgQt6m3lVxA03SCaXPj1zHi9K0CAuG203ldmPPN9nvEMwBPnrXa6ktwEY7iqheROG8WFj6p2yJpdTXuHz95Wpxfq9aW-3IBnw16YlFJOPktjOsyx_LgMa1oqm9jKUjmtTdhE4tbt1RoiBtRwNkc2teEGYX8fkpzayfnsHRJBIZCfovuaUos-ibgEXav-xRvl9ip_R5rZ45xsw1n_rl2iydV4vfLj8P23Mo7_-zE7cKdAT_a805Vd2EjtHmwXGMrKJL_Zg9s_1Sjchy85S-8zZUezGa0E8w8LNC7MtZHl5cTy-32i_WhkqxniYFbqtn7iL9BNRvYGv36BRpV9zNaQ2gKw2TXaMkYGqcvFbe_Cxcmr85envDRo4EEqs-Le1T5FmYxFHpYIGiZh9bymDDYda-VMtHUw0c_xVFBaevzbK-ul1Mn52sh7sNUu2_QAmJHzdKwC0ikh1Vxoh_KqXIVkMwaHNx_BpBdUE0r1cmqisWgyi5naBqXckJSbIuURPB2u-NpV7vjH2H0S0DCuyGYEh70uNGVq3zQCKSCCZqnxqsfDaZyUFGlxbVqu8xgphUR2OIL7nQ4N9-5V7-Gfn3kAt-jNulWeQ9hafVunI8Q9K_8oK_wPMan7Yw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB2VcgAOFFpoAwWMBAcOTlJ7vd49cOCrytK0QpCi3hZ77SBo2CCSCMFv4a_w35jxeleAgFslbonW6yTO25n3POMZgHvG5sqoVHJdac2TTEhulE64sC7JDKpmk9HZ4cOjdHScPD9RJ2vwrTsL470PyWe-Ty9DLN_NqxVtlQ3yNKdyWjGF8sB_-YwCbfGweIr_5n0h9p9Nnox47CHAK5noJbcms95Jr3OUCp7Yixe5mmaUZKVclhjt8qzSzk7xUpUoaZGxpLmVUnljMy1x3nNwHnmGEs3psC5GQS1uQyxVaa5RaLRB0GE-mBQvUHoKgYoYHeaQmgJKnBedufrF_4WGLn_ntsHH7W_A93Z1mtSW0_5qafvV198KR_6vy3cFLkdyzR41T8NVWPP1JmxEos2iGVtswqWfqjBuwfuQh_iO8r9ZQXvd_NUMzScztWNhwzS-f-npxB15I4ZMn8XKtG_5YyQCjo1xtWfoNtjrYO-p8QErPqC1ZmRym2zj-hocn8nvvw7r9bz2O8C0nPq9pELBKGQyFcogPlKTopx2lcHJezBogVFWsT47tQmZlUGnDfMSUVUSqsqIqh486O742NQm-cfYLQJENy5ioQe7LfbKaLwWpUCRi7JAKrzrbncZzQ7Fkkzt56swRkohUf_2YLvBbDd3C_Ubf_7MO3BhNDkcl-Pi6OAmXKRv2exp7cL68tPK30KWt7S3w8PG4M1Zw_MHbKJZug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+Intra-Slice+and+Inter-Slice+Redundancy+for+Learning-Based+Lossless+Volumetric+Image+Compression&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Chen%2C+Zhenghao&rft.au=Gu%2C+Shuhang&rft.au=Lu%2C+Guo&rft.au=Xu%2C+Dong&rft.date=2022&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=31&rft.spage=1697&rft.epage=1707&rft_id=info:doi/10.1109%2FTIP.2022.3140608&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2022_3140608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon