Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells

The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal arr...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 15; no. 3; pp. 178 - 185
Main Authors Shen, Zhichao, Han, Qifeng, Luo, Xinhui, Shen, Yangzi, Wang, Tao, Zhang, Caiyi, Wang, Yanbo, Chen, Han, Yang, Xudong, Zhang, Yiqiang, Han, Liyuan
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 16.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal array (PCA) with regular distribution to assist the growth of the perovskite absorption layer. The PCA provides nuclei where the crystallization can commence without overcoming the critical Gibbs free energy for nucleation and induces a controllable bottom-up crystallization process under solvent annealing. As a result, a perovskite film with high crystallinity and reduced grain boundaries was obtained. The largest grain size was over 4 μm and the average grain size was over 3 μm. PSCs based on the perovskite film with the PCA achieved power conversion efficiencies of 25.1% (certified 24.3%) and 23.1% (certified 22.3%) with aperture areas of 0.0784 cm 2 and 1.0085 cm 2 , respectively. The devices maintained 90% of their initial efficiency after operation at the maximum power point for 2000 hours under 1 sun illumination. The PCA regularly distributing on the substrate served as templated crystals and induced a well-organized bottom-up crystallization process, which greatly improved the crystallinity of the perovskite film.
AbstractList The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal array (PCA) with regular distribution to assist the growth of the perovskite absorption layer. The PCA provides nuclei where the crystallization can commence without overcoming the critical Gibbs free energy for nucleation and induces a controllable bottom-up crystallization process under solvent annealing. As a result, a perovskite film with high crystallinity and reduced grain boundaries was obtained. The largest grain size was over 4 μm and the average grain size was over 3 μm. PSCs based on the perovskite film with the PCA achieved power conversion efficiencies of 25.1% (certified 24.3%) and 23.1% (certified 22.3%) with aperture areas of 0.0784 cm2 and 1.0085 cm2, respectively. The devices maintained 90% of their initial efficiency after operation at the maximum power point for 2000 hours under 1 sun illumination.
The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal array (PCA) with regular distribution to assist the growth of the perovskite absorption layer. The PCA provides nuclei where the crystallization can commence without overcoming the critical Gibbs free energy for nucleation and induces a controllable bottom-up crystallization process under solvent annealing. As a result, a perovskite film with high crystallinity and reduced grain boundaries was obtained. The largest grain size was over 4 μm and the average grain size was over 3 μm. PSCs based on the perovskite film with the PCA achieved power conversion efficiencies of 25.1% (certified 24.3%) and 23.1% (certified 22.3%) with aperture areas of 0.0784 cm 2 and 1.0085 cm 2 , respectively. The devices maintained 90% of their initial efficiency after operation at the maximum power point for 2000 hours under 1 sun illumination.
The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal array (PCA) with regular distribution to assist the growth of the perovskite absorption layer. The PCA provides nuclei where the crystallization can commence without overcoming the critical Gibbs free energy for nucleation and induces a controllable bottom-up crystallization process under solvent annealing. As a result, a perovskite film with high crystallinity and reduced grain boundaries was obtained. The largest grain size was over 4 μm and the average grain size was over 3 μm. PSCs based on the perovskite film with the PCA achieved power conversion efficiencies of 25.1% (certified 24.3%) and 23.1% (certified 22.3%) with aperture areas of 0.0784 cm 2 and 1.0085 cm 2 , respectively. The devices maintained 90% of their initial efficiency after operation at the maximum power point for 2000 hours under 1 sun illumination. The PCA regularly distributing on the substrate served as templated crystals and induced a well-organized bottom-up crystallization process, which greatly improved the crystallinity of the perovskite film.
Author Han, Qifeng
Yang, Xudong
Wang, Yanbo
Shen, Yangzi
Han, Liyuan
Zhang, Caiyi
Chen, Han
Shen, Zhichao
Luo, Xinhui
Wang, Tao
Zhang, Yiqiang
AuthorAffiliation State Key Laboratory of Metal Matrix Composites
School of Materials Science and Engineering
Shanghai Jiao Tong University
Henan Institute of Advanced Technology
Zhengzhou University
AuthorAffiliation_xml – name: State Key Laboratory of Metal Matrix Composites
– name: Henan Institute of Advanced Technology
– name: Zhengzhou University
– name: Shanghai Jiao Tong University
– name: School of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Zhichao
  surname: Shen
  fullname: Shen, Zhichao
– sequence: 2
  givenname: Qifeng
  surname: Han
  fullname: Han, Qifeng
– sequence: 3
  givenname: Xinhui
  surname: Luo
  fullname: Luo, Xinhui
– sequence: 4
  givenname: Yangzi
  surname: Shen
  fullname: Shen, Yangzi
– sequence: 5
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
– sequence: 6
  givenname: Caiyi
  surname: Zhang
  fullname: Zhang, Caiyi
– sequence: 7
  givenname: Yanbo
  surname: Wang
  fullname: Wang, Yanbo
– sequence: 8
  givenname: Han
  surname: Chen
  fullname: Chen, Han
– sequence: 9
  givenname: Xudong
  surname: Yang
  fullname: Yang, Xudong
– sequence: 10
  givenname: Yiqiang
  surname: Zhang
  fullname: Zhang, Yiqiang
– sequence: 11
  givenname: Liyuan
  surname: Han
  fullname: Han, Liyuan
BookMark eNptkc1LxDAQxYOs4O7qxbsQ8CZUp22SNsdlXT9gwYueS9okmrU26ySr9L-36_oBInOYOfzeG-bNhIw63xlCjlM4TyGXFzo1BrJSFmqPjNOCs4QXIEbfs5DZAZmEsAIQGRRyTJo59iGqNlGIqk9UCC5Eo-kj-vf4RL2liq4N-rfw7KKhqg4e19H5jraqN0itR2qsdY0zXaSq03Rwq1tDg28V0sa0bTgk-1a1wRx99Sl5uFrcz2-S5d317Xy2TJqcFTGpJWNSC1ZqloNiBVcCRJrxPAPL5FBgal2UotQgIONG2pJBI6zOua21rvMpOd35rtG_bkyI1cpvsBtWVplgIDnPSz5QsKMa9CGgsVXjotqeFFG5tkqh2kZZXaaLxWeUs0Fy9keyRveisP8fPtnBGJof7vcv-Qc-b4BU
CitedBy_id crossref_primary_10_1002_anie_202307225
crossref_primary_10_1002_smll_202204733
crossref_primary_10_1002_adfm_202208392
crossref_primary_10_1002_adma_202301852
crossref_primary_10_1021_acs_jpclett_3c00709
crossref_primary_10_1002_adma_202410338
crossref_primary_10_1039_D3EE02404K
crossref_primary_10_1002_advs_202402065
crossref_primary_10_1088_1361_6528_ad7e32
crossref_primary_10_1021_acsami_2c18446
crossref_primary_10_1016_j_jechem_2024_05_012
crossref_primary_10_1002_aenm_202203313
crossref_primary_10_1016_j_joule_2024_02_007
crossref_primary_10_1016_j_solmat_2022_112088
crossref_primary_10_1039_D4QM00560K
crossref_primary_10_1002_ange_202305221
crossref_primary_10_1002_sstr_202300547
crossref_primary_10_1002_cey2_318
crossref_primary_10_1002_smll_202307219
crossref_primary_10_1016_j_nanoen_2024_109751
crossref_primary_10_1063_5_0179194
crossref_primary_10_1002_adma_202309428
crossref_primary_10_1002_solr_202300931
crossref_primary_10_1002_adma_202204366
crossref_primary_10_1039_D2EE02277J
crossref_primary_10_1002_aenm_202403706
crossref_primary_10_23919_IEN_2023_0026
crossref_primary_10_1002_solr_202300268
crossref_primary_10_1039_D2EE03742D
crossref_primary_10_1002_solr_202200721
crossref_primary_10_1016_j_ijbiomac_2022_07_180
crossref_primary_10_1039_D2EE03342A
crossref_primary_10_1002_cssc_202202109
crossref_primary_10_1002_smtd_202301633
crossref_primary_10_1016_j_jphotochem_2024_115499
crossref_primary_10_1126_science_ade3126
crossref_primary_10_1002_anie_202218478
crossref_primary_10_1039_D3RA02391E
crossref_primary_10_1002_anie_202305221
crossref_primary_10_1002_solr_202400235
crossref_primary_10_1016_j_jallcom_2024_177263
crossref_primary_10_1088_1361_6528_ad3251
crossref_primary_10_1007_s11426_022_1426_x
crossref_primary_10_1002_solr_202400231
crossref_primary_10_1002_smll_202404208
crossref_primary_10_1016_j_mssp_2022_107129
crossref_primary_10_26599_EMD_2024_9370030
crossref_primary_10_1016_j_nanoen_2022_107529
crossref_primary_10_1002_adfm_202303841
crossref_primary_10_1002_ange_202218478
crossref_primary_10_1007_s10854_023_09868_9
crossref_primary_10_1016_j_cej_2022_141246
crossref_primary_10_1021_acsami_2c21792
crossref_primary_10_1002_adfm_202407860
crossref_primary_10_1038_s41578_023_00582_w
crossref_primary_10_1021_acsami_4c01335
crossref_primary_10_1002_ange_202307225
crossref_primary_10_1021_acsami_2c12129
crossref_primary_10_1002_adma_202300233
crossref_primary_10_1016_j_tsf_2022_139486
crossref_primary_10_1039_D2EE02510H
crossref_primary_10_1063_5_0135197
crossref_primary_10_1002_aenm_202300451
crossref_primary_10_1002_cjoc_202200468
crossref_primary_10_1016_j_joule_2022_11_004
crossref_primary_10_1039_D3TC00275F
crossref_primary_10_1021_acs_jpclett_2c01030
crossref_primary_10_1002_adma_202207362
crossref_primary_10_1039_D2EE03418B
crossref_primary_10_1002_admi_202201809
crossref_primary_10_1002_adfm_202302270
crossref_primary_10_1021_acsaem_3c01329
crossref_primary_10_1002_solr_202300438
crossref_primary_10_1002_adfm_202417493
crossref_primary_10_1016_j_cej_2022_137676
crossref_primary_10_1039_D2MH00980C
crossref_primary_10_15541_jim20230448
crossref_primary_10_1021_acsami_4c14573
crossref_primary_10_1002_adma_202211545
crossref_primary_10_1002_smll_202308836
Cites_doi 10.1063/1.103110
10.1039/C8TA07617K
10.1063/1.95072
10.1021/ja809598r
10.1038/s41586-019-1357-2
10.1002/aenm.202100555
10.1039/C7TA11190H
10.1002/aenm.202003785
10.1038/nature23877
10.1109/JPROC.2012.2189786
10.1126/science.aax3294
10.1038/ncomms13422
10.1038/s41586-021-03406-5
10.1038/s41586-021-03285-w
10.1038/nature14133
10.1021/acssuschemeng.8b05610
10.1038/nenergy.2016.149
10.1126/science.aax8018
10.1002/smll.202001535
10.1038/nature12340
10.1016/j.joule.2019.03.023
10.1038/s41467-017-02449-5
10.1038/ncomms11574
10.1021/acsnano.7b01351
10.1126/sciadv.abb2412
10.1126/sciadv.1701402
10.1021/acs.chemrev.8b00318
10.1038/nenergy.2017.32
10.1039/C5EE03229F
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d1ee02897a
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 185
ExternalDocumentID 10_1039_D1EE02897A
d1ee02897a
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c347t-b9449d648d430a475a606125320f494940ebd7868d06025e9f840c6fd35fbddb3
ISSN 1754-5692
IngestDate Mon Jun 30 11:56:21 EDT 2025
Thu Apr 24 22:59:10 EDT 2025
Tue Jul 01 01:45:51 EDT 2025
Tue Mar 22 05:00:46 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-b9449d648d430a475a606125320f494940ebd7868d06025e9f840c6fd35fbddb3
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d1ee02897a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3877-7830
0000-0001-9766-9015
0000-0002-2437-925X
PQID 2640955385
PQPubID 2047494
PageCount 8
ParticipantIDs crossref_citationtrail_10_1039_D1EE02897A
proquest_journals_2640955385
rsc_primary_d1ee02897a
crossref_primary_10_1039_D1EE02897A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-16
PublicationDateYYYYMMDD 2022-03-16
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-16
  day: 16
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhao (D1EE02897A/cit17/1) 2018; 9
Liu (D1EE02897A/cit22/1) 2017; 11
Fisher (D1EE02897A/cit11/1) 2012; 100
Chen (D1EE02897A/cit21/1) 2019; 7
Burschka (D1EE02897A/cit3/1) 2013; 499
Jeon (D1EE02897A/cit4/1) 2015; 517
Ahn (D1EE02897A/cit28/1) 2016; 7
Yoo (D1EE02897A/cit6/1) 2021; 590
Chen (D1EE02897A/cit7/1) 2017; 550
Jeong (D1EE02897A/cit5/1) 2021; 592
Zhang (D1EE02897A/cit19/1) 2019; 3
Takano (D1EE02897A/cit13/1) 1990; 56
Kondo (D1EE02897A/cit14/1) 1984; 45
Nie (D1EE02897A/cit31/1) 2016; 7
Newman (D1EE02897A/cit12/1) 2000; 12
Alharbi (D1EE02897A/cit34/1) 2021; 11
Bai (D1EE02897A/cit33/1) 2019; 571
Giesbrecht (D1EE02897A/cit26/1) 2018; 6
Li (D1EE02897A/cit20/1) 2016; 9
Ball (D1EE02897A/cit29/1) 2016; 1
He (D1EE02897A/cit23/1) 2017; 29
Kim (D1EE02897A/cit2/1) 2012; 2
Jeong (D1EE02897A/cit18/1) 2018; 6
Ummadisingu (D1EE02897A/cit25/1) 2018; 4
Zhang (D1EE02897A/cit16/1) 2020; 16
Yang (D1EE02897A/cit32/1) 2019; 365
Yoshikawa (D1EE02897A/cit10/1) 2017; 2
Han (D1EE02897A/cit24/1) 2021; 31
Wang (D1EE02897A/cit8/1) 2019; 365
Kojima (D1EE02897A/cit1/1) 2009; 131
Ryuzan (D1EE02897A/cit15/1) 1972; 8
Cho (D1EE02897A/cit30/1) 2021; 11
Dunlap-Shohl (D1EE02897A/cit9/1) 2019; 119
Chen (D1EE02897A/cit27/1) 2021; 7
References_xml – volume: 12
  start-page: R335
  year: 2000
  ident: D1EE02897A/cit12/1
  publication-title: J. Phys.: Condens. Matter
– volume: 56
  start-page: 1664
  year: 1990
  ident: D1EE02897A/cit13/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.103110
– volume: 6
  start-page: 20138
  year: 2018
  ident: D1EE02897A/cit18/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07617K
– volume: 45
  start-page: 1070
  year: 1984
  ident: D1EE02897A/cit14/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.95072
– volume: 131
  start-page: 6050
  year: 2009
  ident: D1EE02897A/cit1/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 571
  start-page: 245
  year: 2019
  ident: D1EE02897A/cit33/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1357-2
– volume: 11
  start-page: 2100555
  year: 2021
  ident: D1EE02897A/cit30/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100555
– volume: 6
  start-page: 4822
  year: 2018
  ident: D1EE02897A/cit26/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11190H
– volume: 11
  start-page: 2003785
  year: 2021
  ident: D1EE02897A/cit34/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003785
– volume: 2
  start-page: 7
  year: 2012
  ident: D1EE02897A/cit2/1
  publication-title: Sci. Rep.
– volume: 550
  start-page: 92
  year: 2017
  ident: D1EE02897A/cit7/1
  publication-title: Nature
  doi: 10.1038/nature23877
– volume: 100
  start-page: 1454
  year: 2012
  ident: D1EE02897A/cit11/1
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2189786
– volume: 365
  start-page: 473
  year: 2019
  ident: D1EE02897A/cit32/1
  publication-title: Science
  doi: 10.1126/science.aax3294
– volume: 7
  start-page: 13422
  year: 2016
  ident: D1EE02897A/cit28/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13422
– volume: 592
  start-page: 381
  year: 2021
  ident: D1EE02897A/cit5/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03406-5
– volume: 590
  start-page: 587
  year: 2021
  ident: D1EE02897A/cit6/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03285-w
– volume: 517
  start-page: 476
  year: 2015
  ident: D1EE02897A/cit4/1
  publication-title: Nature
  doi: 10.1038/nature14133
– volume: 29
  start-page: 8
  year: 2017
  ident: D1EE02897A/cit23/1
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3404
  year: 2019
  ident: D1EE02897A/cit21/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05610
– volume: 1
  start-page: 16149
  year: 2016
  ident: D1EE02897A/cit29/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.149
– volume: 365
  start-page: 687
  year: 2019
  ident: D1EE02897A/cit8/1
  publication-title: Science
  doi: 10.1126/science.aax8018
– volume: 16
  start-page: 2001535
  year: 2020
  ident: D1EE02897A/cit16/1
  publication-title: Small
  doi: 10.1002/smll.202001535
– volume: 499
  start-page: 316
  year: 2013
  ident: D1EE02897A/cit3/1
  publication-title: Nature
  doi: 10.1038/nature12340
– volume: 3
  start-page: 1452
  year: 2019
  ident: D1EE02897A/cit19/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.03.023
– volume: 9
  start-page: 10
  year: 2018
  ident: D1EE02897A/cit17/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02449-5
– volume: 7
  start-page: 11574
  year: 2016
  ident: D1EE02897A/cit31/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11574
– volume: 11
  start-page: 5766
  year: 2017
  ident: D1EE02897A/cit22/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01351
– volume: 31
  start-page: 24
  year: 2021
  ident: D1EE02897A/cit24/1
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: eabb2412
  year: 2021
  ident: D1EE02897A/cit27/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb2412
– volume: 8
  start-page: 115
  year: 1972
  ident: D1EE02897A/cit15/1
  publication-title: Fujitsu Sci. Tech. J.
– volume: 4
  start-page: 9
  year: 2018
  ident: D1EE02897A/cit25/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701402
– volume: 119
  start-page: 3193
  year: 2019
  ident: D1EE02897A/cit9/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00318
– volume: 2
  start-page: 17032
  year: 2017
  ident: D1EE02897A/cit10/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.32
– volume: 9
  start-page: 1282
  year: 2016
  ident: D1EE02897A/cit20/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03229F
SSID ssj0062079
Score 2.6167314
Snippet The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms Absorption
Arrays
Crystal growth
Crystal structure
Crystallinity
Crystallization
Energy conversion efficiency
Free energy
Gibbs free energy
Grain boundaries
Grain size
Maximum power
Nucleation
Particle size
Perovskites
Photovoltaic cells
Photovoltaics
Solar cells
Title Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells
URI https://www.proquest.com/docview/2640955385
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QUe0LhMFAayBC-oykjjS5LHMjomGEOIVhReIid21kpVi5J00vYj-M0c27m4qELAS1RZiVX5fDm3nPMdhF5mYEIynnKPSS4gQBHcAy-BeaEIiOSg_0iq-50_XvLzKX0_Y7Ne76dTtbSp0pPsdmdfyf9IFdZArrpL9h8k224KC_Ab5AtXkDBc_0rGp8UNOHdLTxSFuPHADdYyk4MrCK2rue181Dzg16VO0Q5EWq4LqyGWAjxty_ZtKCSaQnPYTXdSlTreHeicfrmVubd9ghosTn9c01XZQeRL3fHxfa5r8tedkjOrnxe5qs2lLgTamFztbLGabxa_b_BNrK5uF25iAmJaXeXGWyjZ9EdTe2pqS-oJdo66DRn1GLfT8E6Usxb6fEtHMweLxFG4EL1GjvHWvRQ7DYNPNK-qHCqlP62GjvlrPvlffkrOphcXyWQ8m-yhgwDCDtCbB6MPb959bWw7D3zD3tj-74bwlsSvu723XZwubtkrmqEyxnmZHKJ7ddSBRxZC91FPrR6guw4X5UOU7QYTtmDC6xwL3IEJd2DCBkwYwIRbMGEAE7ZgwgZM2IDpEZqejSen5149gcPLCA0rL40pjSWnkaTEFzRkghuXmAR-rmmNqK9SGUY8kj4H51nFeUT9jOeSsDyVMiVHaH-1XqnHCIucCUVFxn0dAzORSjKkgR9nBKyt4qqPXjWHlmQ1Pb2ekrJMTJkEiZO3w_HYHPCoj1609_6wpCw77zpuzj6pX9oyAf9fky6SiPXREcijfb4T35M_P_cU3enQfoz2q2KjnoFjWqXPa7T8ApgUkk4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal-array-assisted+growth+of+a+perovskite+absorption+layer+for+efficient+and+stable+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Shen%2C+Zhichao&rft.au=Han%2C+Qifeng&rft.au=Luo%2C+Xinhui&rft.au=Shen%2C+Yangzi&rft.date=2022-03-16&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=15&rft.issue=3&rft.spage=1078&rft.epage=1085&rft_id=info:doi/10.1039%2Fd1ee02897a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon