Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells
The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal arr...
Saved in:
Published in | Energy & environmental science Vol. 15; no. 3; pp. 178 - 185 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
16.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal array (PCA) with regular distribution to assist the growth of the perovskite absorption layer. The PCA provides nuclei where the crystallization can commence without overcoming the critical Gibbs free energy for nucleation and induces a controllable bottom-up crystallization process under solvent annealing. As a result, a perovskite film with high crystallinity and reduced grain boundaries was obtained. The largest grain size was over 4 μm and the average grain size was over 3 μm. PSCs based on the perovskite film with the PCA achieved power conversion efficiencies of 25.1% (certified 24.3%) and 23.1% (certified 22.3%) with aperture areas of 0.0784 cm
2
and 1.0085 cm
2
, respectively. The devices maintained 90% of their initial efficiency after operation at the maximum power point for 2000 hours under 1 sun illumination.
The PCA regularly distributing on the substrate served as templated crystals and induced a well-organized bottom-up crystallization process, which greatly improved the crystallinity of the perovskite film. |
---|---|
AbstractList | The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal array (PCA) with regular distribution to assist the growth of the perovskite absorption layer. The PCA provides nuclei where the crystallization can commence without overcoming the critical Gibbs free energy for nucleation and induces a controllable bottom-up crystallization process under solvent annealing. As a result, a perovskite film with high crystallinity and reduced grain boundaries was obtained. The largest grain size was over 4 μm and the average grain size was over 3 μm. PSCs based on the perovskite film with the PCA achieved power conversion efficiencies of 25.1% (certified 24.3%) and 23.1% (certified 22.3%) with aperture areas of 0.0784 cm2 and 1.0085 cm2, respectively. The devices maintained 90% of their initial efficiency after operation at the maximum power point for 2000 hours under 1 sun illumination. The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal array (PCA) with regular distribution to assist the growth of the perovskite absorption layer. The PCA provides nuclei where the crystallization can commence without overcoming the critical Gibbs free energy for nucleation and induces a controllable bottom-up crystallization process under solvent annealing. As a result, a perovskite film with high crystallinity and reduced grain boundaries was obtained. The largest grain size was over 4 μm and the average grain size was over 3 μm. PSCs based on the perovskite film with the PCA achieved power conversion efficiencies of 25.1% (certified 24.3%) and 23.1% (certified 22.3%) with aperture areas of 0.0784 cm 2 and 1.0085 cm 2 , respectively. The devices maintained 90% of their initial efficiency after operation at the maximum power point for 2000 hours under 1 sun illumination. The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal array (PCA) with regular distribution to assist the growth of the perovskite absorption layer. The PCA provides nuclei where the crystallization can commence without overcoming the critical Gibbs free energy for nucleation and induces a controllable bottom-up crystallization process under solvent annealing. As a result, a perovskite film with high crystallinity and reduced grain boundaries was obtained. The largest grain size was over 4 μm and the average grain size was over 3 μm. PSCs based on the perovskite film with the PCA achieved power conversion efficiencies of 25.1% (certified 24.3%) and 23.1% (certified 22.3%) with aperture areas of 0.0784 cm 2 and 1.0085 cm 2 , respectively. The devices maintained 90% of their initial efficiency after operation at the maximum power point for 2000 hours under 1 sun illumination. The PCA regularly distributing on the substrate served as templated crystals and induced a well-organized bottom-up crystallization process, which greatly improved the crystallinity of the perovskite film. |
Author | Han, Qifeng Yang, Xudong Wang, Yanbo Shen, Yangzi Han, Liyuan Zhang, Caiyi Chen, Han Shen, Zhichao Luo, Xinhui Wang, Tao Zhang, Yiqiang |
AuthorAffiliation | State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Henan Institute of Advanced Technology Zhengzhou University |
AuthorAffiliation_xml | – name: State Key Laboratory of Metal Matrix Composites – name: Henan Institute of Advanced Technology – name: Zhengzhou University – name: Shanghai Jiao Tong University – name: School of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Zhichao surname: Shen fullname: Shen, Zhichao – sequence: 2 givenname: Qifeng surname: Han fullname: Han, Qifeng – sequence: 3 givenname: Xinhui surname: Luo fullname: Luo, Xinhui – sequence: 4 givenname: Yangzi surname: Shen fullname: Shen, Yangzi – sequence: 5 givenname: Tao surname: Wang fullname: Wang, Tao – sequence: 6 givenname: Caiyi surname: Zhang fullname: Zhang, Caiyi – sequence: 7 givenname: Yanbo surname: Wang fullname: Wang, Yanbo – sequence: 8 givenname: Han surname: Chen fullname: Chen, Han – sequence: 9 givenname: Xudong surname: Yang fullname: Yang, Xudong – sequence: 10 givenname: Yiqiang surname: Zhang fullname: Zhang, Yiqiang – sequence: 11 givenname: Liyuan surname: Han fullname: Han, Liyuan |
BookMark | eNptkc1LxDAQxYOs4O7qxbsQ8CZUp22SNsdlXT9gwYueS9okmrU26ySr9L-36_oBInOYOfzeG-bNhIw63xlCjlM4TyGXFzo1BrJSFmqPjNOCs4QXIEbfs5DZAZmEsAIQGRRyTJo59iGqNlGIqk9UCC5Eo-kj-vf4RL2liq4N-rfw7KKhqg4e19H5jraqN0itR2qsdY0zXaSq03Rwq1tDg28V0sa0bTgk-1a1wRx99Sl5uFrcz2-S5d317Xy2TJqcFTGpJWNSC1ZqloNiBVcCRJrxPAPL5FBgal2UotQgIONG2pJBI6zOua21rvMpOd35rtG_bkyI1cpvsBtWVplgIDnPSz5QsKMa9CGgsVXjotqeFFG5tkqh2kZZXaaLxWeUs0Fy9keyRveisP8fPtnBGJof7vcv-Qc-b4BU |
CitedBy_id | crossref_primary_10_1002_anie_202307225 crossref_primary_10_1002_smll_202204733 crossref_primary_10_1002_adfm_202208392 crossref_primary_10_1002_adma_202301852 crossref_primary_10_1021_acs_jpclett_3c00709 crossref_primary_10_1002_adma_202410338 crossref_primary_10_1039_D3EE02404K crossref_primary_10_1002_advs_202402065 crossref_primary_10_1088_1361_6528_ad7e32 crossref_primary_10_1021_acsami_2c18446 crossref_primary_10_1016_j_jechem_2024_05_012 crossref_primary_10_1002_aenm_202203313 crossref_primary_10_1016_j_joule_2024_02_007 crossref_primary_10_1016_j_solmat_2022_112088 crossref_primary_10_1039_D4QM00560K crossref_primary_10_1002_ange_202305221 crossref_primary_10_1002_sstr_202300547 crossref_primary_10_1002_cey2_318 crossref_primary_10_1002_smll_202307219 crossref_primary_10_1016_j_nanoen_2024_109751 crossref_primary_10_1063_5_0179194 crossref_primary_10_1002_adma_202309428 crossref_primary_10_1002_solr_202300931 crossref_primary_10_1002_adma_202204366 crossref_primary_10_1039_D2EE02277J crossref_primary_10_1002_aenm_202403706 crossref_primary_10_23919_IEN_2023_0026 crossref_primary_10_1002_solr_202300268 crossref_primary_10_1039_D2EE03742D crossref_primary_10_1002_solr_202200721 crossref_primary_10_1016_j_ijbiomac_2022_07_180 crossref_primary_10_1039_D2EE03342A crossref_primary_10_1002_cssc_202202109 crossref_primary_10_1002_smtd_202301633 crossref_primary_10_1016_j_jphotochem_2024_115499 crossref_primary_10_1126_science_ade3126 crossref_primary_10_1002_anie_202218478 crossref_primary_10_1039_D3RA02391E crossref_primary_10_1002_anie_202305221 crossref_primary_10_1002_solr_202400235 crossref_primary_10_1016_j_jallcom_2024_177263 crossref_primary_10_1088_1361_6528_ad3251 crossref_primary_10_1007_s11426_022_1426_x crossref_primary_10_1002_solr_202400231 crossref_primary_10_1002_smll_202404208 crossref_primary_10_1016_j_mssp_2022_107129 crossref_primary_10_26599_EMD_2024_9370030 crossref_primary_10_1016_j_nanoen_2022_107529 crossref_primary_10_1002_adfm_202303841 crossref_primary_10_1002_ange_202218478 crossref_primary_10_1007_s10854_023_09868_9 crossref_primary_10_1016_j_cej_2022_141246 crossref_primary_10_1021_acsami_2c21792 crossref_primary_10_1002_adfm_202407860 crossref_primary_10_1038_s41578_023_00582_w crossref_primary_10_1021_acsami_4c01335 crossref_primary_10_1002_ange_202307225 crossref_primary_10_1021_acsami_2c12129 crossref_primary_10_1002_adma_202300233 crossref_primary_10_1016_j_tsf_2022_139486 crossref_primary_10_1039_D2EE02510H crossref_primary_10_1063_5_0135197 crossref_primary_10_1002_aenm_202300451 crossref_primary_10_1002_cjoc_202200468 crossref_primary_10_1016_j_joule_2022_11_004 crossref_primary_10_1039_D3TC00275F crossref_primary_10_1021_acs_jpclett_2c01030 crossref_primary_10_1002_adma_202207362 crossref_primary_10_1039_D2EE03418B crossref_primary_10_1002_admi_202201809 crossref_primary_10_1002_adfm_202302270 crossref_primary_10_1021_acsaem_3c01329 crossref_primary_10_1002_solr_202300438 crossref_primary_10_1002_adfm_202417493 crossref_primary_10_1016_j_cej_2022_137676 crossref_primary_10_1039_D2MH00980C crossref_primary_10_15541_jim20230448 crossref_primary_10_1021_acsami_4c14573 crossref_primary_10_1002_adma_202211545 crossref_primary_10_1002_smll_202308836 |
Cites_doi | 10.1063/1.103110 10.1039/C8TA07617K 10.1063/1.95072 10.1021/ja809598r 10.1038/s41586-019-1357-2 10.1002/aenm.202100555 10.1039/C7TA11190H 10.1002/aenm.202003785 10.1038/nature23877 10.1109/JPROC.2012.2189786 10.1126/science.aax3294 10.1038/ncomms13422 10.1038/s41586-021-03406-5 10.1038/s41586-021-03285-w 10.1038/nature14133 10.1021/acssuschemeng.8b05610 10.1038/nenergy.2016.149 10.1126/science.aax8018 10.1002/smll.202001535 10.1038/nature12340 10.1016/j.joule.2019.03.023 10.1038/s41467-017-02449-5 10.1038/ncomms11574 10.1021/acsnano.7b01351 10.1126/sciadv.abb2412 10.1126/sciadv.1701402 10.1021/acs.chemrev.8b00318 10.1038/nenergy.2017.32 10.1039/C5EE03229F |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d1ee02897a |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 185 |
ExternalDocumentID | 10_1039_D1EE02897A d1ee02897a |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c347t-b9449d648d430a475a606125320f494940ebd7868d06025e9f840c6fd35fbddb3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:56:21 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jul 01 01:45:51 EDT 2025 Tue Mar 22 05:00:46 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-b9449d648d430a475a606125320f494940ebd7868d06025e9f840c6fd35fbddb3 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1ee02897a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3877-7830 0000-0001-9766-9015 0000-0002-2437-925X |
PQID | 2640955385 |
PQPubID | 2047494 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1039_D1EE02897A proquest_journals_2640955385 rsc_primary_d1ee02897a crossref_primary_10_1039_D1EE02897A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-16 |
PublicationDateYYYYMMDD | 2022-03-16 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhao (D1EE02897A/cit17/1) 2018; 9 Liu (D1EE02897A/cit22/1) 2017; 11 Fisher (D1EE02897A/cit11/1) 2012; 100 Chen (D1EE02897A/cit21/1) 2019; 7 Burschka (D1EE02897A/cit3/1) 2013; 499 Jeon (D1EE02897A/cit4/1) 2015; 517 Ahn (D1EE02897A/cit28/1) 2016; 7 Yoo (D1EE02897A/cit6/1) 2021; 590 Chen (D1EE02897A/cit7/1) 2017; 550 Jeong (D1EE02897A/cit5/1) 2021; 592 Zhang (D1EE02897A/cit19/1) 2019; 3 Takano (D1EE02897A/cit13/1) 1990; 56 Kondo (D1EE02897A/cit14/1) 1984; 45 Nie (D1EE02897A/cit31/1) 2016; 7 Newman (D1EE02897A/cit12/1) 2000; 12 Alharbi (D1EE02897A/cit34/1) 2021; 11 Bai (D1EE02897A/cit33/1) 2019; 571 Giesbrecht (D1EE02897A/cit26/1) 2018; 6 Li (D1EE02897A/cit20/1) 2016; 9 Ball (D1EE02897A/cit29/1) 2016; 1 He (D1EE02897A/cit23/1) 2017; 29 Kim (D1EE02897A/cit2/1) 2012; 2 Jeong (D1EE02897A/cit18/1) 2018; 6 Ummadisingu (D1EE02897A/cit25/1) 2018; 4 Zhang (D1EE02897A/cit16/1) 2020; 16 Yang (D1EE02897A/cit32/1) 2019; 365 Yoshikawa (D1EE02897A/cit10/1) 2017; 2 Han (D1EE02897A/cit24/1) 2021; 31 Wang (D1EE02897A/cit8/1) 2019; 365 Kojima (D1EE02897A/cit1/1) 2009; 131 Ryuzan (D1EE02897A/cit15/1) 1972; 8 Cho (D1EE02897A/cit30/1) 2021; 11 Dunlap-Shohl (D1EE02897A/cit9/1) 2019; 119 Chen (D1EE02897A/cit27/1) 2021; 7 |
References_xml | – volume: 12 start-page: R335 year: 2000 ident: D1EE02897A/cit12/1 publication-title: J. Phys.: Condens. Matter – volume: 56 start-page: 1664 year: 1990 ident: D1EE02897A/cit13/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.103110 – volume: 6 start-page: 20138 year: 2018 ident: D1EE02897A/cit18/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07617K – volume: 45 start-page: 1070 year: 1984 ident: D1EE02897A/cit14/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.95072 – volume: 131 start-page: 6050 year: 2009 ident: D1EE02897A/cit1/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 571 start-page: 245 year: 2019 ident: D1EE02897A/cit33/1 publication-title: Nature doi: 10.1038/s41586-019-1357-2 – volume: 11 start-page: 2100555 year: 2021 ident: D1EE02897A/cit30/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100555 – volume: 6 start-page: 4822 year: 2018 ident: D1EE02897A/cit26/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11190H – volume: 11 start-page: 2003785 year: 2021 ident: D1EE02897A/cit34/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003785 – volume: 2 start-page: 7 year: 2012 ident: D1EE02897A/cit2/1 publication-title: Sci. Rep. – volume: 550 start-page: 92 year: 2017 ident: D1EE02897A/cit7/1 publication-title: Nature doi: 10.1038/nature23877 – volume: 100 start-page: 1454 year: 2012 ident: D1EE02897A/cit11/1 publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2189786 – volume: 365 start-page: 473 year: 2019 ident: D1EE02897A/cit32/1 publication-title: Science doi: 10.1126/science.aax3294 – volume: 7 start-page: 13422 year: 2016 ident: D1EE02897A/cit28/1 publication-title: Nat. Commun. doi: 10.1038/ncomms13422 – volume: 592 start-page: 381 year: 2021 ident: D1EE02897A/cit5/1 publication-title: Nature doi: 10.1038/s41586-021-03406-5 – volume: 590 start-page: 587 year: 2021 ident: D1EE02897A/cit6/1 publication-title: Nature doi: 10.1038/s41586-021-03285-w – volume: 517 start-page: 476 year: 2015 ident: D1EE02897A/cit4/1 publication-title: Nature doi: 10.1038/nature14133 – volume: 29 start-page: 8 year: 2017 ident: D1EE02897A/cit23/1 publication-title: Adv. Mater. – volume: 7 start-page: 3404 year: 2019 ident: D1EE02897A/cit21/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05610 – volume: 1 start-page: 16149 year: 2016 ident: D1EE02897A/cit29/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.149 – volume: 365 start-page: 687 year: 2019 ident: D1EE02897A/cit8/1 publication-title: Science doi: 10.1126/science.aax8018 – volume: 16 start-page: 2001535 year: 2020 ident: D1EE02897A/cit16/1 publication-title: Small doi: 10.1002/smll.202001535 – volume: 499 start-page: 316 year: 2013 ident: D1EE02897A/cit3/1 publication-title: Nature doi: 10.1038/nature12340 – volume: 3 start-page: 1452 year: 2019 ident: D1EE02897A/cit19/1 publication-title: Joule doi: 10.1016/j.joule.2019.03.023 – volume: 9 start-page: 10 year: 2018 ident: D1EE02897A/cit17/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02449-5 – volume: 7 start-page: 11574 year: 2016 ident: D1EE02897A/cit31/1 publication-title: Nat. Commun. doi: 10.1038/ncomms11574 – volume: 11 start-page: 5766 year: 2017 ident: D1EE02897A/cit22/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b01351 – volume: 31 start-page: 24 year: 2021 ident: D1EE02897A/cit24/1 publication-title: Adv. Funct. Mater. – volume: 7 start-page: eabb2412 year: 2021 ident: D1EE02897A/cit27/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb2412 – volume: 8 start-page: 115 year: 1972 ident: D1EE02897A/cit15/1 publication-title: Fujitsu Sci. Tech. J. – volume: 4 start-page: 9 year: 2018 ident: D1EE02897A/cit25/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701402 – volume: 119 start-page: 3193 year: 2019 ident: D1EE02897A/cit9/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00318 – volume: 2 start-page: 17032 year: 2017 ident: D1EE02897A/cit10/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.32 – volume: 9 start-page: 1282 year: 2016 ident: D1EE02897A/cit20/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03229F |
SSID | ssj0062079 |
Score | 2.6167314 |
Snippet | The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 178 |
SubjectTerms | Absorption Arrays Crystal growth Crystal structure Crystallinity Crystallization Energy conversion efficiency Free energy Gibbs free energy Grain boundaries Grain size Maximum power Nucleation Particle size Perovskites Photovoltaic cells Photovoltaics Solar cells |
Title | Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells |
URI | https://www.proquest.com/docview/2640955385 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QUe0LhMFAayBC-oykjjS5LHMjomGEOIVhReIid21kpVi5J00vYj-M0c27m4qELAS1RZiVX5fDm3nPMdhF5mYEIynnKPSS4gQBHcAy-BeaEIiOSg_0iq-50_XvLzKX0_Y7Ne76dTtbSp0pPsdmdfyf9IFdZArrpL9h8k224KC_Ab5AtXkDBc_0rGp8UNOHdLTxSFuPHADdYyk4MrCK2rue181Dzg16VO0Q5EWq4LqyGWAjxty_ZtKCSaQnPYTXdSlTreHeicfrmVubd9ghosTn9c01XZQeRL3fHxfa5r8tedkjOrnxe5qs2lLgTamFztbLGabxa_b_BNrK5uF25iAmJaXeXGWyjZ9EdTe2pqS-oJdo66DRn1GLfT8E6Usxb6fEtHMweLxFG4EL1GjvHWvRQ7DYNPNK-qHCqlP62GjvlrPvlffkrOphcXyWQ8m-yhgwDCDtCbB6MPb959bWw7D3zD3tj-74bwlsSvu723XZwubtkrmqEyxnmZHKJ7ddSBRxZC91FPrR6guw4X5UOU7QYTtmDC6xwL3IEJd2DCBkwYwIRbMGEAE7ZgwgZM2IDpEZqejSen5149gcPLCA0rL40pjSWnkaTEFzRkghuXmAR-rmmNqK9SGUY8kj4H51nFeUT9jOeSsDyVMiVHaH-1XqnHCIucCUVFxn0dAzORSjKkgR9nBKyt4qqPXjWHlmQ1Pb2ekrJMTJkEiZO3w_HYHPCoj1609_6wpCw77zpuzj6pX9oyAf9fky6SiPXREcijfb4T35M_P_cU3enQfoz2q2KjnoFjWqXPa7T8ApgUkk4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal-array-assisted+growth+of+a+perovskite+absorption+layer+for+efficient+and+stable+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Shen%2C+Zhichao&rft.au=Han%2C+Qifeng&rft.au=Luo%2C+Xinhui&rft.au=Shen%2C+Yangzi&rft.date=2022-03-16&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=15&rft.issue=3&rft.spage=1078&rft.epage=1085&rft_id=info:doi/10.1039%2Fd1ee02897a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |