Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems

On solving a convex-concave bilinear saddle-point problem (SPP), there have been many works studying the complexity results of first-order methods. These results are all about upper complexity bounds, which can determine at most how many iterations would guarantee a solution of desired accuracy. In...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 185; no. 1-2; pp. 1 - 35
Main Authors Ouyang, Yuyuan, Xu, Yangyang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-019-01420-0

Cover

Loading…
Abstract On solving a convex-concave bilinear saddle-point problem (SPP), there have been many works studying the complexity results of first-order methods. These results are all about upper complexity bounds, which can determine at most how many iterations would guarantee a solution of desired accuracy. In this paper, we pursue the opposite direction by deriving lower complexity bounds of first-order methods on large-scale SPPs. Our results apply to the methods whose iterates are in the linear span of past first-order information, as well as more general methods that produce their iterates in an arbitrary manner based on first-order information. We first work on the affinely constrained smooth convex optimization that is a special case of SPP. Different from gradient method on unconstrained problems, we show that first-order methods on affinely constrained problems generally cannot be accelerated from the known convergence rate O (1 /  t ) to O ( 1 / t 2 ) , and in addition, O (1 /  t ) is optimal for convex problems. Moreover, we prove that for strongly convex problems, O ( 1 / t 2 ) is the best possible convergence rate, while it is known that gradient methods can have linear convergence on unconstrained problems. Then we extend these results to general SPPs. It turns out that our lower complexity bounds match with several established upper complexity bounds in the literature, and thus they are tight and indicate the optimality of several existing first-order methods.
AbstractList On solving a convex-concave bilinear saddle-point problem (SPP), there have been many works studying the complexity results of first-order methods. These results are all about upper complexity bounds, which can determine at most how many iterations would guarantee a solution of desired accuracy. In this paper, we pursue the opposite direction by deriving lower complexity bounds of first-order methods on large-scale SPPs. Our results apply to the methods whose iterates are in the linear span of past first-order information, as well as more general methods that produce their iterates in an arbitrary manner based on first-order information. We first work on the affinely constrained smooth convex optimization that is a special case of SPP. Different from gradient method on unconstrained problems, we show that first-order methods on affinely constrained problems generally cannot be accelerated from the known convergence rate O (1 /  t ) to O ( 1 / t 2 ) , and in addition, O (1 /  t ) is optimal for convex problems. Moreover, we prove that for strongly convex problems, O ( 1 / t 2 ) is the best possible convergence rate, while it is known that gradient methods can have linear convergence on unconstrained problems. Then we extend these results to general SPPs. It turns out that our lower complexity bounds match with several established upper complexity bounds in the literature, and thus they are tight and indicate the optimality of several existing first-order methods.
On solving a convex-concave bilinear saddle-point problem (SPP), there have been many works studying the complexity results of first-order methods. These results are all about upper complexity bounds, which can determine at most how many iterations would guarantee a solution of desired accuracy. In this paper, we pursue the opposite direction by deriving lower complexity bounds of first-order methods on large-scale SPPs. Our results apply to the methods whose iterates are in the linear span of past first-order information, as well as more general methods that produce their iterates in an arbitrary manner based on first-order information. We first work on the affinely constrained smooth convex optimization that is a special case of SPP. Different from gradient method on unconstrained problems, we show that first-order methods on affinely constrained problems generally cannot be accelerated from the known convergence rate O(1 / t) to O(1/t2), and in addition, O(1 / t) is optimal for convex problems. Moreover, we prove that for strongly convex problems, O(1/t2) is the best possible convergence rate, while it is known that gradient methods can have linear convergence on unconstrained problems. Then we extend these results to general SPPs. It turns out that our lower complexity bounds match with several established upper complexity bounds in the literature, and thus they are tight and indicate the optimality of several existing first-order methods.
Author Ouyang, Yuyuan
Xu, Yangyang
Author_xml – sequence: 1
  givenname: Yuyuan
  surname: Ouyang
  fullname: Ouyang, Yuyuan
  organization: School of Mathematical and Statistical Sciences, Clemson University
– sequence: 2
  givenname: Yangyang
  orcidid: 0000-0002-4163-3723
  surname: Xu
  fullname: Xu, Yangyang
  email: xuy21@rpi.edu
  organization: Department of Mathematical Sciences, Rensselaer Polytechnic Institute
BookMark eNp9kE1LAzEQhoMoWKt_wNOC5-gku5ukRxG_oOCl95jNzmrKNqlJ6se_N7WC4KEMw0DyvPMO7wk59MEjIecMLhmAvEoMGEgKbFa64UDhgExYUwvaiEYckgkAb2krGByTk5SWAMBqpSbkeR4-MFY2rNYjfrr8VXVh4_tUhaEaXEyZhtgXYIX5NZTnIWxh_46ftAxr3rHq3Og8mlgl0_cj0nVwPlfrGLoRV-mUHA1mTHj2O6dkcXe7uHmg86f7x5vrObV1IzPtaiV6GKwxsp0hKjkoYaFRAgQyy_qey6E2vHxx24GwiC0XSppWzBQqqKfkYre2-L5tMGW9DJvoi6PmjVSlZpzvpbgoRCvbplB8R9kYUoo46HV0KxO_NAO9jVvv4tYlbv0Tt94eoP6JrMsmu-BzNG7cL6130lR8_AvGv6v2qL4BSwiW2g
CitedBy_id crossref_primary_10_1090_mcom_4063
crossref_primary_10_1137_18M1213488
crossref_primary_10_1007_s10208_023_09636_5
crossref_primary_10_1137_21M1462775
crossref_primary_10_1007_s10957_024_02394_6
crossref_primary_10_1007_s10589_022_00365_z
crossref_primary_10_1080_10556788_2021_1924714
crossref_primary_10_1080_10556788_2023_2280062
crossref_primary_10_1007_s11590_021_01775_4
crossref_primary_10_1137_23M1568168
crossref_primary_10_1137_20M1371579
crossref_primary_10_1137_22M1504597
crossref_primary_10_1007_s10589_023_00518_8
crossref_primary_10_1007_s10957_022_02062_7
crossref_primary_10_1109_LCSYS_2024_3401019
crossref_primary_10_1360_SCM_2024_0063
crossref_primary_10_1109_TCSS_2024_3411630
crossref_primary_10_1137_22M1469584
crossref_primary_10_1007_s10107_021_01660_z
crossref_primary_10_1134_S0965542520110020
crossref_primary_10_1007_s10589_024_00638_9
crossref_primary_10_1016_j_chaos_2024_115418
crossref_primary_10_1137_19M1290115
crossref_primary_10_1007_s10107_023_01976_y
crossref_primary_10_1007_s10107_019_01425_9
crossref_primary_10_1109_LCSYS_2020_3044977
crossref_primary_10_1137_21M1468668
crossref_primary_10_1137_23M159473X
crossref_primary_10_1287_moor_2022_1343
crossref_primary_10_1109_OJSP_2023_3344395
crossref_primary_10_1137_21M1451944
crossref_primary_10_1137_22M1470104
crossref_primary_10_1287_ijoc_2022_0200
crossref_primary_10_1137_21M1395302
crossref_primary_10_1137_21M1395764
crossref_primary_10_1287_opre_2022_0110
crossref_primary_10_1137_22M1505475
crossref_primary_10_1109_TAC_2021_3130082
crossref_primary_10_1007_s10107_022_01919_z
crossref_primary_10_1287_ijoo_2019_0033
crossref_primary_10_1007_s10107_024_02073_4
crossref_primary_10_1007_s10107_024_02075_2
crossref_primary_10_1007_s11425_023_2296_5
crossref_primary_10_1137_22M1485309
crossref_primary_10_1007_s10915_022_01819_6
crossref_primary_10_5802_ojmo_26
crossref_primary_10_1007_s10107_024_02128_6
Cites_doi 10.1007/s10107-013-0677-5
10.1137/130919362
10.1007/s10957-012-0245-9
10.1007/s40305-018-0232-4
10.1007/s40305-016-0131-5
10.1007/s10589-017-9972-z
10.1007/s10107-017-1161-4
10.1137/S1052623403425629
10.1007/s10107-012-0629-5
10.1007/s10851-010-0251-1
10.1016/0885-064X(91)90001-E
10.1137/14095697X
10.1007/s10107-017-1173-0
10.1016/0885-064X(92)90013-2
10.1007/s10107-015-0861-x
10.1137/14096757X
10.1137/16M1082305
10.1137/070704277
10.1007/s10107-004-0552-5
10.1137/110849468
10.1137/080716542
10.1016/j.jco.2014.08.003
10.1287/10-SSY010
10.1007/s10107-015-0955-5
10.1137/09076934X
10.1007/978-1-4419-8853-9
10.1137/110836936
10.1137/100801652
10.1137/120896219
10.1007/s10915-018-0680-3
10.1137/140992382
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019
Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019
– notice: Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-019-01420-0
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 35
ExternalDocumentID 10_1007_s10107_019_01420_0
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c347t-b386d0fcaa759ee87f86c048606e1c1dd27f3a29ee2cb06cee52687a5698e803
IEDL.DBID U2A
ISSN 0025-5610
IngestDate Fri Jul 25 19:44:04 EDT 2025
Fri Jul 25 19:58:15 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Tue Jul 01 02:15:12 EDT 2025
Fri Feb 21 02:32:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 68Q25
Information-based complexity
Convex optimization
90C25
90C06
Lower complexity bound
49M37
90C60
First-order methods
Saddle point problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-b386d0fcaa759ee87f86c048606e1c1dd27f3a29ee2cb06cee52687a5698e803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4163-3723
PQID 2269225754
PQPubID 25307
PageCount 35
ParticipantIDs proquest_journals_2478787922
proquest_journals_2269225754
crossref_primary_10_1007_s10107_019_01420_0
crossref_citationtrail_10_1007_s10107_019_01420_0
springer_journals_10_1007_s10107_019_01420_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LanGRenatoDMonteiroCIteration-complexity of first-order augmented lagrangian methods for convex programmingMath. Program.20161551–2511547343981110.1007/s10107-015-0861-x
Woodworth, B.E., Srebro, N.: Tight complexity bounds for optimizing composite objectives. In: Advances in Neural Information Processing Systems, pp. 3639–3647. (2016)
NesterovYIntroductory Lectures on Convex Optimization: A Basic Course2004DordrechtKluwer Academic Publisher10.1007/978-1-4419-8853-9
NemirovskiASInformation-based complexity of linear operator equationsJ. Complexity199282153175116791010.1016/0885-064X(92)90013-2
NesterovYSmooth minimization of non-smooth functionsMath. Program.20051031127152216653710.1007/s10107-004-0552-5
Lan, G.: The complexity of large-scale convex programming under a linear optimization oracle. (2013) arXiv preprint arXiv:1309.5550
Jaggi, M.: Revisiting frank-wolfe: Projection-free sparse convex optimization. In: ICML, vol. 1, pp. 427–435. (2013)
XuYAccelerated first-order primal-dual proximal methods for linearly constrained composite convex programmingSIAM J. Optim.201727314591484367932410.1137/16M1082305
Hamedani, E.Y., Aybat, N.S.: A primal-dual algorithm for general convex-concave saddle point problems. (2018) arXiv preprint arXiv:1803.01401
NemirovskiAYudinDProblem Complexity and Method Efficiency in Optimization1983New YorkWiley-Interscience Series in Discrete Mathematics, Wiley
NemirovskyAOn optimality of krylov’s information when solving linear operator equationsJ. Complexity199172121130110877210.1016/0885-064X(91)90001-E
XuYZhangSAccelerated primal-dual proximal block coordinate updating methods for constrained convex optimizationComput. Optim. Appl.201870191128378046210.1007/s10589-017-9972-z
Arjevani, Y., Shamir, O.: On the iteration complexity of oblivious first-order optimization algorithms. In: International Conference on Machine Learning, pp. 908–916. (2016)
GaoXZhangS-ZFirst-order algorithms for convex optimization with nonseparable objective and coupled constraintsJ. Oper. Res. Soc. China201752131159366308210.1007/s40305-016-0131-5
NemirovskiAJuditskyALanGShapiroARobust stochastic approximation approach to stochastic programmingSIAM J. Optim.200919415741609248604110.1137/070704277
NesterovYGradient methods for minimizing composite functionsMath. Program.20131401125161307186510.1007/s10107-012-0629-5
YanMA new primal-dual algorithm for minimizing the sum of three functions with a linear operatorJ. Sci. Comput.201876316981717383370710.1007/s10915-018-0680-3
DevolderOGlineurFNesterovYFirst-order methods of smooth convex optimization with inexact oracleMath. Program.20141461–23775323260810.1007/s10107-013-0677-5
MonteiroRDSvaiterBFComplexity of variants of Tseng’s modified F-B splitting and Korpelevich’s methods for hemivariational inequalities with applications to saddle-point and convex optimization problemsSIAM J. Optim.201121416881720286951310.1137/100801652
LanGZhouYAn optimal randomized incremental gradient methodMath. Program.20181711–2167215384453710.1007/s10107-017-1173-0
OuyangYChenYLanGPasiliaoEJrAn accelerated linearized alternating direction method of multipliersSIAM J. Imaging Sci.201581644681332497010.1137/14095697X
GuzmánCNemirovskiAOn lower complexity bounds for large-scale smooth convex optimizationJ. Complexity2015311114328454310.1016/j.jco.2014.08.003
NemirovskiAProx-method with rate of convergence O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O}(1/t)$$\end{document} for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problemsSIAM J. Optim.2004151229251211298410.1137/S1052623403425629
LanGZhouYConditional gradient sliding for convex optimizationSIAM J. Optim.201626213791409351687110.1137/140992382
HeYMonteiroRDAn accelerated hpe-type algorithm for a class of composite convex-concave saddle-point problemsSIAM J. Optim.20162612956343977710.1137/14096757X
Lan, G., Ouyang, Y.: Accelerated gradient sliding for structured convex optimization. (2016) arXiv preprint arXiv:1609.04905
Simchowitz, M.: On the randomized complexity of minimizing a convex quadratic function. (2018) arXiv preprint arXiv:1807.09386
ChenYLanGOuyangYOptimal primal-dual methods for a class of saddle point problemsSIAM J. Optim.201424417791814327262710.1137/130919362
RockafellarRTConvex Analysis2015PrincetonPrinceton University Press
Carmon Y, Duchi, J.C., Hinder, O., Sidford, A.: Lower bounds for finding stationary points II: First-order methods. (2017) arXiv preprint arXiv:1711.00841
LanGGradient sliding for composite optimizationMath. Program.20161591–2201235353592310.1007/s10107-015-0955-5
BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.200921183202248652710.1137/080716542
EsserEZhangXChanTA general framework for a class of first order primal-dual algorithms for convex optimization in imaging scienceSIAM J. Imaging Sci.20103410151046276370610.1137/09076934X
MonteiroRDSvaiterBFIteration-complexity of block-decomposition algorithms and the alternating direction method of multipliersSIAM J. Optim.2013231475507303311610.1137/110849468
CondatLA primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite termsJ. Optim. Theory Appl.20131582460479308438610.1007/s10957-012-0245-9
JuditskyANesterovYDeterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimizationStoch. Syst.2014414480335321410.1287/10-SSY010
ChenYLanGOuyangYAccelerated schemes for a class of variational inequalitiesMath. Program.20171651113149370350010.1007/s10107-017-1161-4
HeBYuanXOn the O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O}(1/n)$$\end{document} convergence rate of the douglas-rachford alternating direction methodSIAM J. Numer. Anal.2012502700709291428210.1137/110836936
Arjevani, Y., Shamir, O.: Dimension-free iteration complexity of finite sum optimization problems. In: Advances in Neural Information Processing Systems, pp. 3540–3548. (2016)
Carmon Y, Duchi, J.C., Hinder, O., Sidford, A.: Lower bounds for finding stationary points I. (2017) arXiv preprint arXiv:1710.11606
ChambolleAPockTA first-order primal-dual algorithm for convex problems with applications to imagingJ. Math. Imaging Vis.2011401120145278212210.1007/s10851-010-0251-1
GoldsteinTO’DonoghueBSetzerSBaraniukRFast alternating direction optimization methodsSIAM J. Imaging Sci.20147315881623324085010.1137/120896219
Xu, Y.: Iteration complexity of inexact augmented lagrangian methods for constrained convex programming. (2017) arXiv preprint arXiv:1711.05812
GaoXXuYZhangSRandomized primal-dual proximal block coordinate updatesJ. Oper. Res. Soc. China201972205250395704110.1007/s40305-018-0232-4
1420_CR1
1420_CR2
1420_CR4
1420_CR5
Y Chen (1420_CR8) 2017; 165
A Nemirovski (1420_CR31) 1983
O Devolder (1420_CR10) 2014; 146
A Nemirovski (1420_CR29) 2004; 15
G Lan (1420_CR22) 2016; 159
G Lan (1420_CR26) 2018; 171
Y Nesterov (1420_CR36) 2013; 140
RT Rockafellar (1420_CR38) 2015
L Condat (1420_CR9) 2013; 158
A Nemirovsky (1420_CR33) 1991; 7
1420_CR40
Y Xu (1420_CR41) 2017; 27
1420_CR42
1420_CR21
C Guzmán (1420_CR15) 2015; 31
A Juditsky (1420_CR20) 2014; 4
1420_CR23
A Nemirovski (1420_CR30) 2009; 19
Y Chen (1420_CR7) 2014; 24
Y Ouyang (1420_CR37) 2015; 8
RD Monteiro (1420_CR28) 2013; 23
Y Nesterov (1420_CR35) 2005; 103
A Beck (1420_CR3) 2009; 2
1420_CR16
1420_CR39
1420_CR19
X Gao (1420_CR12) 2019; 7
A Chambolle (1420_CR6) 2011; 40
E Esser (1420_CR11) 2010; 3
T Goldstein (1420_CR14) 2014; 7
B He (1420_CR17) 2012; 50
Y He (1420_CR18) 2016; 26
AS Nemirovski (1420_CR32) 1992; 8
Y Nesterov (1420_CR34) 2004
G Lan (1420_CR25) 2016; 26
M Yan (1420_CR44) 2018; 76
G Lan (1420_CR24) 2016; 155
Y Xu (1420_CR43) 2018; 70
X Gao (1420_CR13) 2017; 5
RD Monteiro (1420_CR27) 2011; 21
References_xml – reference: Arjevani, Y., Shamir, O.: On the iteration complexity of oblivious first-order optimization algorithms. In: International Conference on Machine Learning, pp. 908–916. (2016)
– reference: Hamedani, E.Y., Aybat, N.S.: A primal-dual algorithm for general convex-concave saddle point problems. (2018) arXiv preprint arXiv:1803.01401
– reference: ChambolleAPockTA first-order primal-dual algorithm for convex problems with applications to imagingJ. Math. Imaging Vis.2011401120145278212210.1007/s10851-010-0251-1
– reference: HeBYuanXOn the O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O}(1/n)$$\end{document} convergence rate of the douglas-rachford alternating direction methodSIAM J. Numer. Anal.2012502700709291428210.1137/110836936
– reference: Simchowitz, M.: On the randomized complexity of minimizing a convex quadratic function. (2018) arXiv preprint arXiv:1807.09386
– reference: NesterovYSmooth minimization of non-smooth functionsMath. Program.20051031127152216653710.1007/s10107-004-0552-5
– reference: LanGGradient sliding for composite optimizationMath. Program.20161591–2201235353592310.1007/s10107-015-0955-5
– reference: OuyangYChenYLanGPasiliaoEJrAn accelerated linearized alternating direction method of multipliersSIAM J. Imaging Sci.201581644681332497010.1137/14095697X
– reference: Jaggi, M.: Revisiting frank-wolfe: Projection-free sparse convex optimization. In: ICML, vol. 1, pp. 427–435. (2013)
– reference: ChenYLanGOuyangYAccelerated schemes for a class of variational inequalitiesMath. Program.20171651113149370350010.1007/s10107-017-1161-4
– reference: MonteiroRDSvaiterBFComplexity of variants of Tseng’s modified F-B splitting and Korpelevich’s methods for hemivariational inequalities with applications to saddle-point and convex optimization problemsSIAM J. Optim.201121416881720286951310.1137/100801652
– reference: NemirovskiAProx-method with rate of convergence O(1/t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O}(1/t)$$\end{document} for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problemsSIAM J. Optim.2004151229251211298410.1137/S1052623403425629
– reference: HeYMonteiroRDAn accelerated hpe-type algorithm for a class of composite convex-concave saddle-point problemsSIAM J. Optim.20162612956343977710.1137/14096757X
– reference: GoldsteinTO’DonoghueBSetzerSBaraniukRFast alternating direction optimization methodsSIAM J. Imaging Sci.20147315881623324085010.1137/120896219
– reference: XuYZhangSAccelerated primal-dual proximal block coordinate updating methods for constrained convex optimizationComput. Optim. Appl.201870191128378046210.1007/s10589-017-9972-z
– reference: BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.200921183202248652710.1137/080716542
– reference: Carmon Y, Duchi, J.C., Hinder, O., Sidford, A.: Lower bounds for finding stationary points II: First-order methods. (2017) arXiv preprint arXiv:1711.00841
– reference: NemirovskyAOn optimality of krylov’s information when solving linear operator equationsJ. Complexity199172121130110877210.1016/0885-064X(91)90001-E
– reference: Lan, G., Ouyang, Y.: Accelerated gradient sliding for structured convex optimization. (2016) arXiv preprint arXiv:1609.04905
– reference: Carmon Y, Duchi, J.C., Hinder, O., Sidford, A.: Lower bounds for finding stationary points I. (2017) arXiv preprint arXiv:1710.11606
– reference: NesterovYGradient methods for minimizing composite functionsMath. Program.20131401125161307186510.1007/s10107-012-0629-5
– reference: Woodworth, B.E., Srebro, N.: Tight complexity bounds for optimizing composite objectives. In: Advances in Neural Information Processing Systems, pp. 3639–3647. (2016)
– reference: XuYAccelerated first-order primal-dual proximal methods for linearly constrained composite convex programmingSIAM J. Optim.201727314591484367932410.1137/16M1082305
– reference: Lan, G.: The complexity of large-scale convex programming under a linear optimization oracle. (2013) arXiv preprint arXiv:1309.5550
– reference: LanGZhouYAn optimal randomized incremental gradient methodMath. Program.20181711–2167215384453710.1007/s10107-017-1173-0
– reference: EsserEZhangXChanTA general framework for a class of first order primal-dual algorithms for convex optimization in imaging scienceSIAM J. Imaging Sci.20103410151046276370610.1137/09076934X
– reference: YanMA new primal-dual algorithm for minimizing the sum of three functions with a linear operatorJ. Sci. Comput.201876316981717383370710.1007/s10915-018-0680-3
– reference: NemirovskiAJuditskyALanGShapiroARobust stochastic approximation approach to stochastic programmingSIAM J. Optim.200919415741609248604110.1137/070704277
– reference: GuzmánCNemirovskiAOn lower complexity bounds for large-scale smooth convex optimizationJ. Complexity2015311114328454310.1016/j.jco.2014.08.003
– reference: Arjevani, Y., Shamir, O.: Dimension-free iteration complexity of finite sum optimization problems. In: Advances in Neural Information Processing Systems, pp. 3540–3548. (2016)
– reference: GaoXXuYZhangSRandomized primal-dual proximal block coordinate updatesJ. Oper. Res. Soc. China201972205250395704110.1007/s40305-018-0232-4
– reference: DevolderOGlineurFNesterovYFirst-order methods of smooth convex optimization with inexact oracleMath. Program.20141461–23775323260810.1007/s10107-013-0677-5
– reference: NemirovskiAYudinDProblem Complexity and Method Efficiency in Optimization1983New YorkWiley-Interscience Series in Discrete Mathematics, Wiley
– reference: RockafellarRTConvex Analysis2015PrincetonPrinceton University Press
– reference: CondatLA primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite termsJ. Optim. Theory Appl.20131582460479308438610.1007/s10957-012-0245-9
– reference: MonteiroRDSvaiterBFIteration-complexity of block-decomposition algorithms and the alternating direction method of multipliersSIAM J. Optim.2013231475507303311610.1137/110849468
– reference: GaoXZhangS-ZFirst-order algorithms for convex optimization with nonseparable objective and coupled constraintsJ. Oper. Res. Soc. China201752131159366308210.1007/s40305-016-0131-5
– reference: NemirovskiASInformation-based complexity of linear operator equationsJ. Complexity199282153175116791010.1016/0885-064X(92)90013-2
– reference: NesterovYIntroductory Lectures on Convex Optimization: A Basic Course2004DordrechtKluwer Academic Publisher10.1007/978-1-4419-8853-9
– reference: ChenYLanGOuyangYOptimal primal-dual methods for a class of saddle point problemsSIAM J. Optim.201424417791814327262710.1137/130919362
– reference: LanGRenatoDMonteiroCIteration-complexity of first-order augmented lagrangian methods for convex programmingMath. Program.20161551–2511547343981110.1007/s10107-015-0861-x
– reference: JuditskyANesterovYDeterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimizationStoch. Syst.2014414480335321410.1287/10-SSY010
– reference: LanGZhouYConditional gradient sliding for convex optimizationSIAM J. Optim.201626213791409351687110.1137/140992382
– reference: Xu, Y.: Iteration complexity of inexact augmented lagrangian methods for constrained convex programming. (2017) arXiv preprint arXiv:1711.05812
– volume: 146
  start-page: 37
  issue: 1–2
  year: 2014
  ident: 1420_CR10
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0677-5
– volume: 24
  start-page: 1779
  issue: 4
  year: 2014
  ident: 1420_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/130919362
– volume: 158
  start-page: 460
  issue: 2
  year: 2013
  ident: 1420_CR9
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0245-9
– volume: 7
  start-page: 205
  issue: 2
  year: 2019
  ident: 1420_CR12
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-018-0232-4
– volume: 5
  start-page: 131
  issue: 2
  year: 2017
  ident: 1420_CR13
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-016-0131-5
– volume: 70
  start-page: 91
  issue: 1
  year: 2018
  ident: 1420_CR43
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9972-z
– volume: 165
  start-page: 113
  issue: 1
  year: 2017
  ident: 1420_CR8
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1161-4
– volume: 15
  start-page: 229
  issue: 1
  year: 2004
  ident: 1420_CR29
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403425629
– ident: 1420_CR19
– ident: 1420_CR42
– ident: 1420_CR40
– ident: 1420_CR21
– ident: 1420_CR5
– volume: 140
  start-page: 125
  issue: 1
  year: 2013
  ident: 1420_CR36
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0629-5
– volume: 40
  start-page: 120
  issue: 1
  year: 2011
  ident: 1420_CR6
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-010-0251-1
– volume: 7
  start-page: 121
  issue: 2
  year: 1991
  ident: 1420_CR33
  publication-title: J. Complexity
  doi: 10.1016/0885-064X(91)90001-E
– ident: 1420_CR1
– ident: 1420_CR23
– volume: 8
  start-page: 644
  issue: 1
  year: 2015
  ident: 1420_CR37
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/14095697X
– volume: 171
  start-page: 167
  issue: 1–2
  year: 2018
  ident: 1420_CR26
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1173-0
– volume: 8
  start-page: 153
  issue: 2
  year: 1992
  ident: 1420_CR32
  publication-title: J. Complexity
  doi: 10.1016/0885-064X(92)90013-2
– volume: 155
  start-page: 511
  issue: 1–2
  year: 2016
  ident: 1420_CR24
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0861-x
– volume-title: Problem Complexity and Method Efficiency in Optimization
  year: 1983
  ident: 1420_CR31
– volume: 26
  start-page: 29
  issue: 1
  year: 2016
  ident: 1420_CR18
  publication-title: SIAM J. Optim.
  doi: 10.1137/14096757X
– volume: 27
  start-page: 1459
  issue: 3
  year: 2017
  ident: 1420_CR41
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1082305
– volume: 19
  start-page: 1574
  issue: 4
  year: 2009
  ident: 1420_CR30
  publication-title: SIAM J. Optim.
  doi: 10.1137/070704277
– volume: 103
  start-page: 127
  issue: 1
  year: 2005
  ident: 1420_CR35
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0552-5
– volume: 23
  start-page: 475
  issue: 1
  year: 2013
  ident: 1420_CR28
  publication-title: SIAM J. Optim.
  doi: 10.1137/110849468
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 1420_CR3
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 31
  start-page: 1
  issue: 1
  year: 2015
  ident: 1420_CR15
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2014.08.003
– ident: 1420_CR39
– volume: 4
  start-page: 44
  issue: 1
  year: 2014
  ident: 1420_CR20
  publication-title: Stoch. Syst.
  doi: 10.1287/10-SSY010
– volume: 159
  start-page: 201
  issue: 1–2
  year: 2016
  ident: 1420_CR22
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0955-5
– ident: 1420_CR16
– ident: 1420_CR4
– volume: 3
  start-page: 1015
  issue: 4
  year: 2010
  ident: 1420_CR11
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/09076934X
– volume-title: Introductory Lectures on Convex Optimization: A Basic Course
  year: 2004
  ident: 1420_CR34
  doi: 10.1007/978-1-4419-8853-9
– volume: 50
  start-page: 700
  issue: 2
  year: 2012
  ident: 1420_CR17
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110836936
– volume: 21
  start-page: 1688
  issue: 4
  year: 2011
  ident: 1420_CR27
  publication-title: SIAM J. Optim.
  doi: 10.1137/100801652
– ident: 1420_CR2
– volume: 7
  start-page: 1588
  issue: 3
  year: 2014
  ident: 1420_CR14
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120896219
– volume: 76
  start-page: 1698
  issue: 3
  year: 2018
  ident: 1420_CR44
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0680-3
– volume: 26
  start-page: 1379
  issue: 2
  year: 2016
  ident: 1420_CR25
  publication-title: SIAM J. Optim.
  doi: 10.1137/140992382
– volume-title: Convex Analysis
  year: 2015
  ident: 1420_CR38
SSID ssj0001388
Score 2.653909
Snippet On solving a convex-concave bilinear saddle-point problem (SPP), there have been many works studying the complexity results of first-order methods. These...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Complexity
Convergence
Convex analysis
Convexity
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Methods
Numerical Analysis
Optimization
Production methods
Saddle points
Theoretical
Title Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems
URI https://link.springer.com/article/10.1007/s10107-019-01420-0
https://www.proquest.com/docview/2269225754
https://www.proquest.com/docview/2478787922
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA3iLnoQf-J0jhy8aaBt0iQ9Dtkc6jxtME81TVIYSDfslP35fsnabcoUPJWStIUvafK-5OU9hK6FjrlgWUAgUZOEWS2JNIYS5eTEAxNSodw65OCZ90fsYRyPq0NhZc12r7ck_Ui9cdgt9DRJx-9hkPRAot6IIXd3_XoUdVbjb0ilrI1aHTqojspsf8f36WiNMX9si_rZpneIDiqYiDvLdj1CO7Y4Rvsb4oFwN1gprpYn6PXJ2Z1hzxC3C4DWOHOGSSWe5jifAMQjXmQTLx2jSwxYFXvG-YLARatPix1NtoCOj0vlFi3IbDop5rhynClP0bDXHd71SeWeQDRlYk4g9twEuVZKxIm1UuSSa-85xW2oQ2MikVMVQVGks4DDZOmUX4SKeSKtDOgZ2i2mhT1HWCSxVtJwQUPNjFIZ45BFmSR3Si9UiSYK6ximulIWdwYXb-laE9nFPYW4pz7uadBEN6tnZktdjT9rt-qmSat_rEwBOCYwGomYbS92skNSQJUmuq1bc138-8cu_lf9Eu1Fjufil2VaaHf-_mGvAKjMszZqdO5fHrtt3z-_AAiE3zU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsQgFL0x40Jd-DaOTxbuFNNOKdClMeqoM67GRFeVAk2MpmNsNcav98K0M2rUxFXTQF9A4Vw4nAOwJ3TMBcsCioGapMxqSaUxEVVOTjwwYSSUm4fsX_HuNbu4iW_qTWFlw3ZvliR9T_1ps1voaZKO38Mw6MFAfZphDB63YPro7PbyZNwDh5GUjVWrwwf1Zpmf7_J1QJqgzG8Lo368OV2A6-ZNRzSTh8OXKjvU799EHP_7KYswXwNQcjRqMUswZYtlmPskS4hn_bGWa7kCdz1npEY899y-IWgnmbNiKskwJ_k9gkfq5TvJyIu6JIiCieeyv1E8aPVqiSPgFvhLkVK56RD6NLwvKlJ72ZSrMDg9GRx3ae3LQHXEREWxVrkJcq2UiBNrpcgl197NittQh8Z0RB6pDiZ1dBZwHIadpoxQMU-klUG0Bq1iWNh1ICKJtZKGiyjUzCiVMY7xmUlypyETKdGGsKmbVNea5c464zGdqC27okyxKFNflGnQhv3xNU8jxY4_c281VZ7Wf2-ZIiRNsJ8TMfs52QkaSYFZ2nDQVPAk-feHbfwv-y7MdAf9Xto7v7rchNmOY9P4yZ8taFXPL3Yb4VCV7dSt_wOWwv12
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iIHoQf-J0ag7eNKw_k_Q41DF1Gx422K2mSQoD6Yatsj_fl7TdpkzBUylJW3ivSb6XvPd9CF0zGVIWJA6BQI2TQEtOuFI-EYZO3FGuz4TZh-wPaHcUPI3D8UoVv812r48ky5oGw9KUFa2ZSlsrhW-uTZk0uT4BBEAQtG_BdOyapK6R117Mxa7PeS3aapBCVTaz_h3fl6Yl3vxxRGpXns4-2qsgI26XPj5AGzo7RLsrRIJw11-wr-ZH6LVnpM-wzRbXc4DZODHiSTmepjidANwjlnATl-rROQbcim32-ZzARYpPjU3KbAaDAOfCbGCQ2XSSFbhSn8mP0bDzMLzrkkpJgUg_YAUBP1DlpFIIFkZac5ZyKq3-FNWudJXyWOoLD5o8mTgUFk7DAsNESCOuueOfoM1smulThFkUSsEVZb4rAyVEElCIqFSUGtYXX7AGcmsbxrJiGTdiF2_xkh_Z2D0Gu8fW7rHTQDeLZ2Ylx8afvZu1a-JqvOUxgMgIZiYWBuubDQURZ9ClgW5rby6bf__Y2f-6X6Htl_tO3HscPJ-jHc-kv9jdmibaLN4_9AXglyK5tL_oF8yS5NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lower+complexity+bounds+of+first-order+methods+for+convex-concave+bilinear+saddle-point+problems&rft.jtitle=Mathematical+programming&rft.au=Ouyang%2C+Yuyuan&rft.au=Xu%2C+Yangyang&rft.date=2021-01-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=185&rft.issue=1-2&rft.spage=1&rft.epage=35&rft_id=info:doi/10.1007%2Fs10107-019-01420-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_019_01420_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon