Structured and Sparse Canonical Correlation Analysis as a Brain-Wide Multi-Modal Data Fusion Approach

Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 36; no. 7; pp. 1438 - 1448
Main Authors Mohammadi-Nejad, Ali-Reza, Hossein-Zadeh, Gholam-Ali, Soltanian-Zadeh, Hamid
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1 × 10 -6 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects.
AbstractList Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1 × 10 -6 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects.
Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1×10 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects.
Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1×10-6 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects.Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1×10-6 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects.
Author Hossein-Zadeh, Gholam-Ali
Mohammadi-Nejad, Ali-Reza
Soltanian-Zadeh, Hamid
Author_xml – sequence: 1
  givenname: Ali-Reza
  surname: Mohammadi-Nejad
  fullname: Mohammadi-Nejad, Ali-Reza
  email: mohammadi_nejad@ut.ac.ir
  organization: Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Gholam-Ali
  surname: Hossein-Zadeh
  fullname: Hossein-Zadeh, Gholam-Ali
  email: ghzadeh@ut.ac.ir
  organization: Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
– sequence: 3
  givenname: Hamid
  orcidid: 0000-0002-7302-6856
  surname: Soltanian-Zadeh
  fullname: Soltanian-Zadeh, Hamid
  email: hszadeh@ut.ac.ir
  organization: Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28320654$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhq2KqizQe6VKVaReuGQ7duKPHGFbWiRWPQCCmzVxJqpRNtnazoF_X8MuHDhUsuTL88xo3veIHYzTSIx94rDkHJpvN-vLpQCul0IZ3ij1ji24lKYUsr4_YAsQ2pQAShyyoxgfAHgtofnADoWpBChZLxhdpzC7NAfqChy74nqLIVKxwrzJOxyK1RQCDZj8NBZnIw6P0ccC8yvOA_qxvPMdFet5SL5cT10WvmPC4mKOz8J2GyZ0f07Y-x6HSB_3_zG7vfhxs_pVXv3-ebk6uypdVetUtgKgxqbVRKrSssUenewQtSGnSGLbGWOIJO9Vr6DHtm6QWumgN63qEKpjdrqbm9f-nSkmu_HR0TDgSNMcLTc6p1QZbTL69Q36MM0hHxit4LquuVSNzNSXPTW3G-rsNvgNhkf7EmAGYAe4MMUYqH9FONinjmzuyD51ZPcdZUW9UZxPzwGnnOjwP_HzTvRE9LpH52sUqOofXyiecg
CODEN ITMID4
CitedBy_id crossref_primary_10_3390_s24206558
crossref_primary_10_1016_j_heliyon_2023_e15461
crossref_primary_10_1109_TCNS_2020_2975228
crossref_primary_10_3389_fnins_2019_00642
crossref_primary_10_1002_hbm_25090
crossref_primary_10_1109_TCYB_2022_3155875
crossref_primary_10_26599_TST_2023_9010037
crossref_primary_10_1016_j_pacs_2018_01_003
crossref_primary_10_3934_era_2023044
crossref_primary_10_1016_j_bspc_2020_102071
crossref_primary_10_1016_j_dsp_2019_04_010
crossref_primary_10_1109_TNSRE_2023_3310340
crossref_primary_10_1109_TMI_2019_2913158
crossref_primary_10_1016_j_media_2020_101795
crossref_primary_10_1109_TCBB_2022_3143900
crossref_primary_10_1109_TKDE_2019_2958342
crossref_primary_10_3389_fgene_2024_1489694
crossref_primary_10_1016_j_artmed_2024_102787
crossref_primary_10_1109_TBME_2022_3203152
crossref_primary_10_1002_hbm_26251
crossref_primary_10_1016_j_dsp_2022_103420
crossref_primary_10_1109_TBME_2019_2902876
crossref_primary_10_1109_TIP_2020_3028452
crossref_primary_10_1007_s00521_019_04096_x
crossref_primary_10_1016_j_bspc_2021_102698
crossref_primary_10_3389_fnins_2022_1100812
crossref_primary_10_1016_j_artmed_2020_101940
crossref_primary_10_1038_s41598_022_10942_1
crossref_primary_10_1016_j_neunet_2024_106285
crossref_primary_10_1016_j_media_2024_103213
crossref_primary_10_1109_TMI_2022_3159264
Cites_doi 10.1093/biostatistics/kxs038
10.1016/j.neurobiolaging.2010.05.023
10.1111/j.1467-9868.2005.00503.x
10.1016/j.neuroimage.2012.10.051
10.1016/j.neuroimage.2011.10.003
10.1016/j.neurobiolaging.2010.06.013
10.1186/s12918-016-0312-1
10.1002/hbm.20324
10.1093/biomet/28.3-4.321
10.1016/j.ejrad.2013.03.012
10.1371/journal.pone.0010232
10.1097/WAD.0b013e3182163b62
10.2174/15672050113109990146
10.1117/12.911752
10.1109/MSP.2010.936725
10.1093/bioinformatics/btw033
10.1214/ss/1056397488
10.2174/1567205011666140110112608
10.1093/biostatistics/kxp008
10.1089/brain.2012.0087
10.2202/1544-6115.1406
10.2202/1544-6115.1329
10.1016/j.neuroimage.2010.09.073
10.1016/j.neuroimage.2012.12.062
10.1016/j.media.2013.10.010
10.1016/j.neuroimage.2012.04.056
10.1016/j.neubiorev.2011.12.001
10.1109/ISBI.2016.7493392
10.1016/j.jneumeth.2010.11.029
10.1016/j.neuroimage.2013.09.048
10.1016/j.neuroimage.2012.07.046
10.1016/j.ejrad.2013.03.019
10.1016/j.neuroimage.2012.06.061
10.1109/JSTSP.2008.2008265
10.1016/j.neuroimage.2011.10.015
10.1016/j.neurobiolaging.2013.01.016
10.1093/brain/122.4.675
10.1007/s11336-011-9206-8
10.1371/journal.pone.0013788
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2017.2681966
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1448
ExternalDocumentID 28320654
10_1109_TMI_2017_2681966
7878606
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Alzheimer’s Disease Neuroimaging Initiative (ADNI)
– fundername: Iranian Cognitive Science and Technologies Council Research
  grantid: 108
– fundername: National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
  grantid: U01AG024904
  funderid: 10.13039/100000049
– fundername: Department of Defense
  grantid: W81XWH-12-2-0012
  funderid: 10.13039/100000005
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-b2004a9b7ee6375bafac5daa78ec6e5abd888ee51f6f60fab49aeb5c0f8b6da03
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Jul 11 12:32:50 EDT 2025
Mon Jun 30 04:59:09 EDT 2025
Thu Apr 03 07:07:19 EDT 2025
Tue Jul 01 03:15:58 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Wed Aug 27 02:30:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-b2004a9b7ee6375bafac5daa78ec6e5abd888ee51f6f60fab49aeb5c0f8b6da03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7302-6856
PMID 28320654
PQID 2174415695
PQPubID 85460
PageCount 11
ParticipantIDs pubmed_primary_28320654
crossref_primary_10_1109_TMI_2017_2681966
ieee_primary_7878606
proquest_journals_2174415695
proquest_miscellaneous_1879663878
crossref_citationtrail_10_1109_TMI_2017_2681966
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
chen (ref18) 2012
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref24
ref23
ref26
ref25
ref20
ref42
ref41
allen (ref22) 2013
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
he (ref21) 2004; 16
ref5
ref40
References_xml – ident: ref16
  doi: 10.1093/biostatistics/kxs038
– ident: ref29
  doi: 10.1016/j.neurobiolaging.2010.05.023
– ident: ref41
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref7
  doi: 10.1016/j.neuroimage.2012.10.051
– ident: ref39
  doi: 10.1016/j.neuroimage.2011.10.003
– ident: ref34
  doi: 10.1016/j.neurobiolaging.2010.06.013
– ident: ref15
  doi: 10.1186/s12918-016-0312-1
– ident: ref38
  doi: 10.1002/hbm.20324
– ident: ref4
  doi: 10.1093/biomet/28.3-4.321
– ident: ref27
  doi: 10.1016/j.ejrad.2013.03.012
– ident: ref24
  doi: 10.1371/journal.pone.0010232
– ident: ref28
  doi: 10.1097/WAD.0b013e3182163b62
– ident: ref37
  doi: 10.2174/15672050113109990146
– ident: ref33
  doi: 10.1117/12.911752
– ident: ref6
  doi: 10.1109/MSP.2010.936725
– ident: ref14
  doi: 10.1093/bioinformatics/btw033
– volume: 16
  start-page: 585
  year: 2004
  ident: ref21
  article-title: Locality preserving projections
  publication-title: Neural Inf Process Syst
– ident: ref19
  doi: 10.1214/ss/1056397488
– ident: ref40
  doi: 10.2174/1567205011666140110112608
– ident: ref10
  doi: 10.1093/biostatistics/kxp008
– ident: ref23
  doi: 10.1089/brain.2012.0087
– ident: ref9
  doi: 10.2202/1544-6115.1406
– ident: ref25
  doi: 10.2202/1544-6115.1329
– ident: ref3
  doi: 10.1016/j.neuroimage.2010.09.073
– start-page: 199
  year: 2012
  ident: ref18
  article-title: Structured sparse canonical correlation analysis
  publication-title: Proc Int Conf Artif Intell Statist (AISTATS)
– ident: ref42
  doi: 10.1016/j.neuroimage.2012.12.062
– ident: ref17
  doi: 10.1016/j.media.2013.10.010
– ident: ref1
  doi: 10.1016/j.neuroimage.2012.04.056
– ident: ref31
  doi: 10.1016/j.neubiorev.2011.12.001
– ident: ref26
  doi: 10.1109/ISBI.2016.7493392
– ident: ref12
  doi: 10.1016/j.jneumeth.2010.11.029
– ident: ref11
  doi: 10.1016/j.neuroimage.2013.09.048
– ident: ref13
  doi: 10.1016/j.neuroimage.2012.07.046
– ident: ref36
  doi: 10.1016/j.ejrad.2013.03.019
– ident: ref8
  doi: 10.1016/j.neuroimage.2012.06.061
– ident: ref5
  doi: 10.1109/JSTSP.2008.2008265
– ident: ref2
  doi: 10.1016/j.neuroimage.2011.10.015
– ident: ref32
  doi: 10.1016/j.neurobiolaging.2013.01.016
– ident: ref30
  doi: 10.1093/brain/122.4.675
– ident: ref20
  doi: 10.1007/s11336-011-9206-8
– ident: ref35
  doi: 10.1371/journal.pone.0013788
– year: 2013
  ident: ref22
  publication-title: Sparse and functional principal components analysis
SSID ssj0014509
Score 2.419027
Snippet Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA)....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1438
SubjectTerms ADNI
Algorithms
Alzheimer's disease
Brain
Brain Mapping
canonical correlation analysis (CCA)
Collinearity
Computer simulation
Correlation
Correlation analysis
Covariance matrices
Data integration
Disease control
Functional magnetic resonance imaging
Humans
Image processing
Magnetic Resonance Imaging
magnetic resonance imaging (MRI)
Mapping
Medical imaging
Modal data
multi-modal data fusion
Multisensor fusion
multivariate analysis
Neurodegenerative diseases
Neuroimaging
Neurology
NMR
Nuclear magnetic resonance
Patients
Spatial data
Title Structured and Sparse Canonical Correlation Analysis as a Brain-Wide Multi-Modal Data Fusion Approach
URI https://ieeexplore.ieee.org/document/7878606
https://www.ncbi.nlm.nih.gov/pubmed/28320654
https://www.proquest.com/docview/2174415695
https://www.proquest.com/docview/1879663878
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKDwgOpbRAF1pkJC5IeNfNxnZyhC2rghQubUVv0dieSBVot2I3F349M86HAEGFlEOk2M5EM9Z4MjPvCfGaPFRRBLQqGJ2r3EKpirwAFRoGJ3E66MTWUH2251f5p2tzvSPejr0wiJiKz3DKtymXH9eh5V9lMzKuwjK-9j0K3LperTFjkJuunCNjxFhtsyElqcvZZfWRa7jcNLPk_yyzFjFBD7dV_uaNEr3Kv0-ayeMsH4lqkLUrNPk6bbd-Gn78AeP4vx-zL_b6o6d819nKY7GDqwPx8BdAwgNxv-pT7YcCLxKybPsdo4RVlBe3FAKjXMBqnVop5YJ5PbpKOjlAm0igS75n2gn15SaiTP29qlpHmnAGW5DLdpMm9FDmT8TV8sPl4lz1nAwqzHO3VZ53FZTeIdq5Mx4aCCYCuAKDRQM-UkiNaE4b21jdgM9LQG-CbgpvI-j5U7FLcuKRkA6dzuIpNJFh2zJbGudzoPCSMfsoLJuI2aCbOvSA5cyb8a1OgYsua1JszYqte8VOxJtxxm0H1nHH2EPWyTiuV8dEHA_qr_vdvKk5bONAtySZXo2PaR9ycgVWuG43NbO20-mNVpmIZ53ZjGsP1vb87-98IR6wZF0R8LHYJfXiCR11tv5lsvGfYG_23g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQwL2wMcGozDASLwgkdZNYyd5hELVwbKXdWJv1tm-SAjUTrR54a_H53wIECCkPESK7Vx0Z50vd_f7AbwMHqooHOnEKZklmcYyKbICE1czOEkunYxsDdW5Xl5mH67U1R68HnphiCgWn9GYb2Mu329cw7_KJsG4Cs342jeC31fTtltryBlkqi3oSBkzVuq0T0rKcrKqTrmKKx-nOnhAzbxFTNHDjZW_-KNIsPL3s2b0OYu7UPXStqUmX8bNzo7d99-AHP_3c-7Bne7wKd601nIf9mh9CAc_QRIews2qS7YfAV1EbNnmG3mBay8urkMQTGKO601sphRzZvZoa-lED24iMFziLRNPJJ8-exKxwzepNj5MeIc7FItmGyd0YOYP4HLxfjVfJh0rQ-JmWb5LLO8rLG1OpGe5slijUx4xL8hpUmh9CKqJ1LTWtZY12qxEssrJurDao5w9hP0gJz0CkVMuUz_F2jNwW6pLldsMQ4DJqH0hMBvBpNeNcR1kOTNnfDUxdJGlCYo1rFjTKXYEr4YZ1y1cxz_GHrFOhnGdOkZw0qvfdPt5azhw41C3DDK9GB6HncjpFVzTptka5m0P57ewygiOW7MZ1u6t7fGf3_kcbi1X1Zk5Oz3_-ARus5RtSfAJ7AdV09Nw8NnZZ9HefwBmCvon
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structured+and+Sparse+Canonical+Correlation+Analysis+as+a+Brain-Wide+Multi-Modal+Data+Fusion+Approach&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Ali-Reza+Mohammadi-Nejad&rft.au=Hossein-Zadeh%2C+Gholam-Ali&rft.au=Soltanian-Zadeh%2C+Hamid&rft.date=2017-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=36&rft.issue=7&rft.spage=1438&rft_id=info:doi/10.1109%2FTMI.2017.2681966&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon