Structured and Sparse Canonical Correlation Analysis as a Brain-Wide Multi-Modal Data Fusion Approach
Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry,...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 36; no. 7; pp. 1438 - 1448 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1 × 10 -6 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects. |
---|---|
AbstractList | Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1 × 10 -6 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects. Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1×10 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects. Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1×10-6 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects.Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1×10-6 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects. |
Author | Hossein-Zadeh, Gholam-Ali Mohammadi-Nejad, Ali-Reza Soltanian-Zadeh, Hamid |
Author_xml | – sequence: 1 givenname: Ali-Reza surname: Mohammadi-Nejad fullname: Mohammadi-Nejad, Ali-Reza email: mohammadi_nejad@ut.ac.ir organization: Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran – sequence: 2 givenname: Gholam-Ali surname: Hossein-Zadeh fullname: Hossein-Zadeh, Gholam-Ali email: ghzadeh@ut.ac.ir organization: Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran – sequence: 3 givenname: Hamid orcidid: 0000-0002-7302-6856 surname: Soltanian-Zadeh fullname: Soltanian-Zadeh, Hamid email: hszadeh@ut.ac.ir organization: Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28320654$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1P3DAQhq2KqizQe6VKVaReuGQ7duKPHGFbWiRWPQCCmzVxJqpRNtnazoF_X8MuHDhUsuTL88xo3veIHYzTSIx94rDkHJpvN-vLpQCul0IZ3ij1ji24lKYUsr4_YAsQ2pQAShyyoxgfAHgtofnADoWpBChZLxhdpzC7NAfqChy74nqLIVKxwrzJOxyK1RQCDZj8NBZnIw6P0ccC8yvOA_qxvPMdFet5SL5cT10WvmPC4mKOz8J2GyZ0f07Y-x6HSB_3_zG7vfhxs_pVXv3-ebk6uypdVetUtgKgxqbVRKrSssUenewQtSGnSGLbGWOIJO9Vr6DHtm6QWumgN63qEKpjdrqbm9f-nSkmu_HR0TDgSNMcLTc6p1QZbTL69Q36MM0hHxit4LquuVSNzNSXPTW3G-rsNvgNhkf7EmAGYAe4MMUYqH9FONinjmzuyD51ZPcdZUW9UZxPzwGnnOjwP_HzTvRE9LpH52sUqOofXyiecg |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_3390_s24206558 crossref_primary_10_1016_j_heliyon_2023_e15461 crossref_primary_10_1109_TCNS_2020_2975228 crossref_primary_10_3389_fnins_2019_00642 crossref_primary_10_1002_hbm_25090 crossref_primary_10_1109_TCYB_2022_3155875 crossref_primary_10_26599_TST_2023_9010037 crossref_primary_10_1016_j_pacs_2018_01_003 crossref_primary_10_3934_era_2023044 crossref_primary_10_1016_j_bspc_2020_102071 crossref_primary_10_1016_j_dsp_2019_04_010 crossref_primary_10_1109_TNSRE_2023_3310340 crossref_primary_10_1109_TMI_2019_2913158 crossref_primary_10_1016_j_media_2020_101795 crossref_primary_10_1109_TCBB_2022_3143900 crossref_primary_10_1109_TKDE_2019_2958342 crossref_primary_10_3389_fgene_2024_1489694 crossref_primary_10_1016_j_artmed_2024_102787 crossref_primary_10_1109_TBME_2022_3203152 crossref_primary_10_1002_hbm_26251 crossref_primary_10_1016_j_dsp_2022_103420 crossref_primary_10_1109_TBME_2019_2902876 crossref_primary_10_1109_TIP_2020_3028452 crossref_primary_10_1007_s00521_019_04096_x crossref_primary_10_1016_j_bspc_2021_102698 crossref_primary_10_3389_fnins_2022_1100812 crossref_primary_10_1016_j_artmed_2020_101940 crossref_primary_10_1038_s41598_022_10942_1 crossref_primary_10_1016_j_neunet_2024_106285 crossref_primary_10_1016_j_media_2024_103213 crossref_primary_10_1109_TMI_2022_3159264 |
Cites_doi | 10.1093/biostatistics/kxs038 10.1016/j.neurobiolaging.2010.05.023 10.1111/j.1467-9868.2005.00503.x 10.1016/j.neuroimage.2012.10.051 10.1016/j.neuroimage.2011.10.003 10.1016/j.neurobiolaging.2010.06.013 10.1186/s12918-016-0312-1 10.1002/hbm.20324 10.1093/biomet/28.3-4.321 10.1016/j.ejrad.2013.03.012 10.1371/journal.pone.0010232 10.1097/WAD.0b013e3182163b62 10.2174/15672050113109990146 10.1117/12.911752 10.1109/MSP.2010.936725 10.1093/bioinformatics/btw033 10.1214/ss/1056397488 10.2174/1567205011666140110112608 10.1093/biostatistics/kxp008 10.1089/brain.2012.0087 10.2202/1544-6115.1406 10.2202/1544-6115.1329 10.1016/j.neuroimage.2010.09.073 10.1016/j.neuroimage.2012.12.062 10.1016/j.media.2013.10.010 10.1016/j.neuroimage.2012.04.056 10.1016/j.neubiorev.2011.12.001 10.1109/ISBI.2016.7493392 10.1016/j.jneumeth.2010.11.029 10.1016/j.neuroimage.2013.09.048 10.1016/j.neuroimage.2012.07.046 10.1016/j.ejrad.2013.03.019 10.1016/j.neuroimage.2012.06.061 10.1109/JSTSP.2008.2008265 10.1016/j.neuroimage.2011.10.015 10.1016/j.neurobiolaging.2013.01.016 10.1093/brain/122.4.675 10.1007/s11336-011-9206-8 10.1371/journal.pone.0013788 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2017.2681966 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 1448 |
ExternalDocumentID | 28320654 10_1109_TMI_2017_2681966 7878606 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Alzheimer’s Disease Neuroimaging Initiative (ADNI) – fundername: Iranian Cognitive Science and Technologies Council Research grantid: 108 – fundername: National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health grantid: U01AG024904 funderid: 10.13039/100000049 – fundername: Department of Defense grantid: W81XWH-12-2-0012 funderid: 10.13039/100000005 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c347t-b2004a9b7ee6375bafac5daa78ec6e5abd888ee51f6f60fab49aeb5c0f8b6da03 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Fri Jul 11 12:32:50 EDT 2025 Mon Jun 30 04:59:09 EDT 2025 Thu Apr 03 07:07:19 EDT 2025 Tue Jul 01 03:15:58 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Wed Aug 27 02:30:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-b2004a9b7ee6375bafac5daa78ec6e5abd888ee51f6f60fab49aeb5c0f8b6da03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7302-6856 |
PMID | 28320654 |
PQID | 2174415695 |
PQPubID | 85460 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_28320654 crossref_primary_10_1109_TMI_2017_2681966 ieee_primary_7878606 proquest_journals_2174415695 proquest_miscellaneous_1879663878 crossref_citationtrail_10_1109_TMI_2017_2681966 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 chen (ref18) 2012 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref24 ref23 ref26 ref25 ref20 ref42 ref41 allen (ref22) 2013 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 he (ref21) 2004; 16 ref5 ref40 |
References_xml | – ident: ref16 doi: 10.1093/biostatistics/kxs038 – ident: ref29 doi: 10.1016/j.neurobiolaging.2010.05.023 – ident: ref41 doi: 10.1111/j.1467-9868.2005.00503.x – ident: ref7 doi: 10.1016/j.neuroimage.2012.10.051 – ident: ref39 doi: 10.1016/j.neuroimage.2011.10.003 – ident: ref34 doi: 10.1016/j.neurobiolaging.2010.06.013 – ident: ref15 doi: 10.1186/s12918-016-0312-1 – ident: ref38 doi: 10.1002/hbm.20324 – ident: ref4 doi: 10.1093/biomet/28.3-4.321 – ident: ref27 doi: 10.1016/j.ejrad.2013.03.012 – ident: ref24 doi: 10.1371/journal.pone.0010232 – ident: ref28 doi: 10.1097/WAD.0b013e3182163b62 – ident: ref37 doi: 10.2174/15672050113109990146 – ident: ref33 doi: 10.1117/12.911752 – ident: ref6 doi: 10.1109/MSP.2010.936725 – ident: ref14 doi: 10.1093/bioinformatics/btw033 – volume: 16 start-page: 585 year: 2004 ident: ref21 article-title: Locality preserving projections publication-title: Neural Inf Process Syst – ident: ref19 doi: 10.1214/ss/1056397488 – ident: ref40 doi: 10.2174/1567205011666140110112608 – ident: ref10 doi: 10.1093/biostatistics/kxp008 – ident: ref23 doi: 10.1089/brain.2012.0087 – ident: ref9 doi: 10.2202/1544-6115.1406 – ident: ref25 doi: 10.2202/1544-6115.1329 – ident: ref3 doi: 10.1016/j.neuroimage.2010.09.073 – start-page: 199 year: 2012 ident: ref18 article-title: Structured sparse canonical correlation analysis publication-title: Proc Int Conf Artif Intell Statist (AISTATS) – ident: ref42 doi: 10.1016/j.neuroimage.2012.12.062 – ident: ref17 doi: 10.1016/j.media.2013.10.010 – ident: ref1 doi: 10.1016/j.neuroimage.2012.04.056 – ident: ref31 doi: 10.1016/j.neubiorev.2011.12.001 – ident: ref26 doi: 10.1109/ISBI.2016.7493392 – ident: ref12 doi: 10.1016/j.jneumeth.2010.11.029 – ident: ref11 doi: 10.1016/j.neuroimage.2013.09.048 – ident: ref13 doi: 10.1016/j.neuroimage.2012.07.046 – ident: ref36 doi: 10.1016/j.ejrad.2013.03.019 – ident: ref8 doi: 10.1016/j.neuroimage.2012.06.061 – ident: ref5 doi: 10.1109/JSTSP.2008.2008265 – ident: ref2 doi: 10.1016/j.neuroimage.2011.10.015 – ident: ref32 doi: 10.1016/j.neurobiolaging.2013.01.016 – ident: ref30 doi: 10.1093/brain/122.4.675 – ident: ref20 doi: 10.1007/s11336-011-9206-8 – ident: ref35 doi: 10.1371/journal.pone.0013788 – year: 2013 ident: ref22 publication-title: Sparse and functional principal components analysis |
SSID | ssj0014509 |
Score | 2.419027 |
Snippet | Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA).... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1438 |
SubjectTerms | ADNI Algorithms Alzheimer's disease Brain Brain Mapping canonical correlation analysis (CCA) Collinearity Computer simulation Correlation Correlation analysis Covariance matrices Data integration Disease control Functional magnetic resonance imaging Humans Image processing Magnetic Resonance Imaging magnetic resonance imaging (MRI) Mapping Medical imaging Modal data multi-modal data fusion Multisensor fusion multivariate analysis Neurodegenerative diseases Neuroimaging Neurology NMR Nuclear magnetic resonance Patients Spatial data |
Title | Structured and Sparse Canonical Correlation Analysis as a Brain-Wide Multi-Modal Data Fusion Approach |
URI | https://ieeexplore.ieee.org/document/7878606 https://www.ncbi.nlm.nih.gov/pubmed/28320654 https://www.proquest.com/docview/2174415695 https://www.proquest.com/docview/1879663878 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKDwgOpbRAF1pkJC5IeNfNxnZyhC2rghQubUVv0dieSBVot2I3F349M86HAEGFlEOk2M5EM9Z4MjPvCfGaPFRRBLQqGJ2r3EKpirwAFRoGJ3E66MTWUH2251f5p2tzvSPejr0wiJiKz3DKtymXH9eh5V9lMzKuwjK-9j0K3LperTFjkJuunCNjxFhtsyElqcvZZfWRa7jcNLPk_yyzFjFBD7dV_uaNEr3Kv0-ayeMsH4lqkLUrNPk6bbd-Gn78AeP4vx-zL_b6o6d819nKY7GDqwPx8BdAwgNxv-pT7YcCLxKybPsdo4RVlBe3FAKjXMBqnVop5YJ5PbpKOjlAm0igS75n2gn15SaiTP29qlpHmnAGW5DLdpMm9FDmT8TV8sPl4lz1nAwqzHO3VZ53FZTeIdq5Mx4aCCYCuAKDRQM-UkiNaE4b21jdgM9LQG-CbgpvI-j5U7FLcuKRkA6dzuIpNJFh2zJbGudzoPCSMfsoLJuI2aCbOvSA5cyb8a1OgYsua1JszYqte8VOxJtxxm0H1nHH2EPWyTiuV8dEHA_qr_vdvKk5bONAtySZXo2PaR9ycgVWuG43NbO20-mNVpmIZ53ZjGsP1vb87-98IR6wZF0R8LHYJfXiCR11tv5lsvGfYG_23g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQwL2wMcGozDASLwgkdZNYyd5hELVwbKXdWJv1tm-SAjUTrR54a_H53wIECCkPESK7Vx0Z50vd_f7AbwMHqooHOnEKZklmcYyKbICE1czOEkunYxsDdW5Xl5mH67U1R68HnphiCgWn9GYb2Mu329cw7_KJsG4Cs342jeC31fTtltryBlkqi3oSBkzVuq0T0rKcrKqTrmKKx-nOnhAzbxFTNHDjZW_-KNIsPL3s2b0OYu7UPXStqUmX8bNzo7d99-AHP_3c-7Bne7wKd601nIf9mh9CAc_QRIews2qS7YfAV1EbNnmG3mBay8urkMQTGKO601sphRzZvZoa-lED24iMFziLRNPJJ8-exKxwzepNj5MeIc7FItmGyd0YOYP4HLxfjVfJh0rQ-JmWb5LLO8rLG1OpGe5slijUx4xL8hpUmh9CKqJ1LTWtZY12qxEssrJurDao5w9hP0gJz0CkVMuUz_F2jNwW6pLldsMQ4DJqH0hMBvBpNeNcR1kOTNnfDUxdJGlCYo1rFjTKXYEr4YZ1y1cxz_GHrFOhnGdOkZw0qvfdPt5azhw41C3DDK9GB6HncjpFVzTptka5m0P57ewygiOW7MZ1u6t7fGf3_kcbi1X1Zk5Oz3_-ARus5RtSfAJ7AdV09Nw8NnZZ9HefwBmCvon |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structured+and+Sparse+Canonical+Correlation+Analysis+as+a+Brain-Wide+Multi-Modal+Data+Fusion+Approach&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Ali-Reza+Mohammadi-Nejad&rft.au=Hossein-Zadeh%2C+Gholam-Ali&rft.au=Soltanian-Zadeh%2C+Hamid&rft.date=2017-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=36&rft.issue=7&rft.spage=1438&rft_id=info:doi/10.1109%2FTMI.2017.2681966&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |