Evaluation of indole-based organometallics as transfer hydrogenation catalysts with anticancer activity
•Neutral metal complexes with a S∩N indole ligand have been synthesised.•The metal ion (Ru, Os, Rh, Ir) influences the catalytic activity for NAD+ reduction.•In vivo studies reveal Rh complex exhibits the more selectivity.•The mechanism of action is based on ROS production. Half-sandwich complexes c...
Saved in:
Published in | Journal of organometallic chemistry Vol. 1013; p. 123168 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Neutral metal complexes with a S∩N indole ligand have been synthesised.•The metal ion (Ru, Os, Rh, Ir) influences the catalytic activity for NAD+ reduction.•In vivo studies reveal Rh complex exhibits the more selectivity.•The mechanism of action is based on ROS production.
Half-sandwich complexes containing transition metals offer a wide range of applications owing to their interactions with a variety of targets/molecules that are not accessible for some organic scaffolds. The use of such complexes is therefore a way to provide new mechanisms of drug action. Here, we report a series of neutral metal complexes of the type [(arene)M(O-cyclohexyl-1H-indole-2-carbothiolate)Cl] that have the ability to reduce the coenzyme NAD+ at physiological conditions in the presence of sodium formate as an hydride donor. The influence of the metal ion (Ru, Os, Rh, Ir) is studied to establish some structure-activity relationships. The [(η6-p-cym)Ru(O-cyclohexyl-1H-indole-2-carbothioate)Cl] is the most active catalyst of this family of complexes with a turnover frequency (TOF) of 14.79 h-1 for the transfer hydrogenation reaction of NAD+ to give 1,4-NADH in the presence of formate. Further in vitro studies were carried out to determine a relationship between catalytic activity and potency as an anticancer drug, with the rhodium complex promisingly showing 7x more selectivity towards cancer cells (A2780) than normal cells (PNT2). Preliminary in vivo studies demonstrated the importance of co-treatment with formate to enhance activity. This work gives insights into the mechanism of action of this family of indole-based organometallic complexes.
[Display omitted] |
---|---|
AbstractList | Half-sandwich complexes containing transition metals offer a wide range of applications owing to their interactions with a variety of targets/molecules that are not accessible for some organic scaffolds. The use of such complexes is therefore a way to provide new mechanisms of drug action. Here, we report a series of neutral metal complexes of the type [(arene)M(O-cyclohexyl-1H-indole-2-carbothiolate)Cl] that have the ability to reduce the coenzyme NAD+ at physiological conditions in the presence of sodium formate as an hydride donor. The influence of the metal ion (Ru, Os, Rh, Ir) is studied to establish some structure-activity relationships. The [(η6-p-cym)Ru(O-cyclohexyl-1H-indole-2-carbothioate)Cl] is the most active catalyst of this family of complexes with a turnover frequency (TOF) of 14.79 h-1 for the transfer hydrogenation reaction of NAD+ to give 1,4-NADH in the presence of formate. Further in vitro studies were carried out to determine a relationship between catalytic activity and potency as an anticancer drug, with the rhodium complex promisingly showing 7x more selectivity towards cancer cells (A2780) than normal cells (PNT2). Preliminary in vivo studies demonstrated the importance of co-treatment with formate to enhance activity. This work gives insights into the mechanism of action of this family of indole-based organometallic complexes. •Neutral metal complexes with a S∩N indole ligand have been synthesised.•The metal ion (Ru, Os, Rh, Ir) influences the catalytic activity for NAD+ reduction.•In vivo studies reveal Rh complex exhibits the more selectivity.•The mechanism of action is based on ROS production. Half-sandwich complexes containing transition metals offer a wide range of applications owing to their interactions with a variety of targets/molecules that are not accessible for some organic scaffolds. The use of such complexes is therefore a way to provide new mechanisms of drug action. Here, we report a series of neutral metal complexes of the type [(arene)M(O-cyclohexyl-1H-indole-2-carbothiolate)Cl] that have the ability to reduce the coenzyme NAD+ at physiological conditions in the presence of sodium formate as an hydride donor. The influence of the metal ion (Ru, Os, Rh, Ir) is studied to establish some structure-activity relationships. The [(η6-p-cym)Ru(O-cyclohexyl-1H-indole-2-carbothioate)Cl] is the most active catalyst of this family of complexes with a turnover frequency (TOF) of 14.79 h-1 for the transfer hydrogenation reaction of NAD+ to give 1,4-NADH in the presence of formate. Further in vitro studies were carried out to determine a relationship between catalytic activity and potency as an anticancer drug, with the rhodium complex promisingly showing 7x more selectivity towards cancer cells (A2780) than normal cells (PNT2). Preliminary in vivo studies demonstrated the importance of co-treatment with formate to enhance activity. This work gives insights into the mechanism of action of this family of indole-based organometallic complexes. [Display omitted] |
ArticleNumber | 123168 |
Author | Shnyder, Steven D. Rafols, Laia Martin, William H.C. Azmanova, Maria Cooper, Patricia A. Perrigault, Nathan Pitto-Barry, Anaïs |
Author_xml | – sequence: 1 givenname: Laia surname: Rafols fullname: Rafols, Laia organization: School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, United Kingdom – sequence: 2 givenname: Maria surname: Azmanova fullname: Azmanova, Maria organization: School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, United Kingdom – sequence: 3 givenname: Nathan surname: Perrigault fullname: Perrigault, Nathan organization: Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France – sequence: 4 givenname: Patricia A. surname: Cooper fullname: Cooper, Patricia A. organization: School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom – sequence: 5 givenname: Steven D. surname: Shnyder fullname: Shnyder, Steven D. organization: School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom – sequence: 6 givenname: William H.C. surname: Martin fullname: Martin, William H.C. organization: School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, United Kingdom – sequence: 7 givenname: Anaïs orcidid: 0000-0001-5100-0922 surname: Pitto-Barry fullname: Pitto-Barry, Anaïs email: anais.pitto-barry@universite-paris-saclay.fr organization: Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France |
BackLink | https://hal.science/hal-04572953$$DView record in HAL |
BookMark | eNqFkDFPwzAQhS1UJNrCf_DKkGA7TpOMpSoUqRJLBzbrap9bV2mMbFPUf09KEIxMdzp97-nem5BR5zskhHKWc8ZnD4f84MMOOr3HYy6YkDkXBZ_VV2TM60pkdTnjIzJmTIisEPXbDZnEeGCM8YLVY7JbnqD9gOR8R72lrjO-xWwLEQ399vVHTNC2TkcKkaYAXbQY6P5sgt9hNyg19Mw5pkg_XdpT6JLT_Us9Bzq5k0vnW3JtoY149zOnZPO03CxW2fr1-WUxX2e6kFXKwGrcSkAmDCsbKdGWghtmoaptU5USTb-VfAsls4VpGpBMoKm0nOmihqqYkvvBdg-teg_uCOGsPDi1mq_V5cZkWYmmLE68Z-uB1cHHGND-CjhTl27VQf11qy7dqqHbXvo4SLGPcnIYVNQO-8DGBdRJGe_-N_kCl92Mcg |
Cites_doi | 10.1039/D2SC05672K 10.1016/j.jinorgbio.2003.12.003 10.1038/ncomms7582 10.1002/anie.202016456 10.1038/cdd.2009.107 10.1039/D0DT03414B 10.1021/cr9002424 10.1016/j.jinorgbio.2009.10.005 10.1002/anie.201610290 10.1002/anie.201300747 10.1021/acs.chemrev.8b00211 10.1098/rsos.170786 10.1021/acs.accounts.8b00618 10.1016/j.ejmech.2018.12.021 10.1002/ejic.201300600 10.1039/C7DT02827J 10.1016/bs.adioch.2019.11.001 10.1016/j.jorganchem.2023.122800 10.1021/ja036960d 10.1016/j.cbpa.2015.01.024 10.1016/j.jinorgbio.2015.10.008 10.1016/j.ddtec.2019.06.001 10.1016/j.cbpa.2019.11.001 10.1039/D1SC01939B 10.1016/j.ccr.2021.214169 10.2533/chimia.2007.704 10.1038/sj.bjc.6600290 10.1007/s11095-010-0303-7 10.1002/chem.200801032 10.1016/j.bioorg.2019.102925 10.1002/anie.201108175 10.1002/cmdc.201600638 10.1016/j.ica.2021.120754 10.1021/ar400266c 10.1038/205698a0 10.1039/C8CC06427J 10.1039/C2DT32091F 10.1021/om3006307 10.1039/C9CC06725F 10.1021/acs.biochem.1c00829 10.1039/C9QI01310E 10.1038/s41557-019-0328-4 10.1039/D2DT00666A 10.1039/D0CC07104H 10.3390/ijms20174136 10.1016/j.ccr.2018.01.009 10.1039/D0CB00150C 10.1039/C8DT00438B 10.1002/anie.201905171 10.1021/ja017482e 10.1039/C9DT02078K 10.1002/chem.200601152 10.1021/jm010051m 10.1073/pnas.0800076105 10.1016/j.ccr.2018.07.012 10.1002/cmdc.202000096 10.3390/molecules25194540 10.1016/S0027-5107(01)00141-5 10.1039/C4DT02700K 10.3390/molecules24101995 10.1002/anie.201311161 10.1016/S0079-6603(08)60799-0 10.1039/D0SC00897D 10.1021/ja010624k 10.1039/c2cc30678f 10.1186/s12885-019-6438-y 10.1016/j.jchromb.2003.08.032 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Attribution |
Copyright_xml | – notice: 2024 The Author(s) – notice: Attribution |
DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.jorganchem.2024.123168 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1872-8561 0022-328X |
ExternalDocumentID | oai_HAL_hal_04572953v1 10_1016_j_jorganchem_2024_123168 S0022328X24001633 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABXRA ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSK SSM SSU SSZ T5K TN5 TWZ WH7 XPP YK3 YQT ZMT ~G- 29L 3EH 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 K-O M23 NDZJH OHT R2- SCB SIC SSH UQL VH1 WUQ XJT ZCG 1XC VOOES |
ID | FETCH-LOGICAL-c347t-afceb4ae02d05944ef521d0fa78f9754eda7851ba50f3d99a402ed7c46c38a73 |
IEDL.DBID | .~1 |
ISSN | 0022-328X |
IngestDate | Fri May 09 12:18:45 EDT 2025 Tue Jul 01 01:18:06 EDT 2025 Tue Jun 18 08:50:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metal-based drugs Bioorganometallic chemistry Catalysis in cells Bioactive ligand |
Language | English |
License | This is an open access article under the CC BY license. Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-afceb4ae02d05944ef521d0fa78f9754eda7851ba50f3d99a402ed7c46c38a73 |
ORCID | 0000-0001-5100-0922 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022328X24001633 |
ParticipantIDs | hal_primary_oai_HAL_hal_04572953v1 crossref_primary_10_1016_j_jorganchem_2024_123168 elsevier_sciencedirect_doi_10_1016_j_jorganchem_2024_123168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of organometallic chemistry |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Yang, Bose, Ngo, Do (bib0048) 2017; 12 WHO, Fact sheets 2019 Pitto-Barry, Lupan, Zegke, Swift, Attia, Lord, Barry (bib0041) 2017; 46 Soldevila-Barreda, Sadler (bib0014) 2015; 25 Liu, Deeth, Butler, Habtemariam, Newton, Sadler (bib0045) 2013; 52 Liu, Romero-Canelón, Qamar, Hearn, Habtemariam, Barry, Pizarro, Clarkson, Sadler (bib0036) 2014; 53 Noffke, Habtemariam, Pizarro, Sadler (bib0013) 2012; 48 Huang, Banerjee, Qiu, Zhang, Blacque, Malcomson, Paterson, Clarkson, Staniforth, Stavros, Gasser, Chao, Sadler (bib0016) 2019; 11 Roberts, J.J.; Thomson, A.J.: The mechanism of action of antitumor platinum compounds. In Madec, Figueiredo, Cariou, Roland, Sollogoub, Gasser (bib0008) 2023; 14 Zhang, Ponte, Borfecchia, Martini, Sanchez-Cano, Sicilia, Sadler (bib0040) 2019; 55 Dougan, Sadler (bib0019) 2007; 61 Chen, Soldevila-Barreda, Romero-Canelon, Coverdale, Song, Clarkson, Kasparkova, Habtemariam, Brabec, Wolny, Schunemann, Sadler (bib0022) 2018; 47 Ortega, Yellol, Rothemund, Ballester, Rodríguez, Yellol, Janiak, Schobert, Ruiz (bib0049) 2018; 54 Bolitho, Coverdale, Bridgewater, Clarkson, Quinn, Sanchez-Cano, Sadler (bib0069) 2021; 60 Hager, Mokesch, Kieler, Alonso-de Castro, Baier, Roller, Kandioller, Keppler, Berger, Salassa, Terenzi (bib0062) 2019; 48 Soldevila-Barreda, Habtemariam, Romero-Canelón, Sadler (bib0039) 2015; 153 Bergamo, Masi, Peacock, Habtemariam, Sadler, Sava (bib0020) 2010; 104 Bacac, Hotze, Schilden, Haasnoot, Pacor, Alessio, Sava, Reedijk (bib0035) 2004; 98 Tyagi, Dixit, Venkatesh (bib0031) 2022; 533 Zhang, Pitto-Barry, Shang, Barry (bib0033) 2017; 4 Infante-Tadeo, Rodríguez-Fanjul, Habtemariam, Pizarro (bib0047) 2021; 12 Ong, Gasser (bib0006) 2020; 37 . Murray, Dyson (bib0007) 2020; 56 Betanzos-Lara, Liu, Habtemariam, Pizarro, Qamar, Sadler (bib0067) 2012; 51 Nolan, Rafols, Harrison, Soldevila-Barreda, Crosatti, Garton, Wegrzyn, Timms, Seaton, Sendron, Azmanova, Barry, Pitto-Barry, Cox (bib0026) 2022; 3 Pragti, Kundu, Mukhopadhyay (bib0054) 2021; 448 Vougioukalakis, Grubbs (bib0012) 2010; 110 Imberti, Sadler (bib0004) 2020; 75 Liu, Sadler (bib0058) 2014; 47 Wang, Xu, Wu, Weidt, Mackay, Langridge-Smith, Sadler (bib0057) 2013; 42 Monro, Colón, Yin, Roque, Konda, Gujar, Thummel, Lilge, Cameron, McFarland (bib0010) 2019; 119 Kasparkova, Brabec (bib0060) 2018; 376 Ngo, Do (bib0030) 2020; 7 Berger, Hanif, Nazarov Alexey, Hartinger Christian, John Roland, Kuznetsov Maxim, Groessl, Schmitt, Zava, Biba, Arion Vladimir, Galanski, Jakupec Michael, Juillerat-Jeanneret, Dyson Paul, Keppler Bernhard (bib0038) 2008; 14 A, Roy, Das, Varddhan, Sahoo, Paira (bib0050) 2022; 51 Soldevila-Barreda, Azmanova, Pitto-Barry, Cooper, Shnyder, Barry (bib0071) 2020; 15 Bloomer, Clark, Hartwig (bib0027) 2023; 62 Baik, Friesner, Lippard (bib0065) 2003; 125 Liu, Testa, Fahr (bib0043) 2011; 28 Kartalou, Essigmann (bib0056) 2001; 478 Soldevila-Barreda, Bruijnincx, Habtemariam, Clarkson, Deeth, Sadler (bib0021) 2012; 31 Needham, Sanchez-Cano, Zhang, Romero-Canelón, Habtemariam, Cooper, Meszaros, Clarkson, Blower, Sadler (bib0037) 2017; 56 Rosenberg, Van Camp, Krigas (bib0002) 1965; 205 Soldevila-Barreda, Romero-Canelón, Habtemariam, Sadler (bib0015) 2015; 6 Chen, Chang (bib0066) 2019; 20 Aird, Cummings, Ritchie, Muir, Morris, Chen, Sadler, Jodrell (bib0023) 2002; 86 Zhang, Bridgewater, Banerjee, Soldevila-Barreda, Clarkson, Shi, Imberti, Sadler (bib0068) 2019 Morris, Aird, del Socorro Murdoch, Chen, Cummings, Hughes, Parsons, Parkin, Boyd, Jodrell, Sadler (bib0018) 2001; 44 Sanford, Love, Grubbs (bib0011) 2001; 123 Bergamo, Dyson, Sava (bib0053) 2018; 360 Chen, Parkinson, Parsons, Coxall, Gould, Sadler (bib0063) 2002; 124 Zaidieh, Smith, Ball, An (bib0070) 2019; 19 Liang, Serrano-Plana, Peterson, Ward (bib0028) 2019; 52 Işık, Meriç, Kayan, Kılıç, Belyankova, Zazybin, Aydemir (bib0044) 2023; 998 Cohn, W.E., Ed.; Academic Press, 1979; Vol. 22; pp 71–133. Li, Tian, Ge, Xu, Feng, Liu (bib0046) 2019; 163 Ghosh (bib0061) 2019; 88 Yang, Fang, Cao, Mao (bib0059) 2021; 57 Ramos, Zimbron, Thorimbert, Chamoreau, Munier, Botuha, Karaiskou, Salmain, Sobczak-Thépot (bib0029) 2020; 49 Franco, Cidlowski (bib0055) 2009; 16 Zhang, Banerjee, Hughes, Bridgewater, Song, Breeze, Clarkson, Coverdale, Sanchez-Cano, Ponte, Sicilia, Sadler (bib0025) 2020; 11 Banerjee, Sadler (bib0017) 2021; 2 Poole, Poole (bib0042) 2003; 797 Soldevila-Barreda, Fawibe, Azmanova, Rafols, Pitto-Barry, Eke, Barry (bib0034) 2020; 25 Pages, Ang, Wright, Aldrich-Wright (bib0052) 2015; 44 Dougan, Habtemariam, McHale, Parsons, Sadler (bib0024) 2008; 105 Peacock, Melchart, Deeth, Habtemariam, Parsons, Sadler (bib0064) 2007; 13 Tönnemann, Risse, Grote, Scopelliti, Severin (bib0072) 2013; 2013 Alessio, Messori (bib0009) 2019; 24 Imberti, Zhang, Huang, Sadler (bib0005) 2020; 59 Chen (10.1016/j.jorganchem.2024.123168_bib0022) 2018; 47 Tyagi (10.1016/j.jorganchem.2024.123168_bib0031) 2022; 533 Wang (10.1016/j.jorganchem.2024.123168_bib0057) 2013; 42 Franco (10.1016/j.jorganchem.2024.123168_bib0055) 2009; 16 Pitto-Barry (10.1016/j.jorganchem.2024.123168_bib0041) 2017; 46 Zhang (10.1016/j.jorganchem.2024.123168_bib0025) 2020; 11 Bergamo (10.1016/j.jorganchem.2024.123168_bib0020) 2010; 104 Chen (10.1016/j.jorganchem.2024.123168_bib0063) 2002; 124 Madec (10.1016/j.jorganchem.2024.123168_bib0008) 2023; 14 Soldevila-Barreda (10.1016/j.jorganchem.2024.123168_bib0034) 2020; 25 Nolan (10.1016/j.jorganchem.2024.123168_bib0026) 2022; 3 Dougan (10.1016/j.jorganchem.2024.123168_bib0024) 2008; 105 Işık (10.1016/j.jorganchem.2024.123168_bib0044) 2023; 998 Li (10.1016/j.jorganchem.2024.123168_bib0046) 2019; 163 Soldevila-Barreda (10.1016/j.jorganchem.2024.123168_bib0015) 2015; 6 Betanzos-Lara (10.1016/j.jorganchem.2024.123168_bib0067) 2012; 51 Sanford (10.1016/j.jorganchem.2024.123168_bib0011) 2001; 123 Peacock (10.1016/j.jorganchem.2024.123168_bib0064) 2007; 13 Liu (10.1016/j.jorganchem.2024.123168_bib0036) 2014; 53 A (10.1016/j.jorganchem.2024.123168_bib0050) 2022; 51 Chen (10.1016/j.jorganchem.2024.123168_bib0066) 2019; 20 Huang (10.1016/j.jorganchem.2024.123168_bib0016) 2019; 11 Soldevila-Barreda (10.1016/j.jorganchem.2024.123168_bib0039) 2015; 153 Monro (10.1016/j.jorganchem.2024.123168_bib0010) 2019; 119 Ortega (10.1016/j.jorganchem.2024.123168_bib0049) 2018; 54 Yang (10.1016/j.jorganchem.2024.123168_bib0048) 2017; 12 Murray (10.1016/j.jorganchem.2024.123168_bib0007) 2020; 56 Needham (10.1016/j.jorganchem.2024.123168_bib0037) 2017; 56 Poole (10.1016/j.jorganchem.2024.123168_bib0042) 2003; 797 Soldevila-Barreda (10.1016/j.jorganchem.2024.123168_bib0071) 2020; 15 Bergamo (10.1016/j.jorganchem.2024.123168_bib0053) 2018; 360 Morris (10.1016/j.jorganchem.2024.123168_bib0018) 2001; 44 Kartalou (10.1016/j.jorganchem.2024.123168_bib0056) 2001; 478 Zaidieh (10.1016/j.jorganchem.2024.123168_bib0070) 2019; 19 Pragti (10.1016/j.jorganchem.2024.123168_bib0054) 2021; 448 Pages (10.1016/j.jorganchem.2024.123168_bib0052) 2015; 44 Zhang (10.1016/j.jorganchem.2024.123168_bib0033) 2017; 4 Liu (10.1016/j.jorganchem.2024.123168_bib0045) 2013; 52 Hager (10.1016/j.jorganchem.2024.123168_bib0062) 2019; 48 Rosenberg (10.1016/j.jorganchem.2024.123168_bib0002) 1965; 205 Ong (10.1016/j.jorganchem.2024.123168_bib0006) 2020; 37 Aird (10.1016/j.jorganchem.2024.123168_bib0023) 2002; 86 Infante-Tadeo (10.1016/j.jorganchem.2024.123168_bib0047) 2021; 12 Vougioukalakis (10.1016/j.jorganchem.2024.123168_bib0012) 2010; 110 Bolitho (10.1016/j.jorganchem.2024.123168_bib0069) 2021; 60 Liu (10.1016/j.jorganchem.2024.123168_bib0043) 2011; 28 Tönnemann (10.1016/j.jorganchem.2024.123168_bib0072) 2013; 2013 Ngo (10.1016/j.jorganchem.2024.123168_bib0030) 2020; 7 Bacac (10.1016/j.jorganchem.2024.123168_bib0035) 2004; 98 Noffke (10.1016/j.jorganchem.2024.123168_bib0013) 2012; 48 Liang (10.1016/j.jorganchem.2024.123168_bib0028) 2019; 52 Baik (10.1016/j.jorganchem.2024.123168_bib0065) 2003; 125 Imberti (10.1016/j.jorganchem.2024.123168_bib0005) 2020; 59 Dougan (10.1016/j.jorganchem.2024.123168_bib0019) 2007; 61 Zhang (10.1016/j.jorganchem.2024.123168_bib0040) 2019; 55 Zhang (10.1016/j.jorganchem.2024.123168_bib0068) 2019 Kasparkova (10.1016/j.jorganchem.2024.123168_bib0060) 2018; 376 Alessio (10.1016/j.jorganchem.2024.123168_bib0009) 2019; 24 Ramos (10.1016/j.jorganchem.2024.123168_bib0029) 2020; 49 Banerjee (10.1016/j.jorganchem.2024.123168_bib0017) 2021; 2 Bloomer (10.1016/j.jorganchem.2024.123168_bib0027) 2023; 62 Liu (10.1016/j.jorganchem.2024.123168_bib0058) 2014; 47 Soldevila-Barreda (10.1016/j.jorganchem.2024.123168_bib0014) 2015; 25 Berger (10.1016/j.jorganchem.2024.123168_bib0038) 2008; 14 Yang (10.1016/j.jorganchem.2024.123168_bib0059) 2021; 57 10.1016/j.jorganchem.2024.123168_bib0001 Imberti (10.1016/j.jorganchem.2024.123168_bib0004) 2020; 75 10.1016/j.jorganchem.2024.123168_bib0003 Ghosh (10.1016/j.jorganchem.2024.123168_bib0061) 2019; 88 Soldevila-Barreda (10.1016/j.jorganchem.2024.123168_bib0021) 2012; 31 |
References_xml | – volume: 24 start-page: 1995 year: 2019 ident: bib0009 article-title: NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry publication-title: Molecules – volume: 59 start-page: 61 year: 2020 end-page: 73 ident: bib0005 article-title: New designs for phototherapeutic transition metal complexes publication-title: Angew. Chem. Int. Ed. – volume: 3 year: 2022 ident: bib0026 article-title: Indole-containing arene-ruthenium complexes with broad spectrum activity against antibiotic-resistant bacteria publication-title: Curr. Res. Microb. Sci. – volume: 124 start-page: 3064 year: 2002 end-page: 3082 ident: bib0063 article-title: Organometallic ruthenium(II) diamine anticancer complexes: arene-nucleobase stacking and stereospecific hydrogen-bonding in guanine adducts publication-title: J. Am. Chem. Soc. – volume: 153 start-page: 322 year: 2015 end-page: 333 ident: bib0039 article-title: Half-sandwich rhodium(III) transfer hydrogenation catalysts: reduction of NAD+ and pyruvate, and antiproliferative activity publication-title: J. Inorg. Biochem. – volume: 376 start-page: 75 year: 2018 end-page: 94 ident: bib0060 article-title: Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents publication-title: Coord. Chem. Rev. – volume: 6 start-page: 6582 year: 2015 ident: bib0015 article-title: Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design publication-title: Nat. Commun. – volume: 98 start-page: 402 year: 2004 end-page: 412 ident: bib0035 article-title: The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation publication-title: J. Inorg. Biochem. – volume: 797 start-page: 3 year: 2003 end-page: 19 ident: bib0042 article-title: Separation methods for estimating octanol–water partition coefficients publication-title: J. Chromatogr. B – reference: WHO, Fact sheets 2019, – volume: 125 start-page: 14082 year: 2003 end-page: 14092 ident: bib0065 article-title: Theoretical study of cisplatin binding to purine bases: why does cisplatin prefer guanine over adenine? publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 28 year: 2020 end-page: 34 ident: bib0007 article-title: Recent progress in the development of organometallics for the treatment of cancer publication-title: Curr. Opin. Chem. Biol. – volume: 119 start-page: 797 year: 2019 end-page: 828 ident: bib0010 article-title: Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433 publication-title: Chem. Rev. – volume: 31 start-page: 5958 year: 2012 end-page: 5967 ident: bib0021 article-title: Improved catalytic activity of ruthenium–arene complexes in the reduction of NAD+ publication-title: Organometallics – volume: 52 start-page: 4194 year: 2013 end-page: 4197 ident: bib0045 article-title: Reduction of quinones by NADH catalyzed by organoiridium complexes publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 172 year: 2015 end-page: 183 ident: bib0014 article-title: Approaches to the design of catalytic metallodrugs publication-title: Curr. Opin. Chem. Biol. – volume: 998 year: 2023 ident: bib0044 article-title: Synthesis of half-sandwich ruthenium(II) and iridium(III) complexes containing imidazole-based phosphinite ligands and their use in catalytic transfer hydrogenation of acetophenone with isopropanol publication-title: J. Organomet. Chem. – volume: 88 year: 2019 ident: bib0061 article-title: The first metal based anticancer drug publication-title: Bioorg. Chem. – volume: 533 year: 2022 ident: bib0031 article-title: Recent advances in catalytic anticancer drugs: mechanistic investigations and future prospects publication-title: Inorg. Chim. Acta – reference: Roberts, J.J.; Thomson, A.J.: The mechanism of action of antitumor platinum compounds. In – volume: 47 start-page: 7178 year: 2018 end-page: 7189 ident: bib0022 article-title: Effect of sulfonamidoethylenediamine substituents in RuII arene anticancer catalysts on transfer hydrogenation of coenzyme NAD+ by formate publication-title: Dalton Trans. – volume: 42 start-page: 3188 year: 2013 end-page: 3195 ident: bib0057 article-title: Competition between glutathione and DNA oligonucleotides for ruthenium(ii) arene anticancer complexes publication-title: Dalton Trans. – volume: 13 start-page: 2601 year: 2007 end-page: 2613 ident: bib0064 article-title: Osmium(II) and ruthenium(II) arene maltolato complexes: rapid hydrolysis and nucleobase binding publication-title: Chem. - Eur. J. – volume: 20 start-page: 4136 year: 2019 ident: bib0066 article-title: New insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment publication-title: Int. J. Mol. Sci. – volume: 2 start-page: 12 year: 2021 end-page: 29 ident: bib0017 article-title: Transfer hydrogenation catalysis in cells publication-title: RSC Chem. Biol. – volume: 123 start-page: 6543 year: 2001 end-page: 6554 ident: bib0011 article-title: Mechanism and activity of ruthenium olefin metathesis catalysts publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 6462 year: 2021 end-page: 6472 ident: bib0069 article-title: Tracking reactions of asymmetric organo-osmium transfer hydrogenation catalysts in cancer cells publication-title: Angew. Chem. Int. Ed. – volume: 37 start-page: 117 year: 2020 end-page: 124 ident: bib0006 article-title: Organometallic compounds in drug discovery: past, present and future publication-title: Drug Discovery Today: Technol – volume: 28 start-page: 962 year: 2011 end-page: 977 ident: bib0043 article-title: Lipophilicity and its relationship with passive drug permeation publication-title: Pharm. Res. – volume: 46 start-page: 15676 year: 2017 end-page: 15683 ident: bib0041 article-title: Pseudo electron-deficient organometallics: limited reactivity towards electron-donating ligands publication-title: Dalton Trans. – volume: 16 start-page: 1303 year: 2009 end-page: 1314 ident: bib0055 article-title: Apoptosis and glutathione: beyond an antioxidant publication-title: Cell Death Differ. – volume: 15 start-page: 982 year: 2020 end-page: 987 ident: bib0071 article-title: Preclinical anticancer activity of an electron-deficient organoruthenium(II) complex publication-title: ChemMedChem – volume: 62 start-page: 221 year: 2023 end-page: 228 ident: bib0027 article-title: Progress, challenges, and opportunities with artificial metalloenzymes in biosynthesis publication-title: Biochemistry – volume: 205 start-page: 698 year: 1965 end-page: 699 ident: bib0002 article-title: Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode publication-title: Nature – volume: 163 start-page: 830 year: 2019 end-page: 839 ident: bib0046 article-title: Design, synthesis, and evaluation of fluorine and Naphthyridine–Based half-sandwich organoiridium/ruthenium complexes with bioimaging and anticancer activity publication-title: Eur. J. Med. Chem. – volume: 14 start-page: 409 year: 2023 end-page: 442 ident: bib0008 article-title: Metal complexes for catalytic and photocatalytic reactions in living cells and organisms publication-title: Chem. Sci. – volume: 2013 start-page: 4558 year: 2013 end-page: 4562 ident: bib0072 article-title: Efficient and rapid synthesis of Chlorido-bridged half-sandwich complexes of ruthenium, rhodium, and iridium by microwave heating publication-title: Eur. J. Inorg. Chem. – volume: 25 start-page: 4540 year: 2020 ident: bib0034 article-title: Characterisation and In vitro anticancer activity of catalytically active indole-based half-sandwich complexes publication-title: Molecules – volume: 56 start-page: 1017 year: 2017 end-page: 1020 ident: bib0037 article-title: In-cell activation of organo-osmium(II) anticancer complexes publication-title: Angew. Chem. Int. Ed. – volume: 44 start-page: 3616 year: 2001 end-page: 3621 ident: bib0018 article-title: Inhibition of cancer cell growth by ruthenium(II) arene complexes publication-title: J. Med. Chem. – volume: 44 start-page: 3505 year: 2015 end-page: 3526 ident: bib0052 article-title: Metal complex interactions with DNA publication-title: Dalton. Trans. – volume: 48 start-page: 12040 year: 2019 end-page: 12049 ident: bib0062 article-title: Ruthenium–arene complexes bearing naphthyl-substituted 1,3-dioxoindan-2-carboxamides ligands for G-quadruplex DNA recognition publication-title: Dalton Trans. – volume: 86 start-page: 1652 year: 2002 end-page: 1657 ident: bib0023 article-title: and publication-title: Br. J. Cancer – volume: 47 start-page: 1174 year: 2014 end-page: 1185 ident: bib0058 article-title: Organoiridium complexes: anticancer agents and catalysts publication-title: Acc. Chem. Res. – volume: 448 year: 2021 ident: bib0054 article-title: Target based chemotherapeutic advancement of ruthenium complexes publication-title: Coord. Chem. Rev. – start-page: 1052 year: 2019 end-page: 1060 ident: bib0068 article-title: Ligand-controlled reactivity and cytotoxicity of cyclometalated rhodium(III) complexes publication-title: Eur. J. Inorg. Chem. – volume: 75 start-page: 3 year: 2020 end-page: 56 ident: bib0004 article-title: 150 years of the periodic table: new medicines and diagnostic agents publication-title: Adv. Inorg. Chem. – volume: 478 start-page: 23 year: 2001 end-page: 43 ident: bib0056 article-title: Mechanisms of resistance to cisplatin publication-title: Mutat. Res. – volume: 57 start-page: 1093 year: 2021 end-page: 1096 ident: bib0059 article-title: The design of cyclometalated iridium(iii)–metformin complexes for hypoxic cancer treatment publication-title: Chem. Commun. – reference: ; Cohn, W.E., Ed.; Academic Press, 1979; Vol. 22; pp 71–133. – volume: 48 start-page: 5219 year: 2012 end-page: 5246 ident: bib0013 article-title: Designing organometallic compounds for catalysis and therapy publication-title: Chem. Commun. – volume: 54 start-page: 11120 year: 2018 end-page: 11123 ident: bib0049 article-title: A new C,N-cyclometalated osmium(ii) arene anticancer scaffold with a handle for functionalization and antioxidative properties publication-title: Chem. Commun. – volume: 7 start-page: 583 year: 2020 end-page: 591 ident: bib0030 article-title: Structure–activity relationship study of half-sandwich metal complexes in aqueous transfer hydrogenation catalysis publication-title: Inorg. Chem. Front. – volume: 51 start-page: 3897 year: 2012 end-page: 3900 ident: bib0067 article-title: Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 14602 year: 2019 end-page: 14605 ident: bib0040 article-title: Glutathione activation of an organometallic half-sandwich anticancer drug candidate by ligand attack publication-title: Chem. Commun. – volume: 360 start-page: 17 year: 2018 end-page: 33 ident: bib0053 article-title: The mechanism of tumour cell death by metal-based anticancer drugs is not only a matter of DNA interactions publication-title: Coord. Chem. Rev. – volume: 49 start-page: 17635 year: 2020 end-page: 17641 ident: bib0029 article-title: Insights into the antiproliferative mechanism of (C^N)-chelated half-sandwich iridium complexes publication-title: Dalton Trans. – volume: 52 start-page: 585 year: 2019 end-page: 595 ident: bib0028 article-title: Artificial metalloenzymes based on the biotin–streptavidin technology: enzymatic cascades and directed evolution publication-title: Acc. Chem. Res. – volume: 12 start-page: 9287 year: 2021 end-page: 9297 ident: bib0047 article-title: Osmium(ii) tethered half-sandwich complexes: pH-dependent aqueous speciation and transfer hydrogenation in cells publication-title: Chem. Sci. – volume: 19 start-page: 1224 year: 2019 ident: bib0070 article-title: ROS as a novel indicator to predict anticancer drug efficacy publication-title: BMC Cancer – reference: . – volume: 11 start-page: 1041 year: 2019 end-page: 1048 ident: bib0016 article-title: Targeted photoredox catalysis in cancer cells publication-title: Nat. Chem. – volume: 12 start-page: 292 year: 2017 end-page: 299 ident: bib0048 article-title: Innocent but deadly: nontoxic organoiridium catalysts promote selective cancer cell death publication-title: ChemMedChem – volume: 104 start-page: 79 year: 2010 end-page: 86 ident: bib0020 article-title: tumour and metastasis reduction and publication-title: J. Inorg. Biochem. – volume: 14 start-page: 9046 year: 2008 end-page: 9057 ident: bib0038 article-title: In Vitro anticancer activity and biologically relevant metabolization of organometallic ruthenium complexes with carbohydrate-based ligands publication-title: Chem. Eur. J. – volume: 4 year: 2017 ident: bib0033 article-title: Anti-inflammatory activity of electron-deficient organometallics publication-title: R. Soc. Open Sci. – volume: 61 start-page: 704 year: 2007 end-page: 715 ident: bib0019 article-title: The design of organometallic ruthenium arene anticancer agents publication-title: Chimia – volume: 110 start-page: 1746 year: 2010 end-page: 1787 ident: bib0012 article-title: Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts publication-title: Chem. Rev. – volume: 105 start-page: 11628 year: 2008 ident: bib0024 article-title: Catalytic organometallic anticancer complexes publication-title: Proc. Natl. Acad. Sci. – volume: 53 start-page: 3941 year: 2014 end-page: 3946 ident: bib0036 article-title: The potent oxidant anticancer activity of organoiridium catalysts publication-title: Angew. Chem. Int. Ed. – volume: 51 start-page: 8497 year: 2022 end-page: 8509 ident: bib0050 article-title: [Ru(η6-p-cymene)(N^O 8-hydroxyquinoline)(PTA)] complexes as rising stars in medicinal chemistry: synthesis, properties, biomolecular interactions, publication-title: Dalton Trans. – volume: 11 start-page: 5466 year: 2020 end-page: 5480 ident: bib0025 article-title: Ligand-centred redox activation of inert organoiridium anticancer catalysts publication-title: Chem. Sci. – volume: 14 start-page: 409 year: 2023 ident: 10.1016/j.jorganchem.2024.123168_bib0008 article-title: Metal complexes for catalytic and photocatalytic reactions in living cells and organisms publication-title: Chem. Sci. doi: 10.1039/D2SC05672K – volume: 98 start-page: 402 year: 2004 ident: 10.1016/j.jorganchem.2024.123168_bib0035 article-title: The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2003.12.003 – volume: 6 start-page: 6582 year: 2015 ident: 10.1016/j.jorganchem.2024.123168_bib0015 article-title: Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design publication-title: Nat. Commun. doi: 10.1038/ncomms7582 – volume: 60 start-page: 6462 year: 2021 ident: 10.1016/j.jorganchem.2024.123168_bib0069 article-title: Tracking reactions of asymmetric organo-osmium transfer hydrogenation catalysts in cancer cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016456 – volume: 16 start-page: 1303 year: 2009 ident: 10.1016/j.jorganchem.2024.123168_bib0055 article-title: Apoptosis and glutathione: beyond an antioxidant publication-title: Cell Death Differ. doi: 10.1038/cdd.2009.107 – volume: 49 start-page: 17635 year: 2020 ident: 10.1016/j.jorganchem.2024.123168_bib0029 article-title: Insights into the antiproliferative mechanism of (C^N)-chelated half-sandwich iridium complexes publication-title: Dalton Trans. doi: 10.1039/D0DT03414B – volume: 110 start-page: 1746 year: 2010 ident: 10.1016/j.jorganchem.2024.123168_bib0012 article-title: Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts publication-title: Chem. Rev. doi: 10.1021/cr9002424 – volume: 104 start-page: 79 year: 2010 ident: 10.1016/j.jorganchem.2024.123168_bib0020 article-title: In vivo tumour and metastasis reduction and in vitro effects on invasion assays of the ruthenium RM175 and osmium AFAP51 organometallics in the mammary cancer model publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2009.10.005 – volume: 56 start-page: 1017 year: 2017 ident: 10.1016/j.jorganchem.2024.123168_bib0037 article-title: In-cell activation of organo-osmium(II) anticancer complexes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610290 – volume: 52 start-page: 4194 year: 2013 ident: 10.1016/j.jorganchem.2024.123168_bib0045 article-title: Reduction of quinones by NADH catalyzed by organoiridium complexes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300747 – volume: 119 start-page: 797 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0010 article-title: Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00211 – volume: 4 year: 2017 ident: 10.1016/j.jorganchem.2024.123168_bib0033 article-title: Anti-inflammatory activity of electron-deficient organometallics publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.170786 – volume: 52 start-page: 585 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0028 article-title: Artificial metalloenzymes based on the biotin–streptavidin technology: enzymatic cascades and directed evolution publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00618 – volume: 163 start-page: 830 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0046 article-title: Design, synthesis, and evaluation of fluorine and Naphthyridine–Based half-sandwich organoiridium/ruthenium complexes with bioimaging and anticancer activity publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.12.021 – ident: 10.1016/j.jorganchem.2024.123168_bib0001 – volume: 2013 start-page: 4558 year: 2013 ident: 10.1016/j.jorganchem.2024.123168_bib0072 article-title: Efficient and rapid synthesis of Chlorido-bridged half-sandwich complexes of ruthenium, rhodium, and iridium by microwave heating publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201300600 – volume: 46 start-page: 15676 year: 2017 ident: 10.1016/j.jorganchem.2024.123168_bib0041 article-title: Pseudo electron-deficient organometallics: limited reactivity towards electron-donating ligands publication-title: Dalton Trans. doi: 10.1039/C7DT02827J – volume: 75 start-page: 3 year: 2020 ident: 10.1016/j.jorganchem.2024.123168_bib0004 article-title: 150 years of the periodic table: new medicines and diagnostic agents publication-title: Adv. Inorg. Chem. doi: 10.1016/bs.adioch.2019.11.001 – volume: 998 year: 2023 ident: 10.1016/j.jorganchem.2024.123168_bib0044 article-title: Synthesis of half-sandwich ruthenium(II) and iridium(III) complexes containing imidazole-based phosphinite ligands and their use in catalytic transfer hydrogenation of acetophenone with isopropanol publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2023.122800 – volume: 125 start-page: 14082 year: 2003 ident: 10.1016/j.jorganchem.2024.123168_bib0065 article-title: Theoretical study of cisplatin binding to purine bases: why does cisplatin prefer guanine over adenine? publication-title: J. Am. Chem. Soc. doi: 10.1021/ja036960d – volume: 25 start-page: 172 year: 2015 ident: 10.1016/j.jorganchem.2024.123168_bib0014 article-title: Approaches to the design of catalytic metallodrugs publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2015.01.024 – volume: 153 start-page: 322 year: 2015 ident: 10.1016/j.jorganchem.2024.123168_bib0039 article-title: Half-sandwich rhodium(III) transfer hydrogenation catalysts: reduction of NAD+ and pyruvate, and antiproliferative activity publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2015.10.008 – volume: 37 start-page: 117 year: 2020 ident: 10.1016/j.jorganchem.2024.123168_bib0006 article-title: Organometallic compounds in drug discovery: past, present and future publication-title: Drug Discovery Today: Technol doi: 10.1016/j.ddtec.2019.06.001 – volume: 56 start-page: 28 year: 2020 ident: 10.1016/j.jorganchem.2024.123168_bib0007 article-title: Recent progress in the development of organometallics for the treatment of cancer publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2019.11.001 – volume: 3 year: 2022 ident: 10.1016/j.jorganchem.2024.123168_bib0026 article-title: Indole-containing arene-ruthenium complexes with broad spectrum activity against antibiotic-resistant bacteria publication-title: Curr. Res. Microb. Sci. – volume: 12 start-page: 9287 year: 2021 ident: 10.1016/j.jorganchem.2024.123168_bib0047 article-title: Osmium(ii) tethered half-sandwich complexes: pH-dependent aqueous speciation and transfer hydrogenation in cells publication-title: Chem. Sci. doi: 10.1039/D1SC01939B – volume: 448 year: 2021 ident: 10.1016/j.jorganchem.2024.123168_bib0054 article-title: Target based chemotherapeutic advancement of ruthenium complexes publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214169 – volume: 61 start-page: 704 year: 2007 ident: 10.1016/j.jorganchem.2024.123168_bib0019 article-title: The design of organometallic ruthenium arene anticancer agents publication-title: Chimia doi: 10.2533/chimia.2007.704 – volume: 86 start-page: 1652 year: 2002 ident: 10.1016/j.jorganchem.2024.123168_bib0023 article-title: In vitro and in vivo activity and cross resistance profiles of novel ruthenium (II) organometallic arene complexes in human ovarian cancer publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6600290 – volume: 28 start-page: 962 year: 2011 ident: 10.1016/j.jorganchem.2024.123168_bib0043 article-title: Lipophilicity and its relationship with passive drug permeation publication-title: Pharm. Res. doi: 10.1007/s11095-010-0303-7 – volume: 14 start-page: 9046 year: 2008 ident: 10.1016/j.jorganchem.2024.123168_bib0038 article-title: In Vitro anticancer activity and biologically relevant metabolization of organometallic ruthenium complexes with carbohydrate-based ligands publication-title: Chem. Eur. J. doi: 10.1002/chem.200801032 – volume: 88 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0061 article-title: The first metal based anticancer drug publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2019.102925 – volume: 51 start-page: 3897 year: 2012 ident: 10.1016/j.jorganchem.2024.123168_bib0067 article-title: Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201108175 – start-page: 1052 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0068 article-title: Ligand-controlled reactivity and cytotoxicity of cyclometalated rhodium(III) complexes publication-title: Eur. J. Inorg. Chem. – volume: 12 start-page: 292 year: 2017 ident: 10.1016/j.jorganchem.2024.123168_bib0048 article-title: Innocent but deadly: nontoxic organoiridium catalysts promote selective cancer cell death publication-title: ChemMedChem doi: 10.1002/cmdc.201600638 – volume: 533 year: 2022 ident: 10.1016/j.jorganchem.2024.123168_bib0031 article-title: Recent advances in catalytic anticancer drugs: mechanistic investigations and future prospects publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2021.120754 – volume: 47 start-page: 1174 year: 2014 ident: 10.1016/j.jorganchem.2024.123168_bib0058 article-title: Organoiridium complexes: anticancer agents and catalysts publication-title: Acc. Chem. Res. doi: 10.1021/ar400266c – volume: 205 start-page: 698 year: 1965 ident: 10.1016/j.jorganchem.2024.123168_bib0002 article-title: Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode publication-title: Nature doi: 10.1038/205698a0 – volume: 54 start-page: 11120 year: 2018 ident: 10.1016/j.jorganchem.2024.123168_bib0049 article-title: A new C,N-cyclometalated osmium(ii) arene anticancer scaffold with a handle for functionalization and antioxidative properties publication-title: Chem. Commun. doi: 10.1039/C8CC06427J – volume: 42 start-page: 3188 year: 2013 ident: 10.1016/j.jorganchem.2024.123168_bib0057 article-title: Competition between glutathione and DNA oligonucleotides for ruthenium(ii) arene anticancer complexes publication-title: Dalton Trans. doi: 10.1039/C2DT32091F – volume: 31 start-page: 5958 year: 2012 ident: 10.1016/j.jorganchem.2024.123168_bib0021 article-title: Improved catalytic activity of ruthenium–arene complexes in the reduction of NAD+ publication-title: Organometallics doi: 10.1021/om3006307 – volume: 55 start-page: 14602 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0040 article-title: Glutathione activation of an organometallic half-sandwich anticancer drug candidate by ligand attack publication-title: Chem. Commun. doi: 10.1039/C9CC06725F – volume: 62 start-page: 221 year: 2023 ident: 10.1016/j.jorganchem.2024.123168_bib0027 article-title: Progress, challenges, and opportunities with artificial metalloenzymes in biosynthesis publication-title: Biochemistry doi: 10.1021/acs.biochem.1c00829 – volume: 7 start-page: 583 year: 2020 ident: 10.1016/j.jorganchem.2024.123168_bib0030 article-title: Structure–activity relationship study of half-sandwich metal complexes in aqueous transfer hydrogenation catalysis publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI01310E – volume: 11 start-page: 1041 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0016 article-title: Targeted photoredox catalysis in cancer cells publication-title: Nat. Chem. doi: 10.1038/s41557-019-0328-4 – volume: 51 start-page: 8497 year: 2022 ident: 10.1016/j.jorganchem.2024.123168_bib0050 publication-title: Dalton Trans. doi: 10.1039/D2DT00666A – volume: 57 start-page: 1093 year: 2021 ident: 10.1016/j.jorganchem.2024.123168_bib0059 article-title: The design of cyclometalated iridium(iii)–metformin complexes for hypoxic cancer treatment publication-title: Chem. Commun. doi: 10.1039/D0CC07104H – volume: 20 start-page: 4136 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0066 article-title: New insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20174136 – volume: 360 start-page: 17 year: 2018 ident: 10.1016/j.jorganchem.2024.123168_bib0053 article-title: The mechanism of tumour cell death by metal-based anticancer drugs is not only a matter of DNA interactions publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.01.009 – volume: 2 start-page: 12 year: 2021 ident: 10.1016/j.jorganchem.2024.123168_bib0017 article-title: Transfer hydrogenation catalysis in cells publication-title: RSC Chem. Biol. doi: 10.1039/D0CB00150C – volume: 47 start-page: 7178 year: 2018 ident: 10.1016/j.jorganchem.2024.123168_bib0022 article-title: Effect of sulfonamidoethylenediamine substituents in RuII arene anticancer catalysts on transfer hydrogenation of coenzyme NAD+ by formate publication-title: Dalton Trans. doi: 10.1039/C8DT00438B – volume: 59 start-page: 61 year: 2020 ident: 10.1016/j.jorganchem.2024.123168_bib0005 article-title: New designs for phototherapeutic transition metal complexes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905171 – volume: 124 start-page: 3064 year: 2002 ident: 10.1016/j.jorganchem.2024.123168_bib0063 article-title: Organometallic ruthenium(II) diamine anticancer complexes: arene-nucleobase stacking and stereospecific hydrogen-bonding in guanine adducts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja017482e – volume: 48 start-page: 12040 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0062 article-title: Ruthenium–arene complexes bearing naphthyl-substituted 1,3-dioxoindan-2-carboxamides ligands for G-quadruplex DNA recognition publication-title: Dalton Trans. doi: 10.1039/C9DT02078K – volume: 13 start-page: 2601 year: 2007 ident: 10.1016/j.jorganchem.2024.123168_bib0064 article-title: Osmium(II) and ruthenium(II) arene maltolato complexes: rapid hydrolysis and nucleobase binding publication-title: Chem. - Eur. J. doi: 10.1002/chem.200601152 – volume: 44 start-page: 3616 year: 2001 ident: 10.1016/j.jorganchem.2024.123168_bib0018 article-title: Inhibition of cancer cell growth by ruthenium(II) arene complexes publication-title: J. Med. Chem. doi: 10.1021/jm010051m – volume: 105 start-page: 11628 year: 2008 ident: 10.1016/j.jorganchem.2024.123168_bib0024 article-title: Catalytic organometallic anticancer complexes publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0800076105 – volume: 376 start-page: 75 year: 2018 ident: 10.1016/j.jorganchem.2024.123168_bib0060 article-title: Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.07.012 – volume: 15 start-page: 982 year: 2020 ident: 10.1016/j.jorganchem.2024.123168_bib0071 article-title: Preclinical anticancer activity of an electron-deficient organoruthenium(II) complex publication-title: ChemMedChem doi: 10.1002/cmdc.202000096 – volume: 25 start-page: 4540 year: 2020 ident: 10.1016/j.jorganchem.2024.123168_bib0034 article-title: Characterisation and In vitro anticancer activity of catalytically active indole-based half-sandwich complexes publication-title: Molecules doi: 10.3390/molecules25194540 – volume: 478 start-page: 23 year: 2001 ident: 10.1016/j.jorganchem.2024.123168_bib0056 article-title: Mechanisms of resistance to cisplatin publication-title: Mutat. Res. doi: 10.1016/S0027-5107(01)00141-5 – volume: 44 start-page: 3505 year: 2015 ident: 10.1016/j.jorganchem.2024.123168_bib0052 article-title: Metal complex interactions with DNA publication-title: Dalton. Trans. doi: 10.1039/C4DT02700K – volume: 24 start-page: 1995 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0009 article-title: NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry publication-title: Molecules doi: 10.3390/molecules24101995 – volume: 53 start-page: 3941 year: 2014 ident: 10.1016/j.jorganchem.2024.123168_bib0036 article-title: The potent oxidant anticancer activity of organoiridium catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201311161 – ident: 10.1016/j.jorganchem.2024.123168_bib0003 doi: 10.1016/S0079-6603(08)60799-0 – volume: 11 start-page: 5466 year: 2020 ident: 10.1016/j.jorganchem.2024.123168_bib0025 article-title: Ligand-centred redox activation of inert organoiridium anticancer catalysts publication-title: Chem. Sci. doi: 10.1039/D0SC00897D – volume: 123 start-page: 6543 year: 2001 ident: 10.1016/j.jorganchem.2024.123168_bib0011 article-title: Mechanism and activity of ruthenium olefin metathesis catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010624k – volume: 48 start-page: 5219 year: 2012 ident: 10.1016/j.jorganchem.2024.123168_bib0013 article-title: Designing organometallic compounds for catalysis and therapy publication-title: Chem. Commun. doi: 10.1039/c2cc30678f – volume: 19 start-page: 1224 year: 2019 ident: 10.1016/j.jorganchem.2024.123168_bib0070 article-title: ROS as a novel indicator to predict anticancer drug efficacy publication-title: BMC Cancer doi: 10.1186/s12885-019-6438-y – volume: 797 start-page: 3 year: 2003 ident: 10.1016/j.jorganchem.2024.123168_bib0042 article-title: Separation methods for estimating octanol–water partition coefficients publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2003.08.032 |
SSID | ssj0001308 |
Score | 2.4300823 |
Snippet | •Neutral metal complexes with a S∩N indole ligand have been synthesised.•The metal ion (Ru, Os, Rh, Ir) influences the catalytic activity for NAD+... Half-sandwich complexes containing transition metals offer a wide range of applications owing to their interactions with a variety of targets/molecules that... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 123168 |
SubjectTerms | Bioactive ligand Bioorganometallic chemistry Cancer Catalysis in cells Chemical Sciences Coordination chemistry Life Sciences Medicinal Chemistry Metal-based drugs |
Title | Evaluation of indole-based organometallics as transfer hydrogenation catalysts with anticancer activity |
URI | https://dx.doi.org/10.1016/j.jorganchem.2024.123168 https://hal.science/hal-04572953 |
Volume | 1013 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6qHvQiPvFZFvEa7T7ywlMplfo8VegtZF-2UhtpouDF3-5MHi2CB8FbEnbZ8O0yMzt88w0h55FmxjElPClj7UnDjKcCq7yQW-lECDGDwoT-w2MweJK3I3_UIr2mFgZplbXtr2x6aa3rL5c1mpdvkwnW-IJr49EIWZAQVaDip5QhnvKLryXNA2x0tFAMh9E1m6fieL2UrZMAHaxJ5_ICzDhD0dXfXdTKuEm2ls7neots1lEj7VY_tk1adrZD1ntNs7Zd8txfqHbTzFG4aGdT66GLMrRcPXu1EGZPJzqnaU6LMly1czr-NPMMzlA1s8zlfOZFTjE9SwF0NJIaxmH5A3aZ2CPD6_6wN_DqHgqeFjIsvNRpq2RqO9ygMou0Dvy16bg0jFwc-tIaePKZSv2OEyaOU7hPWhNqGWgRpaHYJ6uzbGYPCNUB54qV05zktpNyHTtmjYqFdFyYQ8Ia1JK3SikjaShkL8kS6QSRTiqkD8lVA2_yY9cTMOh_mH0GO7JYDIWyB937BL9BoAq3Bl98sKN_LXFMNvCt4oadkNVi_m5PIQopVLs8Zm2y1r25Gzx-A7uV3_k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4BPcClaksrKKWsKno0xLub2FbFAVFQKIFTKuW22icJCnEUm1a59Ef1F3bGj6BKHCpVXNder_XNaL6Z1TwADlMbuxAbEUmZ2Ui62EWm502UcC-DSNBnMHShf33T63-X30bd0Rr8bmthKK2ysf21Ta-sdbNy3KB5PJ9MqMYXqY2nI8qCRK-inWB95Zc_MW4rTi6_opA_c35xPjzrR81ogcgKmZSRDtYbqX2HO2pYIn1AGnOdoJM0ZElXeqdpar3R3U4QLss0hlneJVb2rEh1IvCz6_BCorWgqQlHvx7TSpAT0lWHcvy7Jnuozim7q0Y1oTSoBp7LI6SNmJq8Pk2J6-P2crciu4tX8LLxUtlpDcRrWPOzN7B51g6H24bb81WXcJYHhoF9PvURUaJj1en5vUe3fjqxBdMFKyv32C_YeOkWOepsvbO6O1oWZcHoOpihkMkoW3yPyi1oqsVbGD4HsO9gY5bP_A4w2-PcxNW2ILnvaG6zEHtnMiEDF24X4hY1Na87c6g2Ze1OPSKtCGlVI70LX1p41V9appBA_mH3J5TI6jBqzN0_HShaQ8cYo5Su-BG__68jDmCzP7weqMHlzdUebNGTOi_tA2yUiwe_jx5QaT5WKsdAPbOK_wHgVxws |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+indole-based+organometallics+as+transfer+hydrogenation+catalysts+with+anticancer+activity&rft.jtitle=Journal+of+organometallic+chemistry&rft.au=Rafols%2C+Laia&rft.au=Azmanova%2C+Maria&rft.au=Perrigault%2C+Nathan&rft.au=Cooper%2C+Patricia+A.&rft.date=2024-06-01&rft.issn=0022-328X&rft.volume=1013&rft.spage=123168&rft_id=info:doi/10.1016%2Fj.jorganchem.2024.123168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jorganchem_2024_123168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-328X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-328X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-328X&client=summon |