Tool remaining useful life prediction method based on LSTM under variable working conditions
Tool remaining useful life prediction is important to guarantee processing quality and efficient continuous production. Tool wear is directly related to the working conditions, showing a complex correlation and timing correlation, which makes it difficult to predict the tool remaining useful life un...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 104; no. 9-12; pp. 4715 - 4726 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tool remaining useful life prediction is important to guarantee processing quality and efficient continuous production. Tool wear is directly related to the working conditions, showing a complex correlation and timing correlation, which makes it difficult to predict the tool remaining useful life under variable conditions. In this paper, we seek to overcome this challenge. First, we establish the unified representation of the working condition, then extract the wear characteristics from the processing signal. The extracted wear features and corresponding working conditions are combined into an input matrix for predicting tool wear. Based on this, the complex spatio-temporal relationship under variable working conditions is captured. Finally, using the unique advantages of the long short-term memory (LSTM) model to solve complex correlation and memory accumulation effects, the tool remaining useful life prediction model under variable working conditions is established. An experiment illustrates the effectiveness of the proposed method. |
---|---|
AbstractList | Tool remaining useful life prediction is important to guarantee processing quality and efficient continuous production. Tool wear is directly related to the working conditions, showing a complex correlation and timing correlation, which makes it difficult to predict the tool remaining useful life under variable conditions. In this paper, we seek to overcome this challenge. First, we establish the unified representation of the working condition, then extract the wear characteristics from the processing signal. The extracted wear features and corresponding working conditions are combined into an input matrix for predicting tool wear. Based on this, the complex spatio-temporal relationship under variable working conditions is captured. Finally, using the unique advantages of the long short-term memory (LSTM) model to solve complex correlation and memory accumulation effects, the tool remaining useful life prediction model under variable working conditions is established. An experiment illustrates the effectiveness of the proposed method. |
Author | Zhao, Xu Zhou, Jing-Tao Gao, Jing |
Author_xml | – sequence: 1 givenname: Jing-Tao surname: Zhou fullname: Zhou, Jing-Tao email: Zhoujt@nwpu.edu.cn organization: Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University – sequence: 2 givenname: Xu surname: Zhao fullname: Zhao, Xu organization: Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University – sequence: 3 givenname: Jing surname: Gao fullname: Gao, Jing organization: Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University |
BookMark | eNp9kMtKxDAUhoMoOF5ewFXAdTW3pulSxBuMuHDcCSFNTjXaScakVebtbR1BcDGrw4HvO5f_AO2GGAChE0rOKCHVeSaEVqQgtC6I4KIu1jtoRgXnBSe03EUzwqQqeCXVPjrI-W3EJZVqhp4XMXY4wdL44MMLHjK0Q4c73wJeJXDe9j4GvIT-NTrcmAwOj_38cXGPh-Ag4U-TvGk6wF8xvU8jbAzOT1Y-Qnut6TIc_9ZD9HR9tbi8LeYPN3eXF_PCclH1hXHSloaz0jGr6ro2ruLMMkkdtYKDdKJRQJhtjWhEyRWVYEgFXJAWyqYx_BCdbuauUvwYIPf6LQ4pjCs1EzVRopZEbaWY4kzRUk6U2lA2xZwTtNr63kzv9Mn4TlOip8T1JnE9Jq5_EtfrUWX_1FXyS5PW2yW-kfIIhxdIf1dtsb4BCrOWYg |
CitedBy_id | crossref_primary_10_3390_s23208523 crossref_primary_10_1007_s00170_021_08282_x crossref_primary_10_1007_s00170_022_09771_3 crossref_primary_10_1007_s00170_023_12486_8 crossref_primary_10_1016_j_cie_2021_107267 crossref_primary_10_1007_s00170_024_14273_5 crossref_primary_10_1016_j_cie_2021_107227 crossref_primary_10_1007_s00170_020_05264_3 crossref_primary_10_1016_j_jmapro_2024_07_002 crossref_primary_10_1007_s40430_024_05310_1 crossref_primary_10_1016_j_cej_2022_141025 crossref_primary_10_1007_s00170_021_08320_8 crossref_primary_10_1007_s00170_023_10811_9 crossref_primary_10_1016_j_measurement_2022_112153 crossref_primary_10_1007_s00170_022_09032_3 crossref_primary_10_5050_KSNVE_2022_32_4_384 crossref_primary_10_1007_s00170_023_10981_6 crossref_primary_10_1177_09544062221142197 crossref_primary_10_1115_1_4052838 crossref_primary_10_3390_s24165433 crossref_primary_10_1007_s00170_021_07325_7 crossref_primary_10_1007_s10845_024_02398_z crossref_primary_10_1007_s12008_023_01663_4 crossref_primary_10_1016_j_aei_2023_102106 crossref_primary_10_1007_s40436_023_00464_y crossref_primary_10_3390_app15063179 crossref_primary_10_1007_s00170_021_08448_7 crossref_primary_10_1007_s10845_024_02459_3 crossref_primary_10_1109_TIM_2022_3173278 crossref_primary_10_3390_e25111477 crossref_primary_10_1016_j_ijmachtools_2022_103882 crossref_primary_10_1016_j_jmsy_2024_01_008 crossref_primary_10_1109_ACCESS_2020_3010378 crossref_primary_10_17531_ein_2021_4_3 crossref_primary_10_1088_1742_6596_2845_1_012003 crossref_primary_10_1016_j_jrras_2023_100715 crossref_primary_10_1016_j_jmsy_2023_02_019 crossref_primary_10_1016_j_wear_2021_203616 crossref_primary_10_1016_j_aei_2023_102218 crossref_primary_10_1088_1361_6501_ab7282 crossref_primary_10_1007_s10845_023_02260_8 crossref_primary_10_1016_j_ress_2024_110705 crossref_primary_10_3390_s24134117 crossref_primary_10_1016_j_cnsns_2025_108634 crossref_primary_10_3390_s23136123 crossref_primary_10_1016_j_measurement_2021_109329 crossref_primary_10_35534_ism_2024_10002 crossref_primary_10_1016_j_ijmachtools_2024_104209 crossref_primary_10_1016_j_jmapro_2023_01_054 crossref_primary_10_2139_ssrn_4188574 crossref_primary_10_1177_09544054231189313 crossref_primary_10_12677_ORF_2023_132122 crossref_primary_10_1108_IJQRM_11_2022_0318 crossref_primary_10_3390_s22134763 crossref_primary_10_1177_09544089221142161 crossref_primary_10_1007_s10489_023_04777_0 crossref_primary_10_1115_1_4067496 crossref_primary_10_1007_s10845_023_02273_3 crossref_primary_10_1177_1748006X221119301 crossref_primary_10_1007_s10489_023_04975_w crossref_primary_10_1017_S0890060423000082 crossref_primary_10_1007_s10845_024_02517_w crossref_primary_10_1016_j_engappai_2024_108002 crossref_primary_10_1088_1361_6501_ac22ee crossref_primary_10_1016_j_aei_2021_101396 crossref_primary_10_1038_s41598_024_71795_4 crossref_primary_10_1016_j_procir_2023_06_074 crossref_primary_10_1108_JQME_07_2022_0041 crossref_primary_10_1063_5_0184113 crossref_primary_10_1007_s00170_022_10466_y |
Cites_doi | 10.1016/j.wear.2016.01.024 10.1007/s00170-012-4470-z 10.1115/1.4037231 10.1243/095440505X32634 10.1007/s00170-014-6285-6 10.1115/1.4030078 10.1115/1.4026841 10.1162/neco.1997.9.8.1735 10.1016/j.compind.2013.03.010 10.1007/s11665-011-9964-6 10.1016/S0007-8506(07)60503-4 10.1016/j.trc.2015.03.014 10.1016/j.ymssp.2016.11.026 10.1007/s00170-013-4788-1 10.1016/S0166-3615(96)00075-9 10.1007/s10845-015-1155-0 10.1016/j.procir.2013.06.092 10.1115/1.2899578 10.1016/S0890-6955(96)00069-7 10.1007/978-3-319-27064-7_68 10.1109/ICMA.2015.7237449 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved. Springer-Verlag London Ltd., part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved. – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00170-019-04349-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 4726 |
ExternalDocumentID | 10_1007_s00170_019_04349_y |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c347t-ad6c5a325d2c8999ad732c261d1c43e6d4b8e02cfa4b453816ea07e340fe5bba3 |
IEDL.DBID | BENPR |
ISSN | 0268-3768 |
IngestDate | Fri Jul 25 11:00:17 EDT 2025 Fri Jul 25 10:56:20 EDT 2025 Thu Apr 24 23:00:45 EDT 2025 Tue Jul 01 00:40:21 EDT 2025 Fri Feb 21 02:31:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9-12 |
Keywords | Long short-term memory Hilbert-Huang Transform Variable working conditions Tool remaining useful life prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-ad6c5a325d2c8999ad732c261d1c43e6d4b8e02cfa4b453816ea07e340fe5bba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2283281568 |
PQPubID | 2044010 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2490849608 proquest_journals_2283281568 crossref_citationtrail_10_1007_s00170_019_04349_y crossref_primary_10_1007_s00170_019_04349_y springer_journals_10_1007_s00170_019_04349_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191000 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2019 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Kurada, Bradley (CR5) 1997; 34 Munozescalona, Diaz, Cassier (CR10) 2011; 21 CR16 Huibin, Weilong, Junyang (CR34) 2015; 34 Attanasio, Ceretti, Giardini (CR1) 2013; 8 Braglia, Castellano (CR14) 2014; 136 Yang, Zhu, Xu, Fu (CR12) 2013; 68 Cheon, Kim (CR13) 2016; 352-353 Zhihui, Haoyu, Songlin, Han, Jun (CR30) 2017; 34 Mikolajczyk, Nowicki, Klodowski, Pimenov (CR4) 2017; 88 Yu, Liang, Tang, Liu (CR25) 2016; 91 Alonso, Salgado (CR27) 2005; 219 Wilcox, Reuben, Souquet (CR20) 1997; 37 Adlen, Abderrezak, Ridha, Batouche (CR33) 2018; 99 Rangwala, Dornfeld (CR18) 1990; 112 CR3 Byrne, Dornfeld, Inasaki, Ketteler, König, Trti (CR19) 1995; 44 Ma, Tao, Wang, Yu, Wang (CR32) 2015; 54 Braglia, Castellano (CR15) 2015; 137 Zhang, Zhang (CR6) 2013; 64 CR29 CR28 CR9 CR26 CR24 CR23 CR22 Qiang, Yingguang, Xiaozhong, Changqing, Haiji (CR31) 2019; 62 Hochreiter, Schmidhuber (CR8) 1997; 9 Chinchanikar, Choudhury (CR11) 2015; 76 Wang, Qian, Guo (CR21) 2013; 66 Ji, Shi, Liu, Wang, Liang (CR2) 2017; 139 Nan, Duan, Gao, Zheng (CR7) 2017; 453 Daddona, Ullah, Matarazzo (CR17) 2017; 28 W Ji (4349_CR2) 2017; 139 FJ Alonso (4349_CR27) 2005; 219 M Braglia (4349_CR15) 2015; 137 C Zhang (4349_CR6) 2013; 64 S Kurada (4349_CR5) 1997; 34 4349_CR9 4349_CR16 A Attanasio (4349_CR1) 2013; 8 4349_CR3 S Yang (4349_CR12) 2013; 68 S Chinchanikar (4349_CR11) 2015; 76 SJ Wilcox (4349_CR20) 1997; 37 W Qiang (4349_CR31) 2019; 62 K Adlen (4349_CR33) 2018; 99 S Cheon (4349_CR13) 2016; 352-353 D Daddona (4349_CR17) 2017; 28 G Wang (4349_CR21) 2013; 66 S Hochreiter (4349_CR8) 1997; 9 XL Ma (4349_CR32) 2015; 54 R Zhihui (4349_CR30) 2017; 34 X Nan (4349_CR7) 2017; 453 P Munozescalona (4349_CR10) 2011; 21 M Braglia (4349_CR14) 2014; 136 4349_CR24 4349_CR26 G Byrne (4349_CR19) 1995; 44 4349_CR23 4349_CR22 T Mikolajczyk (4349_CR4) 2017; 88 J Yu (4349_CR25) 2016; 91 4349_CR29 4349_CR28 S Huibin (4349_CR34) 2015; 34 S Rangwala (4349_CR18) 1990; 112 |
References_xml | – ident: CR22 – volume: 34 start-page: 158 issue: 4 year: 2015 end-page: 164 ident: CR34 article-title: Tool wear feature extraction based on Hilbert-Huang Transform publication-title: J Vib Shock – volume: 352-353 start-page: 160 year: 2016 end-page: 170 ident: CR13 article-title: Prediction of tool wear in the blanking process using updated geometry publication-title: Wear doi: 10.1016/j.wear.2016.01.024 – volume: 66 start-page: 1921 issue: 9 year: 2013 end-page: 1929 ident: CR21 article-title: Continuous tool wear prediction based on Gaussian mixture regression model publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4470-z – volume: 139 issue: 9 year: 2017 ident: CR2 article-title: A novel approach of tool wear evaluation publication-title: J Manuf Sci Eng doi: 10.1115/1.4037231 – volume: 219 start-page: 703 issue: 9 year: 2005 end-page: 710 ident: CR27 article-title: Application of singularspectrum analysis to tool wear detection using sound signals publication-title: Proc Instit Mech Eng Part B: J Eng Manuf doi: 10.1243/095440505X32634 – ident: CR16 – volume: 34 start-page: 1321 issue: 5 year: 2017 end-page: 1324 ident: CR30 article-title: Sequence marking Chinese word segmentation based on LSTM network publication-title: Comp Appl Res – volume: 76 start-page: 1185 year: 2015 end-page: 1201 ident: CR11 article-title: Predictive modeling for flank wear progression of coated carbide tool in turning hardened steel under practical machining conditions publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6285-6 – volume: 62 start-page: 49 issue: 07 year: 2019 end-page: 53 ident: CR31 article-title: Dynamic prediction method of nc machining tool life based on online learning publication-title: Aerospace Manuf Technol – volume: 137 start-page: 4 year: 2015 ident: CR15 article-title: Improving tool-life stochastic control through a tool-life model based on diffusion theory publication-title: J Manuf Sci Eng-Trans Asme doi: 10.1115/1.4030078 – volume: 91 start-page: 1 issue: 1-4 year: 2016 end-page: 11 ident: CR25 article-title: A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction publication-title: Int J Adv Manuf Technol – ident: CR29 – volume: 136 start-page: 031010 issue: 3 year: 2014 ident: CR14 article-title: Diffusion theory applied to tool-life stochastic modeling under a progressive wear process publication-title: J Manuf Sci Eng-Trans Asme doi: 10.1115/1.4026841 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR8 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 453 start-page: 420 year: 2017 end-page: 426 ident: CR7 article-title: Tool wear prediction approach based on power sensor publication-title: J Tongji Univ – volume: 64 start-page: 708 issue: 6 year: 2013 end-page: 719 ident: CR6 article-title: On-line tool wear measurement for ball-end milling cutter based on machine vision publication-title: Comput Ind doi: 10.1016/j.compind.2013.03.010 – volume: 21 start-page: 797 issue: 6 year: 2011 end-page: 808 ident: CR10 article-title: Prediction of tool wear mechanisms in face milling AISI 1045 steel publication-title: J Mater Eng Perform doi: 10.1007/s11665-011-9964-6 – volume: 44 start-page: 541 issue: 2 year: 1995 end-page: 567 ident: CR19 article-title: Tool Condition Monitoring (TCM) — The Status of Research and Industrial Application publication-title: CIRP Ann doi: 10.1016/S0007-8506(07)60503-4 – ident: CR23 – volume: 54 start-page: 187 year: 2015 end-page: 197 ident: CR32 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Trans Res Part C: Emerg Technol doi: 10.1016/j.trc.2015.03.014 – volume: 88 start-page: 100 year: 2017 end-page: 110 ident: CR4 article-title: Neural network approach for automatic image analysis of cutting edge wear publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.11.026 – volume: 68 start-page: 673 issue: 1 year: 2013 end-page: 682 ident: CR12 article-title: Tool wear prediction of machining hydrogenated titanium alloy Ti6Al4V with uncoated carbide tools publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-013-4788-1 – volume: 34 start-page: 55 issue: 1 year: 1997 end-page: 72 ident: CR5 article-title: A review of machine vision sensors for tool condition monitoring publication-title: Comput Ind doi: 10.1016/S0166-3615(96)00075-9 – ident: CR3 – volume: 28 start-page: 1285 issue: 6 year: 2017 end-page: 1301 ident: CR17 article-title: Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing publication-title: J Intell Manuf doi: 10.1007/s10845-015-1155-0 – volume: 8 start-page: 218 issue: 11 year: 2013 end-page: 223 ident: CR1 article-title: Analytical models for tool wear prediction during AISI 1045 turning operations publication-title: Procedia Cirp doi: 10.1016/j.procir.2013.06.092 – volume: 99 start-page: 2245 issue: 9–12 year: 2018 end-page: 2255 ident: CR33 article-title: Real-time safety monitoring in the induction motor using deep hierarchic long short-term memory publication-title: Int J Adv Manuf Technol – ident: CR9 – ident: CR28 – ident: CR26 – ident: CR24 – volume: 112 start-page: 219 issue: 3 year: 1990 ident: CR18 article-title: Sensor integration using neural networks for intelligent tool condition monitoring publication-title: J Eng Indu doi: 10.1115/1.2899578 – volume: 37 start-page: 481 issue: 4 year: 1997 end-page: 494 ident: CR20 article-title: The use of cutting force and acoustic emission signals for the monitoring of tool insert geometry during rough face milling publication-title: Int J Mach Tool Manu doi: 10.1016/S0890-6955(96)00069-7 – ident: 4349_CR22 doi: 10.1007/978-3-319-27064-7_68 – ident: 4349_CR24 – volume: 352-353 start-page: 160 year: 2016 ident: 4349_CR13 publication-title: Wear doi: 10.1016/j.wear.2016.01.024 – volume: 34 start-page: 1321 issue: 5 year: 2017 ident: 4349_CR30 publication-title: Comp Appl Res – volume: 88 start-page: 100 year: 2017 ident: 4349_CR4 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.11.026 – volume: 54 start-page: 187 year: 2015 ident: 4349_CR32 publication-title: Trans Res Part C: Emerg Technol doi: 10.1016/j.trc.2015.03.014 – ident: 4349_CR26 – volume: 99 start-page: 2245 issue: 9–12 year: 2018 ident: 4349_CR33 publication-title: Int J Adv Manuf Technol – ident: 4349_CR28 – ident: 4349_CR9 – volume: 76 start-page: 1185 year: 2015 ident: 4349_CR11 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6285-6 – volume: 28 start-page: 1285 issue: 6 year: 2017 ident: 4349_CR17 publication-title: J Intell Manuf doi: 10.1007/s10845-015-1155-0 – volume: 21 start-page: 797 issue: 6 year: 2011 ident: 4349_CR10 publication-title: J Mater Eng Perform doi: 10.1007/s11665-011-9964-6 – volume: 44 start-page: 541 issue: 2 year: 1995 ident: 4349_CR19 publication-title: CIRP Ann doi: 10.1016/S0007-8506(07)60503-4 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 4349_CR8 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 137 start-page: 4 year: 2015 ident: 4349_CR15 publication-title: J Manuf Sci Eng-Trans Asme doi: 10.1115/1.4030078 – volume: 453 start-page: 420 year: 2017 ident: 4349_CR7 publication-title: J Tongji Univ – volume: 37 start-page: 481 issue: 4 year: 1997 ident: 4349_CR20 publication-title: Int J Mach Tool Manu doi: 10.1016/S0890-6955(96)00069-7 – volume: 136 start-page: 031010 issue: 3 year: 2014 ident: 4349_CR14 publication-title: J Manuf Sci Eng-Trans Asme doi: 10.1115/1.4026841 – volume: 64 start-page: 708 issue: 6 year: 2013 ident: 4349_CR6 publication-title: Comput Ind doi: 10.1016/j.compind.2013.03.010 – volume: 66 start-page: 1921 issue: 9 year: 2013 ident: 4349_CR21 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4470-z – ident: 4349_CR23 – volume: 34 start-page: 55 issue: 1 year: 1997 ident: 4349_CR5 publication-title: Comput Ind doi: 10.1016/S0166-3615(96)00075-9 – volume: 8 start-page: 218 issue: 11 year: 2013 ident: 4349_CR1 publication-title: Procedia Cirp doi: 10.1016/j.procir.2013.06.092 – volume: 139 issue: 9 year: 2017 ident: 4349_CR2 publication-title: J Manuf Sci Eng doi: 10.1115/1.4037231 – volume: 91 start-page: 1 issue: 1-4 year: 2016 ident: 4349_CR25 publication-title: Int J Adv Manuf Technol – volume: 34 start-page: 158 issue: 4 year: 2015 ident: 4349_CR34 publication-title: J Vib Shock – ident: 4349_CR3 – ident: 4349_CR29 – volume: 112 start-page: 219 issue: 3 year: 1990 ident: 4349_CR18 publication-title: J Eng Indu doi: 10.1115/1.2899578 – volume: 219 start-page: 703 issue: 9 year: 2005 ident: 4349_CR27 publication-title: Proc Instit Mech Eng Part B: J Eng Manuf doi: 10.1243/095440505X32634 – ident: 4349_CR16 doi: 10.1109/ICMA.2015.7237449 – volume: 68 start-page: 673 issue: 1 year: 2013 ident: 4349_CR12 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-013-4788-1 – volume: 62 start-page: 49 issue: 07 year: 2019 ident: 4349_CR31 publication-title: Aerospace Manuf Technol |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.5122347 |
Snippet | Tool remaining useful life prediction is important to guarantee processing quality and efficient continuous production. Tool wear is directly related to the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4715 |
SubjectTerms | CAE) and Design Computer-Aided Engineering (CAD Continuous production Correlation Engineering Feature extraction Industrial and Production Engineering Life prediction Mechanical Engineering Media Management Original Article Prediction models Signal processing Tool life Tool wear Useful life Working conditions |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1itkoM3XWge-zoWsRSxXmyhB2HJJlkQalu2rdJ_70z2UZUqeNydLIGZyc58mRch1wB6IguwwdPK-J6MWeTBG-6BKQtVptuhdeOA-k9BbygfRv6oLAqbV9nuVUjS_anrYjfX6gWgL17mCxl7q22y4wN2x0SuIe9UWsTiECdh1lrGYxw_v9ZiIX1RxLbKWEPAXMEcgJEIj1tUltZs3vO7-Vr7pD_CqM46dQ_IfulW0k6hB4dky06OyN6XZoPH5GUwnY5pbt-KmRB0ObfZckzHr5mlsxzjNSgjWoyUpmjdDIXnx-dBn2KlWU7fAVdjpRX9KG7YKWBpU6R8nZBh935w1_PK2QqeFjJceMoE2leC-4ZrgFyxMqHgGuCUYVoKGxiZggy5zpRMgWERC6wCwQnZzqyfpkqcksZkOrFnhFobImhkzAapVG2jVKhloBk3NkV3pElYxbJEl43Hcf7FOKlbJjs2J8DmxLE5WTXJTf3NrGi78efqViWJpDyC8wT7-nDshRNtJmPEUwJ-A_JtJbw1-ffNzv-3_ILsctQfl__XIo1FvrSX4Mcs0iuntp9gBOP0 priority: 102 providerName: Springer Nature |
Title | Tool remaining useful life prediction method based on LSTM under variable working conditions |
URI | https://link.springer.com/article/10.1007/s00170-019-04349-y https://www.proquest.com/docview/2283281568 https://www.proquest.com/docview/2490849608 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEB-89kUfxE88PUsefNNg87G72Sep0t6h3iHawgnCkk2yINS29kO5_96ZbLZV0XvcZJeFmUlmfpnM_ACeIegxAWEDd9ZnXJfCcByRHF1ZYRs3LEKkAzq_yM9m-u1ldpkO3DbpWmW3J8aN2i8dnZG_pDYtklqbmFer75xYoyi7mig0jqCPW7AxPei_Hl98-NhZlCgLYsXcW5wsiYr-YNFKZ6rNc6W8Qy5i8RwCE0NLz6Qym1hsF1vNIPSmZILSJb_605Ud4tO_UqrRU03uwO0UYrJRaxN34UZY3INbvzUevA9fpsvlnK3Dt5Yfgu02odnN2fxrE9hqTbkb0hdr6aUZeTrP8Pn9p-k5o6qzNfuBGJuqrtjP9rSdIa727fWvBzCbjKdvznjiWeBO6WLLrc9dZpXMvHQIv0rrCyUdQisvnFYh97pGfUrXWF2jwIzIg0UlKj1sQlbXVj2E3mK5CI-AhVAQgBQi5LW2Q29t4XTuhPShptDkGEQnssqlJuTEhTGv9u2To5grFHMVxVxdHcPz_TertgXHtW-fdJqo0nLcVAfj-fc0ZT81YjmcftEp7zD9_589vv5nT-CmJHuJd_9OoLdd78JTjGG29QCOzOR0AP3R6ed340EyWxydydEvxb7rVA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoAeKiigPsEHeioWWdv7OlSoAkJCkl5IpR6QFq_tlZCWJM2jVf5UfyMz3t2kIOitx13v2tZ47PHn8cwH8BZBT-IQNnCjbchVGiQc3wiOpizWhWnFztMBDc6jzoX6ehlebsBtEwtD1yqbNdEv1HZs6Iz8PaVpEZTaJPkwueLEGkXe1YZCo1KLnlveIGSbnXY_4fgeC9H-PPzY4TWrADdSxXOubWRCLUVohUGwkWobS2EQSNjAKOkiq3LsvTCFVrkKya_mNHZZqlbhwjzXEut9BI-VREtOkentL43-BmlMHJwr_RYpEd-v54_E6iqvWu3liAIfqocwKKGJntRBPT60zye2QaBPrgupUr7803Cud8N_OXC9XWw_g-16Q8vOKg18DhtutANbd9IcvoDvw_G4ZFP3q2KjYIuZKxYlK38Wjk2m5Cki7WAVmTUju2oZPve_DQeMYtym7BoRPcV4sZvqbJ8hirfVZbOXcPEg8n8Fm6PxyO0Ccy4muBoELsqVblmtY6MiEwjrctoI7UHQiCwzdcpzYt4os1WyZi_mDMWceTFnyz04Wf0zqRJ-3Pv1YTMSWT35Z9laVf9dTL5WhcgRi981g7cu_n9j-_c39gaedIaDftbvnvcO4Kkg3fG3Dg9hcz5duCPcPc3z115lGfx46DnyG2crJEY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64gOhBXHE3Bz1pcZqm28GDqIM7gjPgQahpkoIwzgyzKPOv_Im-l7YzKip48NgmbdO3kPflbQA7CHoig7DBUVL7jojdyME73MGtLJSZqoTGtgO6vgnO6uLi3r8fg7cyF8ZGu5cuyTyngao0NXsHbZ0dDBPfbNkXhMF0sO-J2BkUYZWXZvCKoK17eH6CHN7lvHpaOz5zir4CjvJE2HOkDpQvPe5rrhBuxFKHHlcIJbSrhGcCLVJcP1eZFKnwybNmJC7aE5XM-GkqPXzvOEwKyj5GDarzo1KC3TikLpxDCecxGjThSIM8fF3uVyv8HIFrk_UQCEWk6lGR1vP9P37eOkf28BcXrt0Zq3MwW5i07CiXwXkYM80FmPlQ6HARHmqtVoN1zHPej4L1uybrN1jjKTOs3SFfEckHy9tZM9pZNcPrq7vaNaMstw57QUxPWV7sNT_dZ8gwnYebLUH9X-i_DBPNVtOsADMmJMDquiZIhaxoKUMlAuVybVIyhVbBLUmWqKLoOfXeaCTDcs2WzAmSObFkTgarsDd8pp2X_Ph19kbJiaRQ_25CNYU41eGJvh8mb6tA7IjD-yXzRsM_f2ztb9O3Yer2pJpcnd9crsM0J1GyYYgbMNHr9M0mmlO9dMtKMIPH_1aZd3zoJgE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tool+remaining+useful+life+prediction+method+based+on+LSTM+under+variable+working+conditions&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Jing-Tao%2C+Zhou&rft.au=Zhao%2C+Xu&rft.au=Gao%2C+Jing&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=104&rft.issue=9-12&rft.spage=4715&rft.epage=4726&rft_id=info:doi/10.1007%2Fs00170-019-04349-y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |