Tool remaining useful life prediction method based on LSTM under variable working conditions

Tool remaining useful life prediction is important to guarantee processing quality and efficient continuous production. Tool wear is directly related to the working conditions, showing a complex correlation and timing correlation, which makes it difficult to predict the tool remaining useful life un...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 104; no. 9-12; pp. 4715 - 4726
Main Authors Zhou, Jing-Tao, Zhao, Xu, Gao, Jing
Format Journal Article
LanguageEnglish
Published London Springer London 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tool remaining useful life prediction is important to guarantee processing quality and efficient continuous production. Tool wear is directly related to the working conditions, showing a complex correlation and timing correlation, which makes it difficult to predict the tool remaining useful life under variable conditions. In this paper, we seek to overcome this challenge. First, we establish the unified representation of the working condition, then extract the wear characteristics from the processing signal. The extracted wear features and corresponding working conditions are combined into an input matrix for predicting tool wear. Based on this, the complex spatio-temporal relationship under variable working conditions is captured. Finally, using the unique advantages of the long short-term memory (LSTM) model to solve complex correlation and memory accumulation effects, the tool remaining useful life prediction model under variable working conditions is established. An experiment illustrates the effectiveness of the proposed method.
AbstractList Tool remaining useful life prediction is important to guarantee processing quality and efficient continuous production. Tool wear is directly related to the working conditions, showing a complex correlation and timing correlation, which makes it difficult to predict the tool remaining useful life under variable conditions. In this paper, we seek to overcome this challenge. First, we establish the unified representation of the working condition, then extract the wear characteristics from the processing signal. The extracted wear features and corresponding working conditions are combined into an input matrix for predicting tool wear. Based on this, the complex spatio-temporal relationship under variable working conditions is captured. Finally, using the unique advantages of the long short-term memory (LSTM) model to solve complex correlation and memory accumulation effects, the tool remaining useful life prediction model under variable working conditions is established. An experiment illustrates the effectiveness of the proposed method.
Author Zhao, Xu
Zhou, Jing-Tao
Gao, Jing
Author_xml – sequence: 1
  givenname: Jing-Tao
  surname: Zhou
  fullname: Zhou, Jing-Tao
  email: Zhoujt@nwpu.edu.cn
  organization: Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University
– sequence: 2
  givenname: Xu
  surname: Zhao
  fullname: Zhao, Xu
  organization: Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University
– sequence: 3
  givenname: Jing
  surname: Gao
  fullname: Gao, Jing
  organization: Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University
BookMark eNp9kMtKxDAUhoMoOF5ewFXAdTW3pulSxBuMuHDcCSFNTjXaScakVebtbR1BcDGrw4HvO5f_AO2GGAChE0rOKCHVeSaEVqQgtC6I4KIu1jtoRgXnBSe03EUzwqQqeCXVPjrI-W3EJZVqhp4XMXY4wdL44MMLHjK0Q4c73wJeJXDe9j4GvIT-NTrcmAwOj_38cXGPh-Ag4U-TvGk6wF8xvU8jbAzOT1Y-Qnut6TIc_9ZD9HR9tbi8LeYPN3eXF_PCclH1hXHSloaz0jGr6ro2ruLMMkkdtYKDdKJRQJhtjWhEyRWVYEgFXJAWyqYx_BCdbuauUvwYIPf6LQ4pjCs1EzVRopZEbaWY4kzRUk6U2lA2xZwTtNr63kzv9Mn4TlOip8T1JnE9Jq5_EtfrUWX_1FXyS5PW2yW-kfIIhxdIf1dtsb4BCrOWYg
CitedBy_id crossref_primary_10_3390_s23208523
crossref_primary_10_1007_s00170_021_08282_x
crossref_primary_10_1007_s00170_022_09771_3
crossref_primary_10_1007_s00170_023_12486_8
crossref_primary_10_1016_j_cie_2021_107267
crossref_primary_10_1007_s00170_024_14273_5
crossref_primary_10_1016_j_cie_2021_107227
crossref_primary_10_1007_s00170_020_05264_3
crossref_primary_10_1016_j_jmapro_2024_07_002
crossref_primary_10_1007_s40430_024_05310_1
crossref_primary_10_1016_j_cej_2022_141025
crossref_primary_10_1007_s00170_021_08320_8
crossref_primary_10_1007_s00170_023_10811_9
crossref_primary_10_1016_j_measurement_2022_112153
crossref_primary_10_1007_s00170_022_09032_3
crossref_primary_10_5050_KSNVE_2022_32_4_384
crossref_primary_10_1007_s00170_023_10981_6
crossref_primary_10_1177_09544062221142197
crossref_primary_10_1115_1_4052838
crossref_primary_10_3390_s24165433
crossref_primary_10_1007_s00170_021_07325_7
crossref_primary_10_1007_s10845_024_02398_z
crossref_primary_10_1007_s12008_023_01663_4
crossref_primary_10_1016_j_aei_2023_102106
crossref_primary_10_1007_s40436_023_00464_y
crossref_primary_10_3390_app15063179
crossref_primary_10_1007_s00170_021_08448_7
crossref_primary_10_1007_s10845_024_02459_3
crossref_primary_10_1109_TIM_2022_3173278
crossref_primary_10_3390_e25111477
crossref_primary_10_1016_j_ijmachtools_2022_103882
crossref_primary_10_1016_j_jmsy_2024_01_008
crossref_primary_10_1109_ACCESS_2020_3010378
crossref_primary_10_17531_ein_2021_4_3
crossref_primary_10_1088_1742_6596_2845_1_012003
crossref_primary_10_1016_j_jrras_2023_100715
crossref_primary_10_1016_j_jmsy_2023_02_019
crossref_primary_10_1016_j_wear_2021_203616
crossref_primary_10_1016_j_aei_2023_102218
crossref_primary_10_1088_1361_6501_ab7282
crossref_primary_10_1007_s10845_023_02260_8
crossref_primary_10_1016_j_ress_2024_110705
crossref_primary_10_3390_s24134117
crossref_primary_10_1016_j_cnsns_2025_108634
crossref_primary_10_3390_s23136123
crossref_primary_10_1016_j_measurement_2021_109329
crossref_primary_10_35534_ism_2024_10002
crossref_primary_10_1016_j_ijmachtools_2024_104209
crossref_primary_10_1016_j_jmapro_2023_01_054
crossref_primary_10_2139_ssrn_4188574
crossref_primary_10_1177_09544054231189313
crossref_primary_10_12677_ORF_2023_132122
crossref_primary_10_1108_IJQRM_11_2022_0318
crossref_primary_10_3390_s22134763
crossref_primary_10_1177_09544089221142161
crossref_primary_10_1007_s10489_023_04777_0
crossref_primary_10_1115_1_4067496
crossref_primary_10_1007_s10845_023_02273_3
crossref_primary_10_1177_1748006X221119301
crossref_primary_10_1007_s10489_023_04975_w
crossref_primary_10_1017_S0890060423000082
crossref_primary_10_1007_s10845_024_02517_w
crossref_primary_10_1016_j_engappai_2024_108002
crossref_primary_10_1088_1361_6501_ac22ee
crossref_primary_10_1016_j_aei_2021_101396
crossref_primary_10_1038_s41598_024_71795_4
crossref_primary_10_1016_j_procir_2023_06_074
crossref_primary_10_1108_JQME_07_2022_0041
crossref_primary_10_1063_5_0184113
crossref_primary_10_1007_s00170_022_10466_y
Cites_doi 10.1016/j.wear.2016.01.024
10.1007/s00170-012-4470-z
10.1115/1.4037231
10.1243/095440505X32634
10.1007/s00170-014-6285-6
10.1115/1.4030078
10.1115/1.4026841
10.1162/neco.1997.9.8.1735
10.1016/j.compind.2013.03.010
10.1007/s11665-011-9964-6
10.1016/S0007-8506(07)60503-4
10.1016/j.trc.2015.03.014
10.1016/j.ymssp.2016.11.026
10.1007/s00170-013-4788-1
10.1016/S0166-3615(96)00075-9
10.1007/s10845-015-1155-0
10.1016/j.procir.2013.06.092
10.1115/1.2899578
10.1016/S0890-6955(96)00069-7
10.1007/978-3-319-27064-7_68
10.1109/ICMA.2015.7237449
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-019-04349-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 4726
ExternalDocumentID 10_1007_s00170_019_04349_y
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c347t-ad6c5a325d2c8999ad732c261d1c43e6d4b8e02cfa4b453816ea07e340fe5bba3
IEDL.DBID BENPR
ISSN 0268-3768
IngestDate Fri Jul 25 11:00:17 EDT 2025
Fri Jul 25 10:56:20 EDT 2025
Thu Apr 24 23:00:45 EDT 2025
Tue Jul 01 00:40:21 EDT 2025
Fri Feb 21 02:31:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9-12
Keywords Long short-term memory
Hilbert-Huang Transform
Variable working conditions
Tool remaining useful life prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-ad6c5a325d2c8999ad732c261d1c43e6d4b8e02cfa4b453816ea07e340fe5bba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2283281568
PQPubID 2044010
PageCount 12
ParticipantIDs proquest_journals_2490849608
proquest_journals_2283281568
crossref_citationtrail_10_1007_s00170_019_04349_y
crossref_primary_10_1007_s00170_019_04349_y
springer_journals_10_1007_s00170_019_04349_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191000
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Kurada, Bradley (CR5) 1997; 34
Munozescalona, Diaz, Cassier (CR10) 2011; 21
CR16
Huibin, Weilong, Junyang (CR34) 2015; 34
Attanasio, Ceretti, Giardini (CR1) 2013; 8
Braglia, Castellano (CR14) 2014; 136
Yang, Zhu, Xu, Fu (CR12) 2013; 68
Cheon, Kim (CR13) 2016; 352-353
Zhihui, Haoyu, Songlin, Han, Jun (CR30) 2017; 34
Mikolajczyk, Nowicki, Klodowski, Pimenov (CR4) 2017; 88
Yu, Liang, Tang, Liu (CR25) 2016; 91
Alonso, Salgado (CR27) 2005; 219
Wilcox, Reuben, Souquet (CR20) 1997; 37
Adlen, Abderrezak, Ridha, Batouche (CR33) 2018; 99
Rangwala, Dornfeld (CR18) 1990; 112
CR3
Byrne, Dornfeld, Inasaki, Ketteler, König, Trti (CR19) 1995; 44
Ma, Tao, Wang, Yu, Wang (CR32) 2015; 54
Braglia, Castellano (CR15) 2015; 137
Zhang, Zhang (CR6) 2013; 64
CR29
CR28
CR9
CR26
CR24
CR23
CR22
Qiang, Yingguang, Xiaozhong, Changqing, Haiji (CR31) 2019; 62
Hochreiter, Schmidhuber (CR8) 1997; 9
Chinchanikar, Choudhury (CR11) 2015; 76
Wang, Qian, Guo (CR21) 2013; 66
Ji, Shi, Liu, Wang, Liang (CR2) 2017; 139
Nan, Duan, Gao, Zheng (CR7) 2017; 453
Daddona, Ullah, Matarazzo (CR17) 2017; 28
W Ji (4349_CR2) 2017; 139
FJ Alonso (4349_CR27) 2005; 219
M Braglia (4349_CR15) 2015; 137
C Zhang (4349_CR6) 2013; 64
S Kurada (4349_CR5) 1997; 34
4349_CR9
4349_CR16
A Attanasio (4349_CR1) 2013; 8
4349_CR3
S Yang (4349_CR12) 2013; 68
S Chinchanikar (4349_CR11) 2015; 76
SJ Wilcox (4349_CR20) 1997; 37
W Qiang (4349_CR31) 2019; 62
K Adlen (4349_CR33) 2018; 99
S Cheon (4349_CR13) 2016; 352-353
D Daddona (4349_CR17) 2017; 28
G Wang (4349_CR21) 2013; 66
S Hochreiter (4349_CR8) 1997; 9
XL Ma (4349_CR32) 2015; 54
R Zhihui (4349_CR30) 2017; 34
X Nan (4349_CR7) 2017; 453
P Munozescalona (4349_CR10) 2011; 21
M Braglia (4349_CR14) 2014; 136
4349_CR24
4349_CR26
G Byrne (4349_CR19) 1995; 44
4349_CR23
4349_CR22
T Mikolajczyk (4349_CR4) 2017; 88
J Yu (4349_CR25) 2016; 91
4349_CR29
4349_CR28
S Huibin (4349_CR34) 2015; 34
S Rangwala (4349_CR18) 1990; 112
References_xml – ident: CR22
– volume: 34
  start-page: 158
  issue: 4
  year: 2015
  end-page: 164
  ident: CR34
  article-title: Tool wear feature extraction based on Hilbert-Huang Transform
  publication-title: J Vib Shock
– volume: 352-353
  start-page: 160
  year: 2016
  end-page: 170
  ident: CR13
  article-title: Prediction of tool wear in the blanking process using updated geometry
  publication-title: Wear
  doi: 10.1016/j.wear.2016.01.024
– volume: 66
  start-page: 1921
  issue: 9
  year: 2013
  end-page: 1929
  ident: CR21
  article-title: Continuous tool wear prediction based on Gaussian mixture regression model
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4470-z
– volume: 139
  issue: 9
  year: 2017
  ident: CR2
  article-title: A novel approach of tool wear evaluation
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4037231
– volume: 219
  start-page: 703
  issue: 9
  year: 2005
  end-page: 710
  ident: CR27
  article-title: Application of singularspectrum analysis to tool wear detection using sound signals
  publication-title: Proc Instit Mech Eng Part B: J Eng Manuf
  doi: 10.1243/095440505X32634
– ident: CR16
– volume: 34
  start-page: 1321
  issue: 5
  year: 2017
  end-page: 1324
  ident: CR30
  article-title: Sequence marking Chinese word segmentation based on LSTM network
  publication-title: Comp Appl Res
– volume: 76
  start-page: 1185
  year: 2015
  end-page: 1201
  ident: CR11
  article-title: Predictive modeling for flank wear progression of coated carbide tool in turning hardened steel under practical machining conditions
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6285-6
– volume: 62
  start-page: 49
  issue: 07
  year: 2019
  end-page: 53
  ident: CR31
  article-title: Dynamic prediction method of nc machining tool life based on online learning
  publication-title: Aerospace Manuf Technol
– volume: 137
  start-page: 4
  year: 2015
  ident: CR15
  article-title: Improving tool-life stochastic control through a tool-life model based on diffusion theory
  publication-title: J Manuf Sci Eng-Trans Asme
  doi: 10.1115/1.4030078
– volume: 91
  start-page: 1
  issue: 1-4
  year: 2016
  end-page: 11
  ident: CR25
  article-title: A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction
  publication-title: Int J Adv Manuf Technol
– ident: CR29
– volume: 136
  start-page: 031010
  issue: 3
  year: 2014
  ident: CR14
  article-title: Diffusion theory applied to tool-life stochastic modeling under a progressive wear process
  publication-title: J Manuf Sci Eng-Trans Asme
  doi: 10.1115/1.4026841
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR8
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 453
  start-page: 420
  year: 2017
  end-page: 426
  ident: CR7
  article-title: Tool wear prediction approach based on power sensor
  publication-title: J Tongji Univ
– volume: 64
  start-page: 708
  issue: 6
  year: 2013
  end-page: 719
  ident: CR6
  article-title: On-line tool wear measurement for ball-end milling cutter based on machine vision
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2013.03.010
– volume: 21
  start-page: 797
  issue: 6
  year: 2011
  end-page: 808
  ident: CR10
  article-title: Prediction of tool wear mechanisms in face milling AISI 1045 steel
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-011-9964-6
– volume: 44
  start-page: 541
  issue: 2
  year: 1995
  end-page: 567
  ident: CR19
  article-title: Tool Condition Monitoring (TCM) — The Status of Research and Industrial Application
  publication-title: CIRP Ann
  doi: 10.1016/S0007-8506(07)60503-4
– ident: CR23
– volume: 54
  start-page: 187
  year: 2015
  end-page: 197
  ident: CR32
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Trans Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2015.03.014
– volume: 88
  start-page: 100
  year: 2017
  end-page: 110
  ident: CR4
  article-title: Neural network approach for automatic image analysis of cutting edge wear
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.11.026
– volume: 68
  start-page: 673
  issue: 1
  year: 2013
  end-page: 682
  ident: CR12
  article-title: Tool wear prediction of machining hydrogenated titanium alloy Ti6Al4V with uncoated carbide tools
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-013-4788-1
– volume: 34
  start-page: 55
  issue: 1
  year: 1997
  end-page: 72
  ident: CR5
  article-title: A review of machine vision sensors for tool condition monitoring
  publication-title: Comput Ind
  doi: 10.1016/S0166-3615(96)00075-9
– ident: CR3
– volume: 28
  start-page: 1285
  issue: 6
  year: 2017
  end-page: 1301
  ident: CR17
  article-title: Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-015-1155-0
– volume: 8
  start-page: 218
  issue: 11
  year: 2013
  end-page: 223
  ident: CR1
  article-title: Analytical models for tool wear prediction during AISI 1045 turning operations
  publication-title: Procedia Cirp
  doi: 10.1016/j.procir.2013.06.092
– volume: 99
  start-page: 2245
  issue: 9–12
  year: 2018
  end-page: 2255
  ident: CR33
  article-title: Real-time safety monitoring in the induction motor using deep hierarchic long short-term memory
  publication-title: Int J Adv Manuf Technol
– ident: CR9
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 112
  start-page: 219
  issue: 3
  year: 1990
  ident: CR18
  article-title: Sensor integration using neural networks for intelligent tool condition monitoring
  publication-title: J Eng Indu
  doi: 10.1115/1.2899578
– volume: 37
  start-page: 481
  issue: 4
  year: 1997
  end-page: 494
  ident: CR20
  article-title: The use of cutting force and acoustic emission signals for the monitoring of tool insert geometry during rough face milling
  publication-title: Int J Mach Tool Manu
  doi: 10.1016/S0890-6955(96)00069-7
– ident: 4349_CR22
  doi: 10.1007/978-3-319-27064-7_68
– ident: 4349_CR24
– volume: 352-353
  start-page: 160
  year: 2016
  ident: 4349_CR13
  publication-title: Wear
  doi: 10.1016/j.wear.2016.01.024
– volume: 34
  start-page: 1321
  issue: 5
  year: 2017
  ident: 4349_CR30
  publication-title: Comp Appl Res
– volume: 88
  start-page: 100
  year: 2017
  ident: 4349_CR4
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.11.026
– volume: 54
  start-page: 187
  year: 2015
  ident: 4349_CR32
  publication-title: Trans Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2015.03.014
– ident: 4349_CR26
– volume: 99
  start-page: 2245
  issue: 9–12
  year: 2018
  ident: 4349_CR33
  publication-title: Int J Adv Manuf Technol
– ident: 4349_CR28
– ident: 4349_CR9
– volume: 76
  start-page: 1185
  year: 2015
  ident: 4349_CR11
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6285-6
– volume: 28
  start-page: 1285
  issue: 6
  year: 2017
  ident: 4349_CR17
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-015-1155-0
– volume: 21
  start-page: 797
  issue: 6
  year: 2011
  ident: 4349_CR10
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-011-9964-6
– volume: 44
  start-page: 541
  issue: 2
  year: 1995
  ident: 4349_CR19
  publication-title: CIRP Ann
  doi: 10.1016/S0007-8506(07)60503-4
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 4349_CR8
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 137
  start-page: 4
  year: 2015
  ident: 4349_CR15
  publication-title: J Manuf Sci Eng-Trans Asme
  doi: 10.1115/1.4030078
– volume: 453
  start-page: 420
  year: 2017
  ident: 4349_CR7
  publication-title: J Tongji Univ
– volume: 37
  start-page: 481
  issue: 4
  year: 1997
  ident: 4349_CR20
  publication-title: Int J Mach Tool Manu
  doi: 10.1016/S0890-6955(96)00069-7
– volume: 136
  start-page: 031010
  issue: 3
  year: 2014
  ident: 4349_CR14
  publication-title: J Manuf Sci Eng-Trans Asme
  doi: 10.1115/1.4026841
– volume: 64
  start-page: 708
  issue: 6
  year: 2013
  ident: 4349_CR6
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2013.03.010
– volume: 66
  start-page: 1921
  issue: 9
  year: 2013
  ident: 4349_CR21
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4470-z
– ident: 4349_CR23
– volume: 34
  start-page: 55
  issue: 1
  year: 1997
  ident: 4349_CR5
  publication-title: Comput Ind
  doi: 10.1016/S0166-3615(96)00075-9
– volume: 8
  start-page: 218
  issue: 11
  year: 2013
  ident: 4349_CR1
  publication-title: Procedia Cirp
  doi: 10.1016/j.procir.2013.06.092
– volume: 139
  issue: 9
  year: 2017
  ident: 4349_CR2
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4037231
– volume: 91
  start-page: 1
  issue: 1-4
  year: 2016
  ident: 4349_CR25
  publication-title: Int J Adv Manuf Technol
– volume: 34
  start-page: 158
  issue: 4
  year: 2015
  ident: 4349_CR34
  publication-title: J Vib Shock
– ident: 4349_CR3
– ident: 4349_CR29
– volume: 112
  start-page: 219
  issue: 3
  year: 1990
  ident: 4349_CR18
  publication-title: J Eng Indu
  doi: 10.1115/1.2899578
– volume: 219
  start-page: 703
  issue: 9
  year: 2005
  ident: 4349_CR27
  publication-title: Proc Instit Mech Eng Part B: J Eng Manuf
  doi: 10.1243/095440505X32634
– ident: 4349_CR16
  doi: 10.1109/ICMA.2015.7237449
– volume: 68
  start-page: 673
  issue: 1
  year: 2013
  ident: 4349_CR12
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-013-4788-1
– volume: 62
  start-page: 49
  issue: 07
  year: 2019
  ident: 4349_CR31
  publication-title: Aerospace Manuf Technol
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.5122347
Snippet Tool remaining useful life prediction is important to guarantee processing quality and efficient continuous production. Tool wear is directly related to the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4715
SubjectTerms CAE) and Design
Computer-Aided Engineering (CAD
Continuous production
Correlation
Engineering
Feature extraction
Industrial and Production Engineering
Life prediction
Mechanical Engineering
Media Management
Original Article
Prediction models
Signal processing
Tool life
Tool wear
Useful life
Working conditions
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1itkoM3XWge-zoWsRSxXmyhB2HJJlkQalu2rdJ_70z2UZUqeNydLIGZyc58mRch1wB6IguwwdPK-J6MWeTBG-6BKQtVptuhdeOA-k9BbygfRv6oLAqbV9nuVUjS_anrYjfX6gWgL17mCxl7q22y4wN2x0SuIe9UWsTiECdh1lrGYxw_v9ZiIX1RxLbKWEPAXMEcgJEIj1tUltZs3vO7-Vr7pD_CqM46dQ_IfulW0k6hB4dky06OyN6XZoPH5GUwnY5pbt-KmRB0ObfZckzHr5mlsxzjNSgjWoyUpmjdDIXnx-dBn2KlWU7fAVdjpRX9KG7YKWBpU6R8nZBh935w1_PK2QqeFjJceMoE2leC-4ZrgFyxMqHgGuCUYVoKGxiZggy5zpRMgWERC6wCwQnZzqyfpkqcksZkOrFnhFobImhkzAapVG2jVKhloBk3NkV3pElYxbJEl43Hcf7FOKlbJjs2J8DmxLE5WTXJTf3NrGi78efqViWJpDyC8wT7-nDshRNtJmPEUwJ-A_JtJbw1-ffNzv-3_ILsctQfl__XIo1FvrSX4Mcs0iuntp9gBOP0
  priority: 102
  providerName: Springer Nature
Title Tool remaining useful life prediction method based on LSTM under variable working conditions
URI https://link.springer.com/article/10.1007/s00170-019-04349-y
https://www.proquest.com/docview/2283281568
https://www.proquest.com/docview/2490849608
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEB-89kUfxE88PUsefNNg87G72Sep0t6h3iHawgnCkk2yINS29kO5_96ZbLZV0XvcZJeFmUlmfpnM_ACeIegxAWEDd9ZnXJfCcByRHF1ZYRs3LEKkAzq_yM9m-u1ldpkO3DbpWmW3J8aN2i8dnZG_pDYtklqbmFer75xYoyi7mig0jqCPW7AxPei_Hl98-NhZlCgLYsXcW5wsiYr-YNFKZ6rNc6W8Qy5i8RwCE0NLz6Qym1hsF1vNIPSmZILSJb_605Ud4tO_UqrRU03uwO0UYrJRaxN34UZY3INbvzUevA9fpsvlnK3Dt5Yfgu02odnN2fxrE9hqTbkb0hdr6aUZeTrP8Pn9p-k5o6qzNfuBGJuqrtjP9rSdIa727fWvBzCbjKdvznjiWeBO6WLLrc9dZpXMvHQIv0rrCyUdQisvnFYh97pGfUrXWF2jwIzIg0UlKj1sQlbXVj2E3mK5CI-AhVAQgBQi5LW2Q29t4XTuhPShptDkGEQnssqlJuTEhTGv9u2To5grFHMVxVxdHcPz_TertgXHtW-fdJqo0nLcVAfj-fc0ZT81YjmcftEp7zD9_589vv5nT-CmJHuJd_9OoLdd78JTjGG29QCOzOR0AP3R6ed340EyWxydydEvxb7rVA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoAeKiigPsEHeioWWdv7OlSoAkJCkl5IpR6QFq_tlZCWJM2jVf5UfyMz3t2kIOitx13v2tZ47PHn8cwH8BZBT-IQNnCjbchVGiQc3wiOpizWhWnFztMBDc6jzoX6ehlebsBtEwtD1yqbNdEv1HZs6Iz8PaVpEZTaJPkwueLEGkXe1YZCo1KLnlveIGSbnXY_4fgeC9H-PPzY4TWrADdSxXOubWRCLUVohUGwkWobS2EQSNjAKOkiq3LsvTCFVrkKya_mNHZZqlbhwjzXEut9BI-VREtOkentL43-BmlMHJwr_RYpEd-v54_E6iqvWu3liAIfqocwKKGJntRBPT60zye2QaBPrgupUr7803Cud8N_OXC9XWw_g-16Q8vOKg18DhtutANbd9IcvoDvw_G4ZFP3q2KjYIuZKxYlK38Wjk2m5Cki7WAVmTUju2oZPve_DQeMYtym7BoRPcV4sZvqbJ8hirfVZbOXcPEg8n8Fm6PxyO0Ccy4muBoELsqVblmtY6MiEwjrctoI7UHQiCwzdcpzYt4os1WyZi_mDMWceTFnyz04Wf0zqRJ-3Pv1YTMSWT35Z9laVf9dTL5WhcgRi981g7cu_n9j-_c39gaedIaDftbvnvcO4Kkg3fG3Dg9hcz5duCPcPc3z115lGfx46DnyG2crJEY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64gOhBXHE3Bz1pcZqm28GDqIM7gjPgQahpkoIwzgyzKPOv_Im-l7YzKip48NgmbdO3kPflbQA7CHoig7DBUVL7jojdyME73MGtLJSZqoTGtgO6vgnO6uLi3r8fg7cyF8ZGu5cuyTyngao0NXsHbZ0dDBPfbNkXhMF0sO-J2BkUYZWXZvCKoK17eH6CHN7lvHpaOz5zir4CjvJE2HOkDpQvPe5rrhBuxFKHHlcIJbSrhGcCLVJcP1eZFKnwybNmJC7aE5XM-GkqPXzvOEwKyj5GDarzo1KC3TikLpxDCecxGjThSIM8fF3uVyv8HIFrk_UQCEWk6lGR1vP9P37eOkf28BcXrt0Zq3MwW5i07CiXwXkYM80FmPlQ6HARHmqtVoN1zHPej4L1uybrN1jjKTOs3SFfEckHy9tZM9pZNcPrq7vaNaMstw57QUxPWV7sNT_dZ8gwnYebLUH9X-i_DBPNVtOsADMmJMDquiZIhaxoKUMlAuVybVIyhVbBLUmWqKLoOfXeaCTDcs2WzAmSObFkTgarsDd8pp2X_Ph19kbJiaRQ_25CNYU41eGJvh8mb6tA7IjD-yXzRsM_f2ztb9O3Yer2pJpcnd9crsM0J1GyYYgbMNHr9M0mmlO9dMtKMIPH_1aZd3zoJgE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tool+remaining+useful+life+prediction+method+based+on+LSTM+under+variable+working+conditions&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Jing-Tao%2C+Zhou&rft.au=Zhao%2C+Xu&rft.au=Gao%2C+Jing&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=104&rft.issue=9-12&rft.spage=4715&rft.epage=4726&rft_id=info:doi/10.1007%2Fs00170-019-04349-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon