Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss

The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other com...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 41; no. 9; pp. 2238 - 2251
Main Authors Tan, Yubo, Yang, Kai-Fu, Zhao, Shi-Xuan, Li, Yong-Jie
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon .
AbstractList The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon .
The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon.The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon.
Author Tan, Yubo
Yang, Kai-Fu
Li, Yong-Jie
Zhao, Shi-Xuan
Author_xml – sequence: 1
  givenname: Yubo
  orcidid: 0000-0002-7495-5446
  surname: Tan
  fullname: Tan, Yubo
  organization: School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Kai-Fu
  orcidid: 0000-0002-3696-5889
  surname: Yang
  fullname: Yang, Kai-Fu
  email: yangkf@uestc.edu.cn
  organization: School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Shi-Xuan
  orcidid: 0000-0001-7387-2799
  surname: Zhao
  fullname: Zhao, Shi-Xuan
  organization: School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Yong-Jie
  orcidid: 0000-0002-7395-3131
  surname: Li
  fullname: Li, Yong-Jie
  organization: School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35320091$$D View this record in MEDLINE/PubMed
BookMark eNp90UtvEzEUBWALFdG0sEdCQiOxYTPhXr_GXqLwqhQEouWxs5zxHXCZzBTbQeLf4ygpiy5YefOdK_mcM3YyzRMx9hhhiQj2xdX7iyUHzpcCNWqD99gClTItV_LbCVsA70wLoPkpO8v5GgClAvuAnQolOIDFBXv1iUqc_Nh8oZxpbC7p-5am4kucp-ZrLD-ay580UqniY4pzavwUmtU8leRzib-pWc85P2T3Bz9menR8z9nnN6-vVu_a9Ye3F6uX67YXsiutNwMHLzdC9Bg0JxzAdNpSCKiM7SRJHTqigL7HTisuQ282Q9jIQXcDWi_O2fPD3Zs0_9pRLm4bc0_j6Cead9lxLbmxYJWs9Nkdej3vUv1oVR2YPdS2qqdHtdtsKbibFLc-_XG3_VSgD6BP9Z-JBtfHQzm1gDg6BLcfwtUh3H4IdxyiBuFO8Pb2fyJPDpFIRP947QVQCfEX9-eRdw
CODEN ITMID4
CitedBy_id crossref_primary_10_1007_s00371_024_03666_y
crossref_primary_10_1016_j_compmedimag_2023_102271
crossref_primary_10_1007_s11517_024_03031_0
crossref_primary_10_1109_ACCESS_2023_3273613
crossref_primary_10_3390_s22124592
crossref_primary_10_1016_j_bspc_2024_106134
crossref_primary_10_1109_LSP_2023_3348664
crossref_primary_10_1109_JBHI_2024_3376462
crossref_primary_10_1007_s10462_024_10736_z
crossref_primary_10_1016_j_eswa_2024_124970
crossref_primary_10_1016_j_ins_2023_120007
crossref_primary_10_1109_TMI_2023_3339204
crossref_primary_10_3389_fmed_2024_1377479
crossref_primary_10_1364_BOE_506205
crossref_primary_10_1109_TMI_2023_3317072
crossref_primary_10_1109_TMI_2024_3362847
crossref_primary_10_1016_j_compbiomed_2023_106924
crossref_primary_10_3390_e25081148
crossref_primary_10_1016_j_neucom_2024_129009
crossref_primary_10_1007_s10489_023_04939_0
crossref_primary_10_1016_j_knosys_2024_112170
crossref_primary_10_3390_app14125039
crossref_primary_10_1016_j_knosys_2023_111185
crossref_primary_10_1016_j_eswa_2024_124249
crossref_primary_10_1016_j_compbiomed_2024_108047
crossref_primary_10_1016_j_compbiomed_2024_108443
crossref_primary_10_1016_j_compbiomed_2024_108602
crossref_primary_10_1007_s11517_025_03324_y
crossref_primary_10_1016_j_bspc_2024_105980
crossref_primary_10_1016_j_bspc_2023_104604
crossref_primary_10_1088_1361_6560_acefa0
crossref_primary_10_1109_JBHI_2023_3274789
crossref_primary_10_3390_bioengineering11050488
crossref_primary_10_1109_TMI_2022_3193150
crossref_primary_10_1109_TPAMI_2023_3322735
crossref_primary_10_1016_j_bbe_2024_05_004
crossref_primary_10_1016_j_compbiomed_2024_109027
crossref_primary_10_1016_j_bspc_2024_106842
crossref_primary_10_1109_JBHI_2023_3342195
crossref_primary_10_1109_TMI_2024_3400528
crossref_primary_10_1007_s10489_025_06309_4
crossref_primary_10_1016_j_dsp_2024_104651
crossref_primary_10_1109_TIM_2024_3500060
crossref_primary_10_1016_j_bspc_2024_107455
crossref_primary_10_1016_j_eswa_2022_119443
crossref_primary_10_1109_TIP_2025_3526061
crossref_primary_10_1016_j_eswa_2024_126370
crossref_primary_10_1016_j_neucom_2025_129442
crossref_primary_10_1016_j_media_2025_103496
Cites_doi 10.1016/j.media.2021.101971
10.1007/978-3-319-10404-1_79
10.1109/42.34715
10.1109/TMI.2016.2570123
10.1016/j.media.2015.12.003
10.1007/978-3-319-16808-1_36
10.5220/0005313005770582
10.1109/TMI.2007.898551
10.1109/ACCESS.2019.2935138
10.1049/el.2017.2066
10.3389/fcomp.2020.00035
10.1016/j.neunet.2020.02.018
10.1109/TMI.2018.2854886
10.1145/3163080.3163087
10.1016/j.cmpb.2019.06.030
10.1007/978-3-030-59716-0_54
10.1007/978-3-319-24574-4_28
10.1109/TMI.2017.2778748
10.1049/iet-ipr.2012.0455
10.1016/j.patcog.2012.08.009
10.1007/s10044-018-0754-8
10.1109/83.931095
10.1109/ICCV.2017.324
10.1109/TMI.2011.2167982
10.1016/j.media.2021.102300
10.1109/TMI.2019.2950051
10.3390/sym11091112
10.1109/TMI.2019.2903562
10.1038/s41467-021-25138-w
10.1016/j.cmpb.2017.06.016
10.1109/CVPR46437.2021.01549
10.1109/TMI.2004.825627
10.1109/TMI.2006.879967
10.1109/TBME.2018.2828137
10.1109/TBME.2016.2535311
10.1016/j.eswa.2018.06.034
10.1109/ACCESS.2020.3015108
10.1007/978-3-030-00934-2_10
10.1109/EMBC.2017.8036916
10.1109/CVPR.2016.90
10.1155/2020/8365783
10.1109/TMI.2015.2457891
10.1109/TCYB.2018.2833963
10.1016/j.patrec.2020.04.009
10.1109/ICCV.2015.164
10.1109/TBME.2012.2205687
10.1007/978-3-319-46723-8_16
10.1007/978-3-030-87000-3_20
10.1016/j.asoc.2020.106439
10.1007/s00138-014-0638-x
10.1016/j.bspc.2020.101883
10.1109/CVPR42600.2020.00975
10.1007/978-3-642-40811-3_66
10.1109/TPAMI.2003.1159954
10.1109/JBHI.2018.2872813
10.1109/TBME.2015.2403295
10.1007/s00417-017-3677-y
10.1109/TIP.2019.2946078
10.1109/TMI.2010.2043259
10.1109/ICCV.2013.231
10.1007/978-3-319-75193-1_15
10.1016/j.preteyeres.2019.04.003
10.1109/TMI.2010.2064333
10.1109/42.845178
10.1007/978-3-319-46723-8_17
10.1109/TMI.2016.2546227
10.1109/TMI.2016.2587062
10.1007/s11548-017-1619-0
10.1038/s41551-018-0195-0
10.1016/j.eij.2015.06.004
10.1109/TMI.2006.879955
10.1109/ISBI.2017.7950512
10.3390/data6020014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2022.3161681
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2251
ExternalDocumentID 35320091
10_1109_TMI_2022_3161681
9740153
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Special Project for Research and Development in Key areas of Guangdong Province; Key Area Research and Development Program of Guangdong Province
  grantid: 2018B030338001
  funderid: 10.13039/501100015956
– fundername: National Natural Science Foundation of China
  grantid: 62076055
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-a8f20a4b33c1d62e1f08769edd158974e46d7eed1ac176524dc8bfdb4f67f19a3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Jul 10 22:27:52 EDT 2025
Mon Jun 30 04:19:53 EDT 2025
Wed Feb 19 02:26:26 EST 2025
Thu Apr 24 23:02:25 EDT 2025
Tue Jul 01 03:16:05 EDT 2025
Wed Aug 27 02:14:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-a8f20a4b33c1d62e1f08769edd158974e46d7eed1ac176524dc8bfdb4f67f19a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7495-5446
0000-0002-7395-3131
0000-0002-3696-5889
0000-0001-7387-2799
PMID 35320091
PQID 2708642869
PQPubID 85460
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TMI_2022_3161681
pubmed_primary_35320091
crossref_primary_10_1109_TMI_2022_3161681
ieee_primary_9740153
proquest_journals_2708642869
proquest_miscellaneous_2642890954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
Son (ref31) 2017
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
Chen (ref79)
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref78
ref37
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
Pandey (ref40) 2021
Khosla (ref38); 33
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Galdran (ref43) 2020
ref60
Grill (ref36); 33
ref62
ref61
References_xml – ident: ref7
  doi: 10.1016/j.media.2021.101971
– ident: ref3
  doi: 10.1007/978-3-319-10404-1_79
– year: 2020
  ident: ref43
  article-title: The little W-Net that could: State-of-the-art retinal vessel segmentation with minimalistic models
  publication-title: arXiv:2009.01907
– ident: ref12
  doi: 10.1109/42.34715
– ident: ref17
  doi: 10.1109/TMI.2016.2570123
– ident: ref68
  doi: 10.1016/j.media.2015.12.003
– ident: ref53
  doi: 10.1007/978-3-319-16808-1_36
– ident: ref76
  doi: 10.5220/0005313005770582
– start-page: 1597
  volume-title: Proc. 37th Int. Conf. Mach. Learn.
  ident: ref79
  article-title: A simple framework for contrastive learning of visual representations
– ident: ref14
  doi: 10.1109/TMI.2007.898551
– ident: ref67
  doi: 10.1109/ACCESS.2019.2935138
– ident: ref62
  doi: 10.1049/el.2017.2066
– ident: ref55
  doi: 10.3389/fcomp.2020.00035
– ident: ref58
  doi: 10.1016/j.neunet.2020.02.018
– ident: ref32
  doi: 10.1109/TMI.2018.2854886
– ident: ref48
  doi: 10.1145/3163080.3163087
– volume: 33
  start-page: 21271
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Bootstrap your own latent—A new approach to self-supervised learning
– ident: ref61
  doi: 10.1016/j.cmpb.2019.06.030
– ident: ref39
  doi: 10.1007/978-3-030-59716-0_54
– ident: ref42
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref46
  doi: 10.1109/TMI.2017.2778748
– ident: ref23
  doi: 10.1049/iet-ipr.2012.0455
– ident: ref4
  doi: 10.1016/j.patcog.2012.08.009
– ident: ref6
  doi: 10.1007/s10044-018-0754-8
– ident: ref13
  doi: 10.1109/83.931095
– ident: ref45
  doi: 10.1109/ICCV.2017.324
– ident: ref56
  doi: 10.1109/TMI.2011.2167982
– ident: ref77
  doi: 10.1016/j.media.2021.102300
– ident: ref30
  doi: 10.1109/TMI.2019.2950051
– ident: ref59
  doi: 10.3390/sym11091112
– ident: ref29
  doi: 10.1109/TMI.2019.2903562
– ident: ref50
  doi: 10.1038/s41467-021-25138-w
– ident: ref75
  doi: 10.1016/j.cmpb.2017.06.016
– ident: ref37
  doi: 10.1109/CVPR46437.2021.01549
– ident: ref21
  doi: 10.1109/TMI.2004.825627
– ident: ref16
  doi: 10.1109/TMI.2006.879967
– ident: ref33
  doi: 10.1109/TBME.2018.2828137
– ident: ref2
  doi: 10.1109/TBME.2016.2535311
– ident: ref28
  doi: 10.1016/j.eswa.2018.06.034
– ident: ref60
  doi: 10.1109/ACCESS.2020.3015108
– ident: ref65
  doi: 10.1007/978-3-030-00934-2_10
– ident: ref66
  doi: 10.1109/EMBC.2017.8036916
– ident: ref44
  doi: 10.1109/CVPR.2016.90
– ident: ref57
  doi: 10.1155/2020/8365783
– ident: ref18
  doi: 10.1109/TMI.2015.2457891
– ident: ref24
  doi: 10.1109/TCYB.2018.2833963
– ident: ref78
  doi: 10.1016/j.patrec.2020.04.009
– ident: ref54
  doi: 10.1109/ICCV.2015.164
– ident: ref22
  doi: 10.1109/TBME.2012.2205687
– ident: ref26
  doi: 10.1007/978-3-319-46723-8_16
– ident: ref41
  doi: 10.1007/978-3-030-87000-3_20
– ident: ref70
  doi: 10.1016/j.asoc.2020.106439
– ident: ref73
  doi: 10.1007/s00138-014-0638-x
– year: 2021
  ident: ref40
  article-title: Contrastive semi-supervised learning for 2D medical image segmentation
  publication-title: arXiv:2106.06801
– ident: ref72
  doi: 10.1016/j.bspc.2020.101883
– ident: ref35
  doi: 10.1109/CVPR42600.2020.00975
– ident: ref51
  doi: 10.1007/978-3-642-40811-3_66
– ident: ref9
  doi: 10.1109/TPAMI.2003.1159954
– ident: ref34
  doi: 10.1109/JBHI.2018.2872813
– volume: 33
  start-page: 18661
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref38
  article-title: Supervised contrastive learning
– ident: ref11
  doi: 10.1109/TBME.2015.2403295
– ident: ref71
  doi: 10.1007/s00417-017-3677-y
– ident: ref1
  doi: 10.1109/TIP.2019.2946078
– ident: ref25
  doi: 10.1109/TMI.2010.2043259
– ident: ref52
  doi: 10.1109/ICCV.2013.231
– year: 2017
  ident: ref31
  article-title: Retinal vessel segmentation in fundoscopic images with generative adversarial networks
  publication-title: arXiv:1706.09318
– ident: ref69
  doi: 10.1007/978-3-319-75193-1_15
– ident: ref8
  doi: 10.1016/j.preteyeres.2019.04.003
– ident: ref15
  doi: 10.1109/TMI.2010.2064333
– ident: ref20
  doi: 10.1109/42.845178
– ident: ref27
  doi: 10.1007/978-3-319-46723-8_17
– ident: ref19
  doi: 10.1109/TMI.2016.2546227
– ident: ref47
  doi: 10.1109/TMI.2016.2587062
– ident: ref64
  doi: 10.1007/s11548-017-1619-0
– ident: ref5
  doi: 10.1038/s41551-018-0195-0
– ident: ref74
  doi: 10.1016/j.eij.2015.06.004
– ident: ref10
  doi: 10.1109/TMI.2006.879955
– ident: ref63
  doi: 10.1109/ISBI.2017.7950512
– ident: ref49
  doi: 10.3390/data6020014
SSID ssj0014509
Score 2.5844448
Snippet The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2238
SubjectTerms Blood vessels
contrastive loss
data augmentation
Datasets
Deep learning
Feature extraction
Fundus image
Image segmentation
Lesions
Morphology
Optical imaging
Retina
Retinal vessels
skeletal prior
Skeleton
Source code
vessel segmentation
Vessels
Title Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss
URI https://ieeexplore.ieee.org/document/9740153
https://www.ncbi.nlm.nih.gov/pubmed/35320091
https://www.proquest.com/docview/2708642869
https://www.proquest.com/docview/2642890954
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLe2HRAcYGzACgMFiQsSfa_NV5MjYkwD8RBiG-xWpanDpo0-9NZ34a8n7pcAAeJWqW6bxE5tx_bPAM-ihyyUQZ8qq30qTTCpQatSbYIsCusx63oRLN7ro1P59kydbcCLqRYGEbvkM5zRZRfLr5d-TUdlc0vt45TYhM3ouPW1WlPEQKo-nYMTYmym-RiSzOz8ZPEmOoKcR_9U59pQcxhB_RAym_-ijbr2Kn-3NDuNc3gHFuNY-0STy9m6rWb--28wjv87mW24PZie7GUvK3dhA5sduPUTIOEO3FgMofZdOPhIxdCR_hOhi1-xY_zydahTatjni_acHV9GlRVtd_ZhdbFcMdfUjLCuVu6afqHsXZzwPTg9fH3y6igdWi6kXsiiTZ0JPHOyEsLnteaYB4Kss1jXuTJxxCh1XUS1mjufF1pxWXtThbqSQRcht07ch61m2eAeMF0I5aRUQSBKZ6Rx3AXnMxV8hcq6BObj0pd-wCOnthhXZeeXZLaMfCuJb-XAtwSeT09867E4_kG7S0s-0Q2rncD-yN1y2KzXJS-iXxfdMG0TeDrdjtuMYieuweU60hCBjfaoTOBBLxXTu0dhevjnbz6CmzSyPjFtH7ba1RofR0umrZ50IvwD_IbrUA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGkGA88LEBKwwIEi9I9K7NV5NHBEw3uE6I3WBvVZo6Y9rWQ7feC389Sb8ECBBvleq2SezUdmz_DPDCe8hMKLSx0NLGXDkVK9QilsrxLNMWk7YXQX4oZ8f8_Yk42YBXYy0MIrbJZzgJl20sv1radTgqm-rQPk6wa3Dd631Bu2qtMWbARZfQQQNmbCLpEJRM9HSRH3hXkFLvocpUqtAehoWOCIlOf9FHbYOVv9uarc7ZvwP5MNou1eR8sm7Kif3-G5Dj_07nLtzujU_yupOWe7CB9Tbc-gmScBtu5H2wfQfefgrl0J7-c8AXvyBHeHrZVyrV5MtZ85UcnXul5a138nF1tlwRU1ckoF2tzFX4iZK5n_B9ON5_t3gzi_umC7FlPGtioxxNDC8Zs2klKaYugNZprKpUKD9i5LLKvGJNjU0zKSivrCpdVXInM5dqwx7AZr2scReIzJgwnAvHELlRXBlqnLGJcLZEoU0E02HpC9sjkofGGBdF65kkuvB8KwLfip5vEbwcn_jWoXH8g3YnLPlI1692BHsDd4t-u14VNPOenXfEpI7g-Xjbb7QQPTE1LteeJhBob5HyCB52UjG-exCmR3_-5jO4OVvk82J-cPjhMWyFUXZpanuw2azW-MTbNU35tBXnH24-7po
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+Vessel+Segmentation+With+Skeletal+Prior+and+Contrastive+Loss&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Tan%2C+Yubo&rft.au=Yang%2C+Kai-Fu&rft.au=Zhao%2C+Shi-Xuan&rft.au=Li%2C+Yong-Jie&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=41&rft.issue=9&rft.spage=2238&rft.epage=2251&rft_id=info:doi/10.1109%2FTMI.2022.3161681&rft_id=info%3Apmid%2F35320091&rft.externalDocID=9740153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon