Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss
The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other com...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 41; no. 9; pp. 2238 - 2251 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon . |
---|---|
AbstractList | The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon . The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon.The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon. |
Author | Tan, Yubo Yang, Kai-Fu Li, Yong-Jie Zhao, Shi-Xuan |
Author_xml | – sequence: 1 givenname: Yubo orcidid: 0000-0002-7495-5446 surname: Tan fullname: Tan, Yubo organization: School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Kai-Fu orcidid: 0000-0002-3696-5889 surname: Yang fullname: Yang, Kai-Fu email: yangkf@uestc.edu.cn organization: School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Shi-Xuan orcidid: 0000-0001-7387-2799 surname: Zhao fullname: Zhao, Shi-Xuan organization: School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Yong-Jie orcidid: 0000-0002-7395-3131 surname: Li fullname: Li, Yong-Jie organization: School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35320091$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtvEzEUBWALFdG0sEdCQiOxYTPhXr_GXqLwqhQEouWxs5zxHXCZzBTbQeLf4ygpiy5YefOdK_mcM3YyzRMx9hhhiQj2xdX7iyUHzpcCNWqD99gClTItV_LbCVsA70wLoPkpO8v5GgClAvuAnQolOIDFBXv1iUqc_Nh8oZxpbC7p-5am4kucp-ZrLD-ay580UqniY4pzavwUmtU8leRzib-pWc85P2T3Bz9menR8z9nnN6-vVu_a9Ye3F6uX67YXsiutNwMHLzdC9Bg0JxzAdNpSCKiM7SRJHTqigL7HTisuQ282Q9jIQXcDWi_O2fPD3Zs0_9pRLm4bc0_j6Cead9lxLbmxYJWs9Nkdej3vUv1oVR2YPdS2qqdHtdtsKbibFLc-_XG3_VSgD6BP9Z-JBtfHQzm1gDg6BLcfwtUh3H4IdxyiBuFO8Pb2fyJPDpFIRP947QVQCfEX9-eRdw |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1007_s00371_024_03666_y crossref_primary_10_1016_j_compmedimag_2023_102271 crossref_primary_10_1007_s11517_024_03031_0 crossref_primary_10_1109_ACCESS_2023_3273613 crossref_primary_10_3390_s22124592 crossref_primary_10_1016_j_bspc_2024_106134 crossref_primary_10_1109_LSP_2023_3348664 crossref_primary_10_1109_JBHI_2024_3376462 crossref_primary_10_1007_s10462_024_10736_z crossref_primary_10_1016_j_eswa_2024_124970 crossref_primary_10_1016_j_ins_2023_120007 crossref_primary_10_1109_TMI_2023_3339204 crossref_primary_10_3389_fmed_2024_1377479 crossref_primary_10_1364_BOE_506205 crossref_primary_10_1109_TMI_2023_3317072 crossref_primary_10_1109_TMI_2024_3362847 crossref_primary_10_1016_j_compbiomed_2023_106924 crossref_primary_10_3390_e25081148 crossref_primary_10_1016_j_neucom_2024_129009 crossref_primary_10_1007_s10489_023_04939_0 crossref_primary_10_1016_j_knosys_2024_112170 crossref_primary_10_3390_app14125039 crossref_primary_10_1016_j_knosys_2023_111185 crossref_primary_10_1016_j_eswa_2024_124249 crossref_primary_10_1016_j_compbiomed_2024_108047 crossref_primary_10_1016_j_compbiomed_2024_108443 crossref_primary_10_1016_j_compbiomed_2024_108602 crossref_primary_10_1007_s11517_025_03324_y crossref_primary_10_1016_j_bspc_2024_105980 crossref_primary_10_1016_j_bspc_2023_104604 crossref_primary_10_1088_1361_6560_acefa0 crossref_primary_10_1109_JBHI_2023_3274789 crossref_primary_10_3390_bioengineering11050488 crossref_primary_10_1109_TMI_2022_3193150 crossref_primary_10_1109_TPAMI_2023_3322735 crossref_primary_10_1016_j_bbe_2024_05_004 crossref_primary_10_1016_j_compbiomed_2024_109027 crossref_primary_10_1016_j_bspc_2024_106842 crossref_primary_10_1109_JBHI_2023_3342195 crossref_primary_10_1109_TMI_2024_3400528 crossref_primary_10_1007_s10489_025_06309_4 crossref_primary_10_1016_j_dsp_2024_104651 crossref_primary_10_1109_TIM_2024_3500060 crossref_primary_10_1016_j_bspc_2024_107455 crossref_primary_10_1016_j_eswa_2022_119443 crossref_primary_10_1109_TIP_2025_3526061 crossref_primary_10_1016_j_eswa_2024_126370 crossref_primary_10_1016_j_neucom_2025_129442 crossref_primary_10_1016_j_media_2025_103496 |
Cites_doi | 10.1016/j.media.2021.101971 10.1007/978-3-319-10404-1_79 10.1109/42.34715 10.1109/TMI.2016.2570123 10.1016/j.media.2015.12.003 10.1007/978-3-319-16808-1_36 10.5220/0005313005770582 10.1109/TMI.2007.898551 10.1109/ACCESS.2019.2935138 10.1049/el.2017.2066 10.3389/fcomp.2020.00035 10.1016/j.neunet.2020.02.018 10.1109/TMI.2018.2854886 10.1145/3163080.3163087 10.1016/j.cmpb.2019.06.030 10.1007/978-3-030-59716-0_54 10.1007/978-3-319-24574-4_28 10.1109/TMI.2017.2778748 10.1049/iet-ipr.2012.0455 10.1016/j.patcog.2012.08.009 10.1007/s10044-018-0754-8 10.1109/83.931095 10.1109/ICCV.2017.324 10.1109/TMI.2011.2167982 10.1016/j.media.2021.102300 10.1109/TMI.2019.2950051 10.3390/sym11091112 10.1109/TMI.2019.2903562 10.1038/s41467-021-25138-w 10.1016/j.cmpb.2017.06.016 10.1109/CVPR46437.2021.01549 10.1109/TMI.2004.825627 10.1109/TMI.2006.879967 10.1109/TBME.2018.2828137 10.1109/TBME.2016.2535311 10.1016/j.eswa.2018.06.034 10.1109/ACCESS.2020.3015108 10.1007/978-3-030-00934-2_10 10.1109/EMBC.2017.8036916 10.1109/CVPR.2016.90 10.1155/2020/8365783 10.1109/TMI.2015.2457891 10.1109/TCYB.2018.2833963 10.1016/j.patrec.2020.04.009 10.1109/ICCV.2015.164 10.1109/TBME.2012.2205687 10.1007/978-3-319-46723-8_16 10.1007/978-3-030-87000-3_20 10.1016/j.asoc.2020.106439 10.1007/s00138-014-0638-x 10.1016/j.bspc.2020.101883 10.1109/CVPR42600.2020.00975 10.1007/978-3-642-40811-3_66 10.1109/TPAMI.2003.1159954 10.1109/JBHI.2018.2872813 10.1109/TBME.2015.2403295 10.1007/s00417-017-3677-y 10.1109/TIP.2019.2946078 10.1109/TMI.2010.2043259 10.1109/ICCV.2013.231 10.1007/978-3-319-75193-1_15 10.1016/j.preteyeres.2019.04.003 10.1109/TMI.2010.2064333 10.1109/42.845178 10.1007/978-3-319-46723-8_17 10.1109/TMI.2016.2546227 10.1109/TMI.2016.2587062 10.1007/s11548-017-1619-0 10.1038/s41551-018-0195-0 10.1016/j.eij.2015.06.004 10.1109/TMI.2006.879955 10.1109/ISBI.2017.7950512 10.3390/data6020014 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2022.3161681 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2251 |
ExternalDocumentID | 35320091 10_1109_TMI_2022_3161681 9740153 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Special Project for Research and Development in Key areas of Guangdong Province; Key Area Research and Development Program of Guangdong Province grantid: 2018B030338001 funderid: 10.13039/501100015956 – fundername: National Natural Science Foundation of China grantid: 62076055 funderid: 10.13039/501100001809 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c347t-a8f20a4b33c1d62e1f08769edd158974e46d7eed1ac176524dc8bfdb4f67f19a3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Jul 10 22:27:52 EDT 2025 Mon Jun 30 04:19:53 EDT 2025 Wed Feb 19 02:26:26 EST 2025 Thu Apr 24 23:02:25 EDT 2025 Tue Jul 01 03:16:05 EDT 2025 Wed Aug 27 02:14:04 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-a8f20a4b33c1d62e1f08769edd158974e46d7eed1ac176524dc8bfdb4f67f19a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7495-5446 0000-0002-7395-3131 0000-0002-3696-5889 0000-0001-7387-2799 |
PMID | 35320091 |
PQID | 2708642869 |
PQPubID | 85460 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TMI_2022_3161681 pubmed_primary_35320091 crossref_primary_10_1109_TMI_2022_3161681 ieee_primary_9740153 proquest_journals_2708642869 proquest_miscellaneous_2642890954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 Son (ref31) 2017 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 Chen (ref79) ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref78 ref37 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 Pandey (ref40) 2021 Khosla (ref38); 33 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Galdran (ref43) 2020 ref60 Grill (ref36); 33 ref62 ref61 |
References_xml | – ident: ref7 doi: 10.1016/j.media.2021.101971 – ident: ref3 doi: 10.1007/978-3-319-10404-1_79 – year: 2020 ident: ref43 article-title: The little W-Net that could: State-of-the-art retinal vessel segmentation with minimalistic models publication-title: arXiv:2009.01907 – ident: ref12 doi: 10.1109/42.34715 – ident: ref17 doi: 10.1109/TMI.2016.2570123 – ident: ref68 doi: 10.1016/j.media.2015.12.003 – ident: ref53 doi: 10.1007/978-3-319-16808-1_36 – ident: ref76 doi: 10.5220/0005313005770582 – start-page: 1597 volume-title: Proc. 37th Int. Conf. Mach. Learn. ident: ref79 article-title: A simple framework for contrastive learning of visual representations – ident: ref14 doi: 10.1109/TMI.2007.898551 – ident: ref67 doi: 10.1109/ACCESS.2019.2935138 – ident: ref62 doi: 10.1049/el.2017.2066 – ident: ref55 doi: 10.3389/fcomp.2020.00035 – ident: ref58 doi: 10.1016/j.neunet.2020.02.018 – ident: ref32 doi: 10.1109/TMI.2018.2854886 – ident: ref48 doi: 10.1145/3163080.3163087 – volume: 33 start-page: 21271 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref36 article-title: Bootstrap your own latent—A new approach to self-supervised learning – ident: ref61 doi: 10.1016/j.cmpb.2019.06.030 – ident: ref39 doi: 10.1007/978-3-030-59716-0_54 – ident: ref42 doi: 10.1007/978-3-319-24574-4_28 – ident: ref46 doi: 10.1109/TMI.2017.2778748 – ident: ref23 doi: 10.1049/iet-ipr.2012.0455 – ident: ref4 doi: 10.1016/j.patcog.2012.08.009 – ident: ref6 doi: 10.1007/s10044-018-0754-8 – ident: ref13 doi: 10.1109/83.931095 – ident: ref45 doi: 10.1109/ICCV.2017.324 – ident: ref56 doi: 10.1109/TMI.2011.2167982 – ident: ref77 doi: 10.1016/j.media.2021.102300 – ident: ref30 doi: 10.1109/TMI.2019.2950051 – ident: ref59 doi: 10.3390/sym11091112 – ident: ref29 doi: 10.1109/TMI.2019.2903562 – ident: ref50 doi: 10.1038/s41467-021-25138-w – ident: ref75 doi: 10.1016/j.cmpb.2017.06.016 – ident: ref37 doi: 10.1109/CVPR46437.2021.01549 – ident: ref21 doi: 10.1109/TMI.2004.825627 – ident: ref16 doi: 10.1109/TMI.2006.879967 – ident: ref33 doi: 10.1109/TBME.2018.2828137 – ident: ref2 doi: 10.1109/TBME.2016.2535311 – ident: ref28 doi: 10.1016/j.eswa.2018.06.034 – ident: ref60 doi: 10.1109/ACCESS.2020.3015108 – ident: ref65 doi: 10.1007/978-3-030-00934-2_10 – ident: ref66 doi: 10.1109/EMBC.2017.8036916 – ident: ref44 doi: 10.1109/CVPR.2016.90 – ident: ref57 doi: 10.1155/2020/8365783 – ident: ref18 doi: 10.1109/TMI.2015.2457891 – ident: ref24 doi: 10.1109/TCYB.2018.2833963 – ident: ref78 doi: 10.1016/j.patrec.2020.04.009 – ident: ref54 doi: 10.1109/ICCV.2015.164 – ident: ref22 doi: 10.1109/TBME.2012.2205687 – ident: ref26 doi: 10.1007/978-3-319-46723-8_16 – ident: ref41 doi: 10.1007/978-3-030-87000-3_20 – ident: ref70 doi: 10.1016/j.asoc.2020.106439 – ident: ref73 doi: 10.1007/s00138-014-0638-x – year: 2021 ident: ref40 article-title: Contrastive semi-supervised learning for 2D medical image segmentation publication-title: arXiv:2106.06801 – ident: ref72 doi: 10.1016/j.bspc.2020.101883 – ident: ref35 doi: 10.1109/CVPR42600.2020.00975 – ident: ref51 doi: 10.1007/978-3-642-40811-3_66 – ident: ref9 doi: 10.1109/TPAMI.2003.1159954 – ident: ref34 doi: 10.1109/JBHI.2018.2872813 – volume: 33 start-page: 18661 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref38 article-title: Supervised contrastive learning – ident: ref11 doi: 10.1109/TBME.2015.2403295 – ident: ref71 doi: 10.1007/s00417-017-3677-y – ident: ref1 doi: 10.1109/TIP.2019.2946078 – ident: ref25 doi: 10.1109/TMI.2010.2043259 – ident: ref52 doi: 10.1109/ICCV.2013.231 – year: 2017 ident: ref31 article-title: Retinal vessel segmentation in fundoscopic images with generative adversarial networks publication-title: arXiv:1706.09318 – ident: ref69 doi: 10.1007/978-3-319-75193-1_15 – ident: ref8 doi: 10.1016/j.preteyeres.2019.04.003 – ident: ref15 doi: 10.1109/TMI.2010.2064333 – ident: ref20 doi: 10.1109/42.845178 – ident: ref27 doi: 10.1007/978-3-319-46723-8_17 – ident: ref19 doi: 10.1109/TMI.2016.2546227 – ident: ref47 doi: 10.1109/TMI.2016.2587062 – ident: ref64 doi: 10.1007/s11548-017-1619-0 – ident: ref5 doi: 10.1038/s41551-018-0195-0 – ident: ref74 doi: 10.1016/j.eij.2015.06.004 – ident: ref10 doi: 10.1109/TMI.2006.879955 – ident: ref63 doi: 10.1109/ISBI.2017.7950512 – ident: ref49 doi: 10.3390/data6020014 |
SSID | ssj0014509 |
Score | 2.5844448 |
Snippet | The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2238 |
SubjectTerms | Blood vessels contrastive loss data augmentation Datasets Deep learning Feature extraction Fundus image Image segmentation Lesions Morphology Optical imaging Retina Retinal vessels skeletal prior Skeleton Source code vessel segmentation Vessels |
Title | Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss |
URI | https://ieeexplore.ieee.org/document/9740153 https://www.ncbi.nlm.nih.gov/pubmed/35320091 https://www.proquest.com/docview/2708642869 https://www.proquest.com/docview/2642890954 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLe2HRAcYGzACgMFiQsSfa_NV5MjYkwD8RBiG-xWpanDpo0-9NZ34a8n7pcAAeJWqW6bxE5tx_bPAM-ihyyUQZ8qq30qTTCpQatSbYIsCusx63oRLN7ro1P59kydbcCLqRYGEbvkM5zRZRfLr5d-TUdlc0vt45TYhM3ouPW1WlPEQKo-nYMTYmym-RiSzOz8ZPEmOoKcR_9U59pQcxhB_RAym_-ijbr2Kn-3NDuNc3gHFuNY-0STy9m6rWb--28wjv87mW24PZie7GUvK3dhA5sduPUTIOEO3FgMofZdOPhIxdCR_hOhi1-xY_zydahTatjni_acHV9GlRVtd_ZhdbFcMdfUjLCuVu6afqHsXZzwPTg9fH3y6igdWi6kXsiiTZ0JPHOyEsLnteaYB4Kss1jXuTJxxCh1XUS1mjufF1pxWXtThbqSQRcht07ch61m2eAeMF0I5aRUQSBKZ6Rx3AXnMxV8hcq6BObj0pd-wCOnthhXZeeXZLaMfCuJb-XAtwSeT09867E4_kG7S0s-0Q2rncD-yN1y2KzXJS-iXxfdMG0TeDrdjtuMYieuweU60hCBjfaoTOBBLxXTu0dhevjnbz6CmzSyPjFtH7ba1RofR0umrZ50IvwD_IbrUA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGkGA88LEBKwwIEi9I9K7NV5NHBEw3uE6I3WBvVZo6Y9rWQ7feC389Sb8ECBBvleq2SezUdmz_DPDCe8hMKLSx0NLGXDkVK9QilsrxLNMWk7YXQX4oZ8f8_Yk42YBXYy0MIrbJZzgJl20sv1radTgqm-rQPk6wa3Dd631Bu2qtMWbARZfQQQNmbCLpEJRM9HSRH3hXkFLvocpUqtAehoWOCIlOf9FHbYOVv9uarc7ZvwP5MNou1eR8sm7Kif3-G5Dj_07nLtzujU_yupOWe7CB9Tbc-gmScBtu5H2wfQfefgrl0J7-c8AXvyBHeHrZVyrV5MtZ85UcnXul5a138nF1tlwRU1ckoF2tzFX4iZK5n_B9ON5_t3gzi_umC7FlPGtioxxNDC8Zs2klKaYugNZprKpUKD9i5LLKvGJNjU0zKSivrCpdVXInM5dqwx7AZr2scReIzJgwnAvHELlRXBlqnLGJcLZEoU0E02HpC9sjkofGGBdF65kkuvB8KwLfip5vEbwcn_jWoXH8g3YnLPlI1692BHsDd4t-u14VNPOenXfEpI7g-Xjbb7QQPTE1LteeJhBob5HyCB52UjG-exCmR3_-5jO4OVvk82J-cPjhMWyFUXZpanuw2azW-MTbNU35tBXnH24-7po |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+Vessel+Segmentation+With+Skeletal+Prior+and+Contrastive+Loss&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Tan%2C+Yubo&rft.au=Yang%2C+Kai-Fu&rft.au=Zhao%2C+Shi-Xuan&rft.au=Li%2C+Yong-Jie&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=41&rft.issue=9&rft.spage=2238&rft.epage=2251&rft_id=info:doi/10.1109%2FTMI.2022.3161681&rft_id=info%3Apmid%2F35320091&rft.externalDocID=9740153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |