Comparative study of adsorptions, reactions and electronic properties of U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces
The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunnel...
Saved in:
Published in | Nanotechnology Vol. 32; no. 42; pp. 425704 - 425714 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
15.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms. By contrast, the majority of U atoms tend to dispersedly adsorb on intact surfaces of Au(111) and Ru(0001) rather than producing surface vacancies at the same temperature. In all cases, Kondo resonance manifested as asymmetric dip feature around Fermi energy is only observed in the differential tunneling conductance spectra of single U adatoms on Ag(111).The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms. By contrast, the majority of U atoms tend to dispersedly adsorb on intact surfaces of Au(111) and Ru(0001) rather than producing surface vacancies at the same temperature. In all cases, Kondo resonance manifested as asymmetric dip feature around Fermi energy is only observed in the differential tunneling conductance spectra of single U adatoms on Ag(111). |
---|---|
AbstractList | The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms. By contrast, the majority of U atoms tend to dispersedly adsorb on intact surfaces of Au(111) and Ru(0001) rather than producing surface vacancies at the same temperature. In all cases, Kondo resonance manifested as asymmetric dip feature around Fermi energy is only observed in the differential tunneling conductance spectra of single U adatoms on Ag(111).The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms. By contrast, the majority of U atoms tend to dispersedly adsorb on intact surfaces of Au(111) and Ru(0001) rather than producing surface vacancies at the same temperature. In all cases, Kondo resonance manifested as asymmetric dip feature around Fermi energy is only observed in the differential tunneling conductance spectra of single U adatoms on Ag(111). |
Author | Hao, Qunqing Liu, Qin Chen, Jinfan Feng, Wei Lai, Xinchun Qiu, Ruizhi Chen, Qiuyun |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-8159-0732 surname: Feng fullname: Feng, Wei organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China – sequence: 2 givenname: Qunqing orcidid: 0000-0001-6788-3774 surname: Hao fullname: Hao, Qunqing organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China – sequence: 3 givenname: Qiuyun orcidid: 0000-0003-1866-1125 surname: Chen fullname: Chen, Qiuyun organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China – sequence: 4 givenname: Ruizhi surname: Qiu fullname: Qiu, Ruizhi organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China – sequence: 5 givenname: Xinchun surname: Lai fullname: Lai, Xinchun organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China – sequence: 6 givenname: Jinfan surname: Chen fullname: Chen, Jinfan organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China – sequence: 7 givenname: Qin orcidid: 0000-0002-2780-4530 surname: Liu fullname: Liu, Qin organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China |
BookMark | eNp9kM1r3DAQxUVJoZu09x513IV1o7EkWzqGpV8QKJTmLGa14-LglVxJLuTcfzx23PZQ2sLAPIb3nsTvkl2EGIix1yDegDDmGmQDVaNrc40eJNlnbPP7dME2wuq2UsqoF-wy53shAEwNG_bjEM8jJiz9d-K5TKcHHjuOpxzTWPoY8p4nQv8kOYYTp4F8STH0no8pjpRKT3nJ3HEs8TzLwA_TFgB2e37z9ZdYL08Nn6etmN_f8TylDj3ll-x5h0OmVz_3Fbt79_bL4UN1--n9x8PNbeWlakuFWtFRm5p0h8ZbMEaBP8q29rYlC9iKVh6NBGvBktUej3UDmqw30kqtGnnFtmvv_PFvE-Xizn32NAwYKE7Z1VqDbpvaqNnarFafYs6JOuf7gguFkrAfHAi3UHcLYrcgdiv1OSj-CI6pP2N6-F9kt0b6OLr7OKUwQ3ABQ3SydmoZ3QrlxlM3e_d_8f6z-hF2Tp7V |
CODEN | NNOTER |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2025_163030 crossref_primary_10_1103_PhysRevB_108_245407 crossref_primary_10_1103_PhysRevB_107_075136 crossref_primary_10_1103_PhysRevMaterials_6_103407 crossref_primary_10_1103_PhysRevMaterials_8_074402 |
Cites_doi | 10.1126/science.264.5161.942 10.1063/1.1323224 10.1103/PhysRevB.39.7988 10.1103/PhysRevLett.106.037205 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.64.165412 10.1038/344524a0 10.1021/acs.jpcb.7b07046 10.1088/0953-8984/7/48/012 10.1126/science.1252841 10.1016/0921-4526(91)90542-M 10.1088/1674-1056/28/7/077404 10.1103/PhysRevB.52.R5467 10.1103/PhysRevB.56.7656 10.1038/ncomms2075 10.1016/0022-5088(88)90041-0 10.1103/PhysRevB.31.1329 10.1103/PhysRevB.54.11169 10.1021/ja0725044 10.1016/0925-8388(94)90913-X 10.1021/j100135a014 10.1063/1.1329672 10.1103/PhysRevLett.99.126104 10.1016/S0925-8388(98)00152-2 10.1016/0304-8853(94)00604-0 10.1103/PhysRevB.59.1758 10.1021/ic801303w 10.1126/science.280.5363.567 10.1016/S0304-8853(10)80165-9 10.1103/RevModPhys.81.235 10.1143/JPSJ.63.2722 10.1021/jp202489s 10.1088/0953-8984/21/5/053001 10.1080/00018739400101465 10.1016/0304-8853(92)91415-P 10.1007/BF01453785 10.1039/C4DT02391A 10.1103/PhysRevB.45.7481 10.1103/PhysRevLett.65.2454 10.1103/PhysRevB.23.997 10.1103/PhysRevLett.115.237202 10.1126/science.280.5364.717 10.1103/PhysRevB.63.235404 10.1038/nphys1072 10.1016/0022-5088(91)90290-K 10.1016/0921-4526(90)90332-O 10.1103/PhysRevLett.80.2893 10.1116/1.1398540 10.1103/PhysRevLett.88.096804 10.1103/PhysRevB.50.17953 10.1116/1.1990161 10.1107/S0365110X55001527 10.1103/RevModPhys.81.1551 10.1038/363524a0 10.1103/PhysRevLett.55.1595 10.1146/annurev.ns.01.120152.001333 10.1103/PhysRevB.47.558 10.1143/JPSJ.61.1751 10.1016/S0168-583X(99)01112-X 10.1039/C9CP01626K 10.1016/j.jallcom.2004.05.058 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd 2021 IOP Publishing Ltd. |
Copyright_xml | – notice: 2021 IOP Publishing Ltd – notice: 2021 IOP Publishing Ltd. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1088/1361-6528/ac13e9 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6528 |
ExternalDocumentID | 10_1088_1361_6528_ac13e9 nanoac13e9 |
GrantInformation_xml | – fundername: SPC-Lab Research Fund grantid: WDZC201901 – fundername: National Key Research and Development Program of China grantid: 2017YFA0303104 – fundername: National Science Foundation of China grantid: 11874330; 11904335; 11974319 – fundername: Science Challenge Project grantid: TZ2016004 – fundername: Special Funds of Institute of Materials grantid: TP02201904; TP02201905 |
GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION 7X8 |
ID | FETCH-LOGICAL-c347t-a54eb582e5fa8c918841cb372c97e91a7073b8319919e95cab2615e9c83935463 |
IEDL.DBID | IOP |
ISSN | 0957-4484 1361-6528 |
IngestDate | Fri Jul 11 12:08:24 EDT 2025 Tue Jul 01 01:27:18 EDT 2025 Thu Apr 24 23:12:42 EDT 2025 Wed Aug 21 03:34:51 EDT 2024 Wed Jun 07 11:18:57 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-a54eb582e5fa8c918841cb372c97e91a7073b8319919e95cab2615e9c83935463 |
Notes | NANO-129585.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2780-4530 0000-0003-1866-1125 0000-0001-8159-0732 0000-0001-6788-3774 |
PQID | 2551576284 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1088_1361_6528_ac13e9 iop_journals_10_1088_1361_6528_ac13e9 proquest_miscellaneous_2551576284 crossref_citationtrail_10_1088_1361_6528_ac13e9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Nanotechnology |
PublicationTitleAbbrev | NANO |
PublicationTitleAlternate | Nanotechnology |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Otte (nanoac13e9bib66) 2008; 4 Canepa (nanoac13e9bib18) 1990; 160 Moore (nanoac13e9bib47) 2009; 81 Nakamura (nanoac13e9bib11) 1990; 90 Kleykamp (nanoac13e9bib22) 1991; 167 Palenzona (nanoac13e9bib19) 1988; 143 Ōnuki (nanoac13e9bib23) 1992; 61 Chen (nanoac13e9bib35) 2019; 28 Kresse (nanoac13e9bib39) 1999; 59 Feng (nanoac13e9bib34) 2021 Eigler (nanoac13e9bib45) 1990; 344 Hla (nanoac13e9bib46) 2005; 23 Madhavan (nanoac13e9bib65) 2001; 64 Nakamura (nanoac13e9bib13) 1991; 171 Blöchl (nanoac13e9bib38) 1994; 50 Knorr (nanoac13e9bib31) 2002; 88 Kresse (nanoac13e9bib37) 1996; 54 Seki (nanoac13e9bib48) 2000; 164 Schenck (nanoac13e9bib12) 1990; 65 Yamanaka (nanoac13e9bib8) 1998; 271 Dronskowski (nanoac13e9bib54) 1993; 97 Liechtenstein (nanoac13e9bib41) 1995; 52 Ueland (nanoac13e9bib17) 2012; 3 Pfleiderer (nanoac13e9bib3) 2009; 81 Heal (nanoac13e9bib9) 1955; 8 Kresse (nanoac13e9bib36) 1993; 47 Katz (nanoac13e9bib5) 1952; 1 Li (nanoac13e9bib30) 1998; 80 Ott (nanoac13e9bib10) 1985; 55 Pivetta (nanoac13e9bib63) 2007; 99 Ott (nanoac13e9bib21) 1985; 31 Eloirdi (nanoac13e9bib24) 2005; 386 Ch (nanoac13e9bib52) 1989; 39 Spurgeon (nanoac13e9bib57) 2019; 21 Meihaus (nanoac13e9bib26) 2015; 44 Goyhenex (nanoac13e9bib53) 2001; 63 Li (nanoac13e9bib59) 1997; 56 Fisher (nanoac13e9bib1) 1994; 213 Yamagishi (nanoac13e9bib15) 1992; 108 Greiner (nanoac13e9bib51) 1997 Ph (nanoac13e9bib60) 1994; 264 Andraka (nanoac13e9bib14) 1992; 45 Kozimor (nanoac13e9bib28) 2007; 129 Moore (nanoac13e9bib2) 2009; 81 Khajetoorians (nanoac13e9bib64) 2011; 106 Henkelman (nanoac13e9bib43) 2000; 113 Gsell (nanoac13e9bib44) 1998; 280 Ternes (nanoac13e9bib62) 2009; 21 Walen (nanoac13e9bib56) 2018; 122 Nishioka (nanoac13e9bib7) 1994; 63 Chen (nanoac13e9bib61) 1993 Baumann (nanoac13e9bib33) 2015; 115 Rau (nanoac13e9bib32) 2014; 344 Perdew (nanoac13e9bib40) 1996; 77 Schneider (nanoac13e9bib6) 1981; 23 Shimada (nanoac13e9bib49) 2001; 19 Mattox (nanoac13e9bib50) 1998 Madhavan (nanoac13e9bib29) 1998; 280 Crommie (nanoac13e9bib58) 1993; 363 Smith (nanoac13e9bib20) 1995; 140 Henkelman (nanoac13e9bib42) 2000; 113 Rinehart (nanoac13e9bib27) 2009; 48 Lander (nanoac13e9bib4) 1994; 43 Lopez de la Torre (nanoac13e9bib16) 1995; 7 Hillebrecht (nanoac13e9bib25) 1989; 77 Deringer (nanoac13e9bib55) 2001; 115 |
References_xml | – volume: 264 start-page: 942 year: 1994 ident: nanoac13e9bib60 publication-title: Science doi: 10.1126/science.264.5161.942 – volume: 113 start-page: 9978 year: 2000 ident: nanoac13e9bib43 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 39 start-page: 7988 year: 1989 ident: nanoac13e9bib52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.7988 – volume: 106 year: 2011 ident: nanoac13e9bib64 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.037205 – volume: 77 start-page: 3865 year: 1996 ident: nanoac13e9bib40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 64 year: 2001 ident: nanoac13e9bib65 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.165412 – volume: 344 start-page: 524 year: 1990 ident: nanoac13e9bib45 publication-title: Nature doi: 10.1038/344524a0 – volume: 122 start-page: 963 year: 2018 ident: nanoac13e9bib56 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b07046 – volume: 7 start-page: 9235 year: 1995 ident: nanoac13e9bib16 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/7/48/012 – volume: 344 start-page: 988 year: 2014 ident: nanoac13e9bib32 publication-title: Science doi: 10.1126/science.1252841 – volume: 171 start-page: 329 year: 1991 ident: nanoac13e9bib13 publication-title: Physica B doi: 10.1016/0921-4526(91)90542-M – volume: 28 year: 2019 ident: nanoac13e9bib35 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/28/7/077404 – start-page: 343 year: 1998 ident: nanoac13e9bib50 – volume: 52 year: 1995 ident: nanoac13e9bib41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.52.R5467 – volume: 56 start-page: 7656 year: 1997 ident: nanoac13e9bib59 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.7656 – volume: 3 start-page: 1067 year: 2012 ident: nanoac13e9bib17 publication-title: Nat. Commun. doi: 10.1038/ncomms2075 – volume: 143 start-page: 167 year: 1988 ident: nanoac13e9bib19 publication-title: J. Less-Common Met. doi: 10.1016/0022-5088(88)90041-0 – volume: 31 start-page: 1329 year: 1985 ident: nanoac13e9bib21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.31.1329 – volume: 54 year: 1996 ident: nanoac13e9bib37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 129 start-page: 10672 year: 2007 ident: nanoac13e9bib28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0725044 – volume: 213 start-page: 254 year: 1994 ident: nanoac13e9bib1 publication-title: J. Alloys Compd. doi: 10.1016/0925-8388(94)90913-X – volume: 97 start-page: 8617 year: 1993 ident: nanoac13e9bib54 publication-title: J. Chem. Phys. doi: 10.1021/j100135a014 – volume: 113 start-page: 9901 year: 2000 ident: nanoac13e9bib42 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 99 year: 2007 ident: nanoac13e9bib63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.126104 – volume: 271 start-page: 549 year: 1998 ident: nanoac13e9bib8 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(98)00152-2 – volume: 140 start-page: 1375 year: 1995 ident: nanoac13e9bib20 publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(94)00604-0 – volume: 59 start-page: 1758 year: 1999 ident: nanoac13e9bib39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 48 start-page: 3382 year: 2009 ident: nanoac13e9bib27 publication-title: Inorg. Chem. doi: 10.1021/ic801303w – volume: 280 start-page: 567 year: 1998 ident: nanoac13e9bib29 publication-title: Science doi: 10.1126/science.280.5363.567 – volume: 90 start-page: 459 year: 1990 ident: nanoac13e9bib11 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(10)80165-9 – volume: 81 start-page: 235 year: 2009 ident: nanoac13e9bib2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.235 – volume: 63 start-page: 2722 year: 1994 ident: nanoac13e9bib7 publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.63.2722 – volume: 115 start-page: 5461 year: 2001 ident: nanoac13e9bib55 publication-title: J. Chem. Phys. doi: 10.1021/jp202489s – volume: 21 year: 2009 ident: nanoac13e9bib62 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/21/5/053001 – volume: 43 start-page: 1 year: 1994 ident: nanoac13e9bib4 publication-title: Adv. Phys. doi: 10.1080/00018739400101465 – volume: 108 start-page: 211 year: 1992 ident: nanoac13e9bib15 publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(92)91415-P – volume: 77 start-page: 373 year: 1989 ident: nanoac13e9bib25 publication-title: Z. Phys. B doi: 10.1007/BF01453785 – volume: 44 start-page: 2517 year: 2015 ident: nanoac13e9bib26 publication-title: Dalton Trans. doi: 10.1039/C4DT02391A – volume: 81 start-page: 235 year: 2009 ident: nanoac13e9bib47 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.235 – volume: 45 start-page: 7481 year: 1992 ident: nanoac13e9bib14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.7481 – volume: 65 start-page: 2454 year: 1990 ident: nanoac13e9bib12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.2454 – volume: 23 start-page: 997 year: 1981 ident: nanoac13e9bib6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.997 – start-page: 98 year: 1993 ident: nanoac13e9bib61 – volume: 115 year: 2015 ident: nanoac13e9bib33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.237202 – volume: 280 start-page: 717 year: 1998 ident: nanoac13e9bib44 publication-title: Science doi: 10.1126/science.280.5364.717 – start-page: 11 year: 1997 ident: nanoac13e9bib51 – volume: 63 year: 2001 ident: nanoac13e9bib53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.235404 – volume: 4 start-page: 847 year: 2008 ident: nanoac13e9bib66 publication-title: Nat. Phys. doi: 10.1038/nphys1072 – volume: 167 start-page: 373 year: 1991 ident: nanoac13e9bib22 publication-title: J. Less-Common Met. doi: 10.1016/0022-5088(91)90290-K – volume: 160 start-page: 297 year: 1990 ident: nanoac13e9bib18 publication-title: Physica B doi: 10.1016/0921-4526(90)90332-O – volume: 80 start-page: 2893 year: 1998 ident: nanoac13e9bib30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.2893 – volume: 19 start-page: 1989 year: 2001 ident: nanoac13e9bib49 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.1398540 – volume: 88 year: 2002 ident: nanoac13e9bib31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.096804 – volume: 50 year: 1994 ident: nanoac13e9bib38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 23 start-page: 1351 year: 2005 ident: nanoac13e9bib46 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.1990161 – volume: 8 start-page: 494 year: 1955 ident: nanoac13e9bib9 publication-title: Acta Crystallogr. doi: 10.1107/S0365110X55001527 – volume: 81 start-page: 1551 year: 2009 ident: nanoac13e9bib3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.1551 – volume: 363 start-page: 524 year: 1993 ident: nanoac13e9bib58 publication-title: Nature doi: 10.1038/363524a0 – volume: 55 start-page: 1595 year: 1985 ident: nanoac13e9bib10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.1595 – volume: 1 start-page: 245 year: 1952 ident: nanoac13e9bib5 publication-title: Annu. Rev. Nucl. Sci. doi: 10.1146/annurev.ns.01.120152.001333 – volume: 47 start-page: 558 year: 1993 ident: nanoac13e9bib36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 61 start-page: 1751 year: 1992 ident: nanoac13e9bib23 publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.61.1751 – volume: 164 start-page: 650 year: 2000 ident: nanoac13e9bib48 publication-title: Nucl. Instrum. Methods Phys. Res. B doi: 10.1016/S0168-583X(99)01112-X – volume: 21 year: 2019 ident: nanoac13e9bib57 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP01626K – volume: 386 start-page: 70 year: 2005 ident: nanoac13e9bib24 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2004.05.058 – year: 2021 ident: nanoac13e9bib34 |
SSID | ssj0011821 |
Score | 2.3969164 |
Snippet | The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 425704 |
SubjectTerms | Kondo effect STM/STS surface reactions transition metal surfaces uranium atoms |
Title | Comparative study of adsorptions, reactions and electronic properties of U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces |
URI | https://iopscience.iop.org/article/10.1088/1361-6528/ac13e9 https://www.proquest.com/docview/2551576284 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_uTgTv4dRTuT0_iKJwC5fdpk3aBJ-OxeMQ_EBcuAchJGnqg167bLcv9-o_7qTp7nkqhwh9CGWStpNkPjozvwC85BYFr3MVtahtKRfKU-PLiialsKnnVSLKUI387n1-Nudvz8X5Frze1MI0i0H0T7AZgYIjC4eEODllWc5oLlI5NY5lXm3DrUyi4gzVex8-bkIIaDizCLRXUPRB-BCj_NsI13TSNj73D8Hca5vTu_Bl_Z4xyeTbpFvZibv8DcLxPz_kHuwNVig5iaT3YcvX-7D7CzbhPtzuc0Nd-wB-zK4QwkkPR0uaipiybZYxI-aYoOXZ10e0xNQluTpahyzCv_5lAG0NfeYEXfwLbNZk1h2h_Bsfk5Ov60a804_wqTsKZuGYtN2yCkljD2F--ubz7IwOZzdQl_FiRY3g3gqZelEZ6RSTkjNnsyJ1qvCKmQJFi5VZSLxSXglncK0w4ZWToVaY59kj2Kmb2h8AkbicnM1dFcD6nEisUCEk5LjNXMF8MoLpeva0G4DNw_ka33UfYJdSB0brwGgdGT2C8abHIoJ63ED7CudPDzu7vYHuxTW62tSNzlLNwyWKhOtFWY3g-XpdadzGITZjat90rUbPjqHrh8bC4T8-8DHcSUN-TciuEU9gZ7Xs_FM0kFb2Wb8RfgI0CwR9 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAceBQQy9MgkLpSvRvHduIcq4VVeZUKsVJvxnYcDkCy2mwuXPnjjONsSwFVSEg5WNHYScb2PDIznwGeCYuC17mKWtS2VMjCU-PLiialtKkXVSLLUI387jA7WIjXx_J4OOe0r4VploPon2AzAgVHFg4JcWrKeMZoJlM1NY5xX0yXZbUFFyVH3Rkq-N4fnYQR0HhmEWwvp-iHiCFO-bdRzuilLXz2H8K51zjz6_Bp864x0eTLpFvbifv-G4zjf3zMDbg2WKNkP5LfhAu-3oGrv2AU7sClPkfUtbfgx-wUKZz0sLSkqYgp22YVM2P2CFqgfZ1ES0xdktMjdsgy_PNfBfDW0GdB0NX_hs2azLpdlIPjPbL_edOId_oRPnS7wTwck7ZbVSF57DYs5i8_zg7ocIYDdVzka2qk8Faq1MvKKFcwpQRzluepK3JfMJOjiLGKhwSswhfSGVwzTPrCqVAzLDJ-B7brpvZ3gShcVs5mrgqgfU4mVhYhNOSE5S5nPhnBdDOD2g0A5-Gcja-6D7QrpQOzdWC2jswewfikxzKCe5xD-xznUA87vD2H7ukZutrUjeapFuGSeSI0zvAInmzWlsbtHGI0pvZN12r08Bi6gGg03PvHBz6Gy0cv5vrtq8M39-FKGlJuQsKNfADb61XnH6LNtLaP-n3xEyV-CeE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+of+adsorptions%2C+reactions+and+electronic+properties+of+U+atoms+on+Cu%28111%29%2C+Ag%28111%29%2C+Au%28111%29+and+Ru%280001%29+surfaces&rft.jtitle=Nanotechnology&rft.au=Feng%2C+Wei&rft.au=Hao%2C+Qunqing&rft.au=Chen%2C+Qiuyun&rft.au=Qiu%2C+Ruizhi&rft.date=2021-10-15&rft.issn=1361-6528&rft.eissn=1361-6528&rft.volume=32&rft.issue=42&rft_id=info:doi/10.1088%2F1361-6528%2Fac13e9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon |