Comparative study of adsorptions, reactions and electronic properties of U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces

The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunnel...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 32; no. 42; pp. 425704 - 425714
Main Authors Feng, Wei, Hao, Qunqing, Chen, Qiuyun, Qiu, Ruizhi, Lai, Xinchun, Chen, Jinfan, Liu, Qin
Format Journal Article
LanguageEnglish
Published IOP Publishing 15.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms. By contrast, the majority of U atoms tend to dispersedly adsorb on intact surfaces of Au(111) and Ru(0001) rather than producing surface vacancies at the same temperature. In all cases, Kondo resonance manifested as asymmetric dip feature around Fermi energy is only observed in the differential tunneling conductance spectra of single U adatoms on Ag(111).The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms. By contrast, the majority of U atoms tend to dispersedly adsorb on intact surfaces of Au(111) and Ru(0001) rather than producing surface vacancies at the same temperature. In all cases, Kondo resonance manifested as asymmetric dip feature around Fermi energy is only observed in the differential tunneling conductance spectra of single U adatoms on Ag(111).
AbstractList The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms. By contrast, the majority of U atoms tend to dispersedly adsorb on intact surfaces of Au(111) and Ru(0001) rather than producing surface vacancies at the same temperature. In all cases, Kondo resonance manifested as asymmetric dip feature around Fermi energy is only observed in the differential tunneling conductance spectra of single U adatoms on Ag(111).The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms. By contrast, the majority of U atoms tend to dispersedly adsorb on intact surfaces of Au(111) and Ru(0001) rather than producing surface vacancies at the same temperature. In all cases, Kondo resonance manifested as asymmetric dip feature around Fermi energy is only observed in the differential tunneling conductance spectra of single U adatoms on Ag(111).
Author Hao, Qunqing
Liu, Qin
Chen, Jinfan
Feng, Wei
Lai, Xinchun
Qiu, Ruizhi
Chen, Qiuyun
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-8159-0732
  surname: Feng
  fullname: Feng, Wei
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China
– sequence: 2
  givenname: Qunqing
  orcidid: 0000-0001-6788-3774
  surname: Hao
  fullname: Hao, Qunqing
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China
– sequence: 3
  givenname: Qiuyun
  orcidid: 0000-0003-1866-1125
  surname: Chen
  fullname: Chen, Qiuyun
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China
– sequence: 4
  givenname: Ruizhi
  surname: Qiu
  fullname: Qiu, Ruizhi
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China
– sequence: 5
  givenname: Xinchun
  surname: Lai
  fullname: Lai, Xinchun
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China
– sequence: 6
  givenname: Jinfan
  surname: Chen
  fullname: Chen, Jinfan
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China
– sequence: 7
  givenname: Qin
  orcidid: 0000-0002-2780-4530
  surname: Liu
  fullname: Liu, Qin
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, People’s Republic of China
BookMark eNp9kM1r3DAQxUVJoZu09x513IV1o7EkWzqGpV8QKJTmLGa14-LglVxJLuTcfzx23PZQ2sLAPIb3nsTvkl2EGIix1yDegDDmGmQDVaNrc40eJNlnbPP7dME2wuq2UsqoF-wy53shAEwNG_bjEM8jJiz9d-K5TKcHHjuOpxzTWPoY8p4nQv8kOYYTp4F8STH0no8pjpRKT3nJ3HEs8TzLwA_TFgB2e37z9ZdYL08Nn6etmN_f8TylDj3ll-x5h0OmVz_3Fbt79_bL4UN1--n9x8PNbeWlakuFWtFRm5p0h8ZbMEaBP8q29rYlC9iKVh6NBGvBktUej3UDmqw30kqtGnnFtmvv_PFvE-Xizn32NAwYKE7Z1VqDbpvaqNnarFafYs6JOuf7gguFkrAfHAi3UHcLYrcgdiv1OSj-CI6pP2N6-F9kt0b6OLr7OKUwQ3ABQ3SydmoZ3QrlxlM3e_d_8f6z-hF2Tp7V
CODEN NNOTER
CitedBy_id crossref_primary_10_1016_j_apsusc_2025_163030
crossref_primary_10_1103_PhysRevB_108_245407
crossref_primary_10_1103_PhysRevB_107_075136
crossref_primary_10_1103_PhysRevMaterials_6_103407
crossref_primary_10_1103_PhysRevMaterials_8_074402
Cites_doi 10.1126/science.264.5161.942
10.1063/1.1323224
10.1103/PhysRevB.39.7988
10.1103/PhysRevLett.106.037205
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.64.165412
10.1038/344524a0
10.1021/acs.jpcb.7b07046
10.1088/0953-8984/7/48/012
10.1126/science.1252841
10.1016/0921-4526(91)90542-M
10.1088/1674-1056/28/7/077404
10.1103/PhysRevB.52.R5467
10.1103/PhysRevB.56.7656
10.1038/ncomms2075
10.1016/0022-5088(88)90041-0
10.1103/PhysRevB.31.1329
10.1103/PhysRevB.54.11169
10.1021/ja0725044
10.1016/0925-8388(94)90913-X
10.1021/j100135a014
10.1063/1.1329672
10.1103/PhysRevLett.99.126104
10.1016/S0925-8388(98)00152-2
10.1016/0304-8853(94)00604-0
10.1103/PhysRevB.59.1758
10.1021/ic801303w
10.1126/science.280.5363.567
10.1016/S0304-8853(10)80165-9
10.1103/RevModPhys.81.235
10.1143/JPSJ.63.2722
10.1021/jp202489s
10.1088/0953-8984/21/5/053001
10.1080/00018739400101465
10.1016/0304-8853(92)91415-P
10.1007/BF01453785
10.1039/C4DT02391A
10.1103/PhysRevB.45.7481
10.1103/PhysRevLett.65.2454
10.1103/PhysRevB.23.997
10.1103/PhysRevLett.115.237202
10.1126/science.280.5364.717
10.1103/PhysRevB.63.235404
10.1038/nphys1072
10.1016/0022-5088(91)90290-K
10.1016/0921-4526(90)90332-O
10.1103/PhysRevLett.80.2893
10.1116/1.1398540
10.1103/PhysRevLett.88.096804
10.1103/PhysRevB.50.17953
10.1116/1.1990161
10.1107/S0365110X55001527
10.1103/RevModPhys.81.1551
10.1038/363524a0
10.1103/PhysRevLett.55.1595
10.1146/annurev.ns.01.120152.001333
10.1103/PhysRevB.47.558
10.1143/JPSJ.61.1751
10.1016/S0168-583X(99)01112-X
10.1039/C9CP01626K
10.1016/j.jallcom.2004.05.058
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
2021 IOP Publishing Ltd.
Copyright_xml – notice: 2021 IOP Publishing Ltd
– notice: 2021 IOP Publishing Ltd.
DBID AAYXX
CITATION
7X8
DOI 10.1088/1361-6528/ac13e9
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6528
ExternalDocumentID 10_1088_1361_6528_ac13e9
nanoac13e9
GrantInformation_xml – fundername: SPC-Lab Research Fund
  grantid: WDZC201901
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0303104
– fundername: National Science Foundation of China
  grantid: 11874330; 11904335; 11974319
– fundername: Science Challenge Project
  grantid: TZ2016004
– fundername: Special Funds of Institute of Materials
  grantid: TP02201904; TP02201905
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
7X8
ID FETCH-LOGICAL-c347t-a54eb582e5fa8c918841cb372c97e91a7073b8319919e95cab2615e9c83935463
IEDL.DBID IOP
ISSN 0957-4484
1361-6528
IngestDate Fri Jul 11 12:08:24 EDT 2025
Tue Jul 01 01:27:18 EDT 2025
Thu Apr 24 23:12:42 EDT 2025
Wed Aug 21 03:34:51 EDT 2024
Wed Jun 07 11:18:57 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-a54eb582e5fa8c918841cb372c97e91a7073b8319919e95cab2615e9c83935463
Notes NANO-129585.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2780-4530
0000-0003-1866-1125
0000-0001-8159-0732
0000-0001-6788-3774
PQID 2551576284
PQPubID 23479
PageCount 11
ParticipantIDs crossref_primary_10_1088_1361_6528_ac13e9
iop_journals_10_1088_1361_6528_ac13e9
proquest_miscellaneous_2551576284
crossref_citationtrail_10_1088_1361_6528_ac13e9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Nanotechnology
PublicationTitleAbbrev NANO
PublicationTitleAlternate Nanotechnology
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Otte (nanoac13e9bib66) 2008; 4
Canepa (nanoac13e9bib18) 1990; 160
Moore (nanoac13e9bib47) 2009; 81
Nakamura (nanoac13e9bib11) 1990; 90
Kleykamp (nanoac13e9bib22) 1991; 167
Palenzona (nanoac13e9bib19) 1988; 143
Ōnuki (nanoac13e9bib23) 1992; 61
Chen (nanoac13e9bib35) 2019; 28
Kresse (nanoac13e9bib39) 1999; 59
Feng (nanoac13e9bib34) 2021
Eigler (nanoac13e9bib45) 1990; 344
Hla (nanoac13e9bib46) 2005; 23
Madhavan (nanoac13e9bib65) 2001; 64
Nakamura (nanoac13e9bib13) 1991; 171
Blöchl (nanoac13e9bib38) 1994; 50
Knorr (nanoac13e9bib31) 2002; 88
Kresse (nanoac13e9bib37) 1996; 54
Seki (nanoac13e9bib48) 2000; 164
Schenck (nanoac13e9bib12) 1990; 65
Yamanaka (nanoac13e9bib8) 1998; 271
Dronskowski (nanoac13e9bib54) 1993; 97
Liechtenstein (nanoac13e9bib41) 1995; 52
Ueland (nanoac13e9bib17) 2012; 3
Pfleiderer (nanoac13e9bib3) 2009; 81
Heal (nanoac13e9bib9) 1955; 8
Kresse (nanoac13e9bib36) 1993; 47
Katz (nanoac13e9bib5) 1952; 1
Li (nanoac13e9bib30) 1998; 80
Ott (nanoac13e9bib10) 1985; 55
Pivetta (nanoac13e9bib63) 2007; 99
Ott (nanoac13e9bib21) 1985; 31
Eloirdi (nanoac13e9bib24) 2005; 386
Ch (nanoac13e9bib52) 1989; 39
Spurgeon (nanoac13e9bib57) 2019; 21
Meihaus (nanoac13e9bib26) 2015; 44
Goyhenex (nanoac13e9bib53) 2001; 63
Li (nanoac13e9bib59) 1997; 56
Fisher (nanoac13e9bib1) 1994; 213
Yamagishi (nanoac13e9bib15) 1992; 108
Greiner (nanoac13e9bib51) 1997
Ph (nanoac13e9bib60) 1994; 264
Andraka (nanoac13e9bib14) 1992; 45
Kozimor (nanoac13e9bib28) 2007; 129
Moore (nanoac13e9bib2) 2009; 81
Khajetoorians (nanoac13e9bib64) 2011; 106
Henkelman (nanoac13e9bib43) 2000; 113
Gsell (nanoac13e9bib44) 1998; 280
Ternes (nanoac13e9bib62) 2009; 21
Walen (nanoac13e9bib56) 2018; 122
Nishioka (nanoac13e9bib7) 1994; 63
Chen (nanoac13e9bib61) 1993
Baumann (nanoac13e9bib33) 2015; 115
Rau (nanoac13e9bib32) 2014; 344
Perdew (nanoac13e9bib40) 1996; 77
Schneider (nanoac13e9bib6) 1981; 23
Shimada (nanoac13e9bib49) 2001; 19
Mattox (nanoac13e9bib50) 1998
Madhavan (nanoac13e9bib29) 1998; 280
Crommie (nanoac13e9bib58) 1993; 363
Smith (nanoac13e9bib20) 1995; 140
Henkelman (nanoac13e9bib42) 2000; 113
Rinehart (nanoac13e9bib27) 2009; 48
Lander (nanoac13e9bib4) 1994; 43
Lopez de la Torre (nanoac13e9bib16) 1995; 7
Hillebrecht (nanoac13e9bib25) 1989; 77
Deringer (nanoac13e9bib55) 2001; 115
References_xml – volume: 264
  start-page: 942
  year: 1994
  ident: nanoac13e9bib60
  publication-title: Science
  doi: 10.1126/science.264.5161.942
– volume: 113
  start-page: 9978
  year: 2000
  ident: nanoac13e9bib43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 39
  start-page: 7988
  year: 1989
  ident: nanoac13e9bib52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.7988
– volume: 106
  year: 2011
  ident: nanoac13e9bib64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.037205
– volume: 77
  start-page: 3865
  year: 1996
  ident: nanoac13e9bib40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 64
  year: 2001
  ident: nanoac13e9bib65
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.165412
– volume: 344
  start-page: 524
  year: 1990
  ident: nanoac13e9bib45
  publication-title: Nature
  doi: 10.1038/344524a0
– volume: 122
  start-page: 963
  year: 2018
  ident: nanoac13e9bib56
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b07046
– volume: 7
  start-page: 9235
  year: 1995
  ident: nanoac13e9bib16
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/7/48/012
– volume: 344
  start-page: 988
  year: 2014
  ident: nanoac13e9bib32
  publication-title: Science
  doi: 10.1126/science.1252841
– volume: 171
  start-page: 329
  year: 1991
  ident: nanoac13e9bib13
  publication-title: Physica B
  doi: 10.1016/0921-4526(91)90542-M
– volume: 28
  year: 2019
  ident: nanoac13e9bib35
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/28/7/077404
– start-page: 343
  year: 1998
  ident: nanoac13e9bib50
– volume: 52
  year: 1995
  ident: nanoac13e9bib41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.52.R5467
– volume: 56
  start-page: 7656
  year: 1997
  ident: nanoac13e9bib59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.7656
– volume: 3
  start-page: 1067
  year: 2012
  ident: nanoac13e9bib17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2075
– volume: 143
  start-page: 167
  year: 1988
  ident: nanoac13e9bib19
  publication-title: J. Less-Common Met.
  doi: 10.1016/0022-5088(88)90041-0
– volume: 31
  start-page: 1329
  year: 1985
  ident: nanoac13e9bib21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.31.1329
– volume: 54
  year: 1996
  ident: nanoac13e9bib37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 129
  start-page: 10672
  year: 2007
  ident: nanoac13e9bib28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0725044
– volume: 213
  start-page: 254
  year: 1994
  ident: nanoac13e9bib1
  publication-title: J. Alloys Compd.
  doi: 10.1016/0925-8388(94)90913-X
– volume: 97
  start-page: 8617
  year: 1993
  ident: nanoac13e9bib54
  publication-title: J. Chem. Phys.
  doi: 10.1021/j100135a014
– volume: 113
  start-page: 9901
  year: 2000
  ident: nanoac13e9bib42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 99
  year: 2007
  ident: nanoac13e9bib63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.126104
– volume: 271
  start-page: 549
  year: 1998
  ident: nanoac13e9bib8
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(98)00152-2
– volume: 140
  start-page: 1375
  year: 1995
  ident: nanoac13e9bib20
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(94)00604-0
– volume: 59
  start-page: 1758
  year: 1999
  ident: nanoac13e9bib39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 48
  start-page: 3382
  year: 2009
  ident: nanoac13e9bib27
  publication-title: Inorg. Chem.
  doi: 10.1021/ic801303w
– volume: 280
  start-page: 567
  year: 1998
  ident: nanoac13e9bib29
  publication-title: Science
  doi: 10.1126/science.280.5363.567
– volume: 90
  start-page: 459
  year: 1990
  ident: nanoac13e9bib11
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(10)80165-9
– volume: 81
  start-page: 235
  year: 2009
  ident: nanoac13e9bib2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.235
– volume: 63
  start-page: 2722
  year: 1994
  ident: nanoac13e9bib7
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.63.2722
– volume: 115
  start-page: 5461
  year: 2001
  ident: nanoac13e9bib55
  publication-title: J. Chem. Phys.
  doi: 10.1021/jp202489s
– volume: 21
  year: 2009
  ident: nanoac13e9bib62
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/5/053001
– volume: 43
  start-page: 1
  year: 1994
  ident: nanoac13e9bib4
  publication-title: Adv. Phys.
  doi: 10.1080/00018739400101465
– volume: 108
  start-page: 211
  year: 1992
  ident: nanoac13e9bib15
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(92)91415-P
– volume: 77
  start-page: 373
  year: 1989
  ident: nanoac13e9bib25
  publication-title: Z. Phys. B
  doi: 10.1007/BF01453785
– volume: 44
  start-page: 2517
  year: 2015
  ident: nanoac13e9bib26
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT02391A
– volume: 81
  start-page: 235
  year: 2009
  ident: nanoac13e9bib47
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.235
– volume: 45
  start-page: 7481
  year: 1992
  ident: nanoac13e9bib14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.7481
– volume: 65
  start-page: 2454
  year: 1990
  ident: nanoac13e9bib12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.2454
– volume: 23
  start-page: 997
  year: 1981
  ident: nanoac13e9bib6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.997
– start-page: 98
  year: 1993
  ident: nanoac13e9bib61
– volume: 115
  year: 2015
  ident: nanoac13e9bib33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.237202
– volume: 280
  start-page: 717
  year: 1998
  ident: nanoac13e9bib44
  publication-title: Science
  doi: 10.1126/science.280.5364.717
– start-page: 11
  year: 1997
  ident: nanoac13e9bib51
– volume: 63
  year: 2001
  ident: nanoac13e9bib53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.235404
– volume: 4
  start-page: 847
  year: 2008
  ident: nanoac13e9bib66
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1072
– volume: 167
  start-page: 373
  year: 1991
  ident: nanoac13e9bib22
  publication-title: J. Less-Common Met.
  doi: 10.1016/0022-5088(91)90290-K
– volume: 160
  start-page: 297
  year: 1990
  ident: nanoac13e9bib18
  publication-title: Physica B
  doi: 10.1016/0921-4526(90)90332-O
– volume: 80
  start-page: 2893
  year: 1998
  ident: nanoac13e9bib30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.2893
– volume: 19
  start-page: 1989
  year: 2001
  ident: nanoac13e9bib49
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.1398540
– volume: 88
  year: 2002
  ident: nanoac13e9bib31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.096804
– volume: 50
  year: 1994
  ident: nanoac13e9bib38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 23
  start-page: 1351
  year: 2005
  ident: nanoac13e9bib46
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.1990161
– volume: 8
  start-page: 494
  year: 1955
  ident: nanoac13e9bib9
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X55001527
– volume: 81
  start-page: 1551
  year: 2009
  ident: nanoac13e9bib3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.1551
– volume: 363
  start-page: 524
  year: 1993
  ident: nanoac13e9bib58
  publication-title: Nature
  doi: 10.1038/363524a0
– volume: 55
  start-page: 1595
  year: 1985
  ident: nanoac13e9bib10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.1595
– volume: 1
  start-page: 245
  year: 1952
  ident: nanoac13e9bib5
  publication-title: Annu. Rev. Nucl. Sci.
  doi: 10.1146/annurev.ns.01.120152.001333
– volume: 47
  start-page: 558
  year: 1993
  ident: nanoac13e9bib36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 61
  start-page: 1751
  year: 1992
  ident: nanoac13e9bib23
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.61.1751
– volume: 164
  start-page: 650
  year: 2000
  ident: nanoac13e9bib48
  publication-title: Nucl. Instrum. Methods Phys. Res. B
  doi: 10.1016/S0168-583X(99)01112-X
– volume: 21
  year: 2019
  ident: nanoac13e9bib57
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP01626K
– volume: 386
  start-page: 70
  year: 2005
  ident: nanoac13e9bib24
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2004.05.058
– year: 2021
  ident: nanoac13e9bib34
SSID ssj0011821
Score 2.3969164
Snippet The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 425704
SubjectTerms Kondo effect
STM/STS
surface reactions
transition metal surfaces
uranium atoms
Title Comparative study of adsorptions, reactions and electronic properties of U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces
URI https://iopscience.iop.org/article/10.1088/1361-6528/ac13e9
https://www.proquest.com/docview/2551576284
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_uTgTv4dRTuT0_iKJwC5fdpk3aBJ-OxeMQ_EBcuAchJGnqg167bLcv9-o_7qTp7nkqhwh9CGWStpNkPjozvwC85BYFr3MVtahtKRfKU-PLiialsKnnVSLKUI387n1-Nudvz8X5Frze1MI0i0H0T7AZgYIjC4eEODllWc5oLlI5NY5lXm3DrUyi4gzVex8-bkIIaDizCLRXUPRB-BCj_NsI13TSNj73D8Hca5vTu_Bl_Z4xyeTbpFvZibv8DcLxPz_kHuwNVig5iaT3YcvX-7D7CzbhPtzuc0Nd-wB-zK4QwkkPR0uaipiybZYxI-aYoOXZ10e0xNQluTpahyzCv_5lAG0NfeYEXfwLbNZk1h2h_Bsfk5Ov60a804_wqTsKZuGYtN2yCkljD2F--ubz7IwOZzdQl_FiRY3g3gqZelEZ6RSTkjNnsyJ1qvCKmQJFi5VZSLxSXglncK0w4ZWToVaY59kj2Kmb2h8AkbicnM1dFcD6nEisUCEk5LjNXMF8MoLpeva0G4DNw_ka33UfYJdSB0brwGgdGT2C8abHIoJ63ED7CudPDzu7vYHuxTW62tSNzlLNwyWKhOtFWY3g-XpdadzGITZjat90rUbPjqHrh8bC4T8-8DHcSUN-TciuEU9gZ7Xs_FM0kFb2Wb8RfgI0CwR9
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAceBQQy9MgkLpSvRvHduIcq4VVeZUKsVJvxnYcDkCy2mwuXPnjjONsSwFVSEg5WNHYScb2PDIznwGeCYuC17mKWtS2VMjCU-PLiialtKkXVSLLUI387jA7WIjXx_J4OOe0r4VploPon2AzAgVHFg4JcWrKeMZoJlM1NY5xX0yXZbUFFyVH3Rkq-N4fnYQR0HhmEWwvp-iHiCFO-bdRzuilLXz2H8K51zjz6_Bp864x0eTLpFvbifv-G4zjf3zMDbg2WKNkP5LfhAu-3oGrv2AU7sClPkfUtbfgx-wUKZz0sLSkqYgp22YVM2P2CFqgfZ1ES0xdktMjdsgy_PNfBfDW0GdB0NX_hs2azLpdlIPjPbL_edOId_oRPnS7wTwck7ZbVSF57DYs5i8_zg7ocIYDdVzka2qk8Faq1MvKKFcwpQRzluepK3JfMJOjiLGKhwSswhfSGVwzTPrCqVAzLDJ-B7brpvZ3gShcVs5mrgqgfU4mVhYhNOSE5S5nPhnBdDOD2g0A5-Gcja-6D7QrpQOzdWC2jswewfikxzKCe5xD-xznUA87vD2H7ukZutrUjeapFuGSeSI0zvAInmzWlsbtHGI0pvZN12r08Bi6gGg03PvHBz6Gy0cv5vrtq8M39-FKGlJuQsKNfADb61XnH6LNtLaP-n3xEyV-CeE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+of+adsorptions%2C+reactions+and+electronic+properties+of+U+atoms+on+Cu%28111%29%2C+Ag%28111%29%2C+Au%28111%29+and+Ru%280001%29+surfaces&rft.jtitle=Nanotechnology&rft.au=Feng%2C+Wei&rft.au=Hao%2C+Qunqing&rft.au=Chen%2C+Qiuyun&rft.au=Qiu%2C+Ruizhi&rft.date=2021-10-15&rft.issn=1361-6528&rft.eissn=1361-6528&rft.volume=32&rft.issue=42&rft_id=info:doi/10.1088%2F1361-6528%2Fac13e9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon