Performance analysis for automated gait extraction and recognition in multi-camera surveillance
Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibr...
Saved in:
Published in | Multimedia tools and applications Vol. 50; no. 1; pp. 75 - 94 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.10.2010
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of walking directions. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real video sequences, with subjects walking freely along different walking directions, have been performed. Since the choice of the cameras’ characteristics is a key-point for the development of a smart surveillance system, the performance of the proposed approach is measured with respect to different video properties: spatial resolution, frame-rate, data compression and image quality. The obtained results show that markerless gait analysis can be achieved without any knowledge of camera’s position and subject’s pose. The extracted gait parameters allow recognition of people walking from different views with a mean recognition rate of 92.2% and confirm that gait can be effectively used for subjects’ identification in a multi-camera surveillance scenario. |
---|---|
AbstractList | Issue Title: Special Issue on Analysis and Retrieval of Events/Actions and Workflows in Video Streams; Guest Editors: Anastasios D. Doulamis, Luc van Gool, Mark Nixon, Nikolaos D. Doulamis and Theodora A. Varvarigou Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of walking directions. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real video sequences, with subjects walking freely along different walking directions, have been performed. Since the choice of the cameras' characteristics is a key-point for the development of a smart surveillance system, the performance of the proposed approach is measured with respect to different video properties: spatial resolution, frame-rate, data compression and image quality. The obtained results show that markerless gait analysis can be achieved without any knowledge of camera's position and subject's pose. The extracted gait parameters allow recognition of people walking from different views with a mean recognition rate of 92.2% and confirm that gait can be effectively used for subjects' identification in a multi-camera surveillance scenario.[PUBLICATION ABSTRACT] Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of walking directions. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real video sequences, with subjects walking freely along different walking directions, have been performed. Since the choice of the cameras' characteristics is a key-point for the development of a smart surveillance system, the performance of the proposed approach is measured with respect to different video properties: spatial resolution, frame-rate, data compression and image quality. The obtained results show that markerless gait analysis can be achieved without any knowledge of camera's position and subject's pose. The extracted gait parameters allow recognition of people walking from different views with a mean recognition rate of 92.2% and confirm that gait can be effectively used for subjects' identification in a multi-camera surveillance scenario. |
Author | Nixon, Mark S. Goffredo, Michela Carter, John N. Bouchrika, Imed |
Author_xml | – sequence: 1 givenname: Michela surname: Goffredo fullname: Goffredo, Michela organization: School of Electronics and Computer Science, University of Southampton – sequence: 2 givenname: Imed surname: Bouchrika fullname: Bouchrika, Imed email: ib04r@ecs.soton.ac.uk organization: School of Electronics and Computer Science, University of Southampton – sequence: 3 givenname: John N. surname: Carter fullname: Carter, John N. organization: School of Electronics and Computer Science, University of Southampton – sequence: 4 givenname: Mark S. surname: Nixon fullname: Nixon, Mark S. organization: School of Electronics and Computer Science, University of Southampton |
BookMark | eNp9kE1LxDAQhoMouK7-AG_Fi6fo5Ktpj7L4BYIe9BzSNF2ytM2apKL_3tQVBEFPmQzPO8w8R2h_9KNF6JTABQGQl5EQ4BQD1BiYrLDYQwsiJMNSUrKfa1YBlgLIITqKcQNASkH5AqknGzofBj0aW-hR9x_RxSJ3Cj0lP-hk22KtXSrsewraJOfHjLVFsMavR_f1d2MxTH1y2OjBBl3EKbxZ1_fzzGN00Ok-2pPvd4lebq6fV3f44fH2fnX1gA3jMmFNmioXhvISiGlMW5alsZSStmtpI03NSN00mtVlI6oKat1ZVkrBuRG8JbxlS3S-m7sN_nWyManBRWPnJayfopKClYJLkJk8-0Vu_BTy5VEJSijUHCBDcgeZ4GMMtlPGJT1fmy24XhFQs3a1066ydjVrVyInya_kNrhBh49_M3SXiZkd1zb8rPR36BOJ05eQ |
CitedBy_id | crossref_primary_10_1016_j_jvlc_2014_10_004 crossref_primary_10_1142_S0218001415550010 crossref_primary_10_1109_TMRB_2023_3240285 crossref_primary_10_1016_j_forsciint_2016_02_043 crossref_primary_10_3390_s20143810 crossref_primary_10_1007_s10462_016_9474_x crossref_primary_10_1007_s11042_012_1262_2 crossref_primary_10_1007_s11042_019_08007_z crossref_primary_10_3390_s20185426 crossref_primary_10_1016_j_patcog_2014_04_014 crossref_primary_10_1007_s11042_016_3342_1 crossref_primary_10_1049_iet_cvi_2010_0166 crossref_primary_10_1007_s11042_014_2364_9 crossref_primary_10_1007_s11042_018_6865_9 crossref_primary_10_1080_21681163_2018_1538816 crossref_primary_10_1016_j_neucom_2015_10_065 crossref_primary_10_1016_j_patrec_2015_07_001 crossref_primary_10_1016_j_patcog_2014_12_008 crossref_primary_10_1016_j_cviu_2011_08_009 crossref_primary_10_1111_1556_4029_12322 crossref_primary_10_1007_s11042_015_2874_0 crossref_primary_10_1016_j_iot_2022_100541 crossref_primary_10_1016_j_jfranklin_2019_12_041 |
Cites_doi | 10.1002/aja.1001200104 10.1109/JPROC.2006.886018 10.1109/AVSS.2003.1217914 10.1109/CVPR.2004.1315165 10.3758/BF03337021 10.1007/978-3-540-76386-4_80 10.1016/S0966-6362(00)00094-1 10.1016/S0954-1810(99)00008-4 10.1109/AFGR.2002.1004181 10.1109/TPAMI.2003.1233912 10.1117/12.424949 10.1109/ICCV.2003.1238451 10.2106/00004623-196446020-00009 10.1007/3-540-47979-1_10 10.1007/11744047_10 10.1109/TPAMI.2003.1251144 10.1109/34.879790 10.1007/3-540-44887-X_71 10.1109/ICCV.2005.122 10.1109/IROS.2006.282619 10.1109/AFGR.2008.4813366 10.5244/C.18.42 10.1109/CCST.1999.797952 10.1109/TSMCC.2004.829274 10.1016/j.imavis.2005.10.007 10.1109/MOTION.2002.1182230 10.1109/ICCV.2005.88 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2009 Springer Science+Business Media, LLC 2010 |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2009 – notice: Springer Science+Business Media, LLC 2010 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-009-0378-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 94 |
ExternalDocumentID | 2067112751 10_1007_s11042_009_0378_5 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c347t-a1b8347c24601cbcd666ce221dfd2b7c9319bba396b58809afe367544c54d14d3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 11 00:29:00 EDT 2025 Sat Aug 16 21:26:33 EDT 2025 Tue Jul 01 02:06:21 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Fri Feb 21 02:33:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Biometrics Multi-view Surveillance Gait analysis Gait recognition Object handover |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-a1b8347c24601cbcd666ce221dfd2b7c9319bba396b58809afe367544c54d14d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 521209400 |
PQPubID | 54626 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_753654707 proquest_journals_521209400 crossref_citationtrail_10_1007_s11042_009_0378_5 crossref_primary_10_1007_s11042_009_0378_5 springer_journals_10_1007_s11042_009_0378_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20101000 2010-10-00 20101001 |
PublicationDateYYYYMMDD | 2010-10-01 |
PublicationDate_xml | – month: 10 year: 2010 text: 20101000 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2010 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Niu C, Grimson E (2006) Recovering non-overlapping network topology using far-field vehicle tracking data. In: ICPR (4), pp 944–949 Black J, Ellis T, Rosin P (2002) Multi view image surveillance and tracking. In: Workshop on motion and video computing. Proc, pp 169–174. doi:10.1109/MOTION.2002.1182230 VeresGGordonLCarterJNNixonMSWhat image information is important in silhouette-based gait recognition?Proc IEEE Conf CVPR20042II–776II–782 CuttingJKozlowskiLRecognizing friends by their walk: gait perception without familiarity cuesBull Psychon Soc19779353356 Middleton L, Wagg DK, Bazin AI, Carter JN, Nixon MS (2006) Developing a non-intrusive biometric environment. In: Proc IEEE int conf IROS, pp 723–728. doi:10.1109/IROS.2006.282619 MurrayMPDroughtABKoryRCWalking patterns of normal menJ Bone Joint Surg196446335 Gross R, Shi J (2001) The cmu motion of body (mobo) database. Tech. Rep. CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University, Pittsburgh NixonMSCarterJNAutomatic recognition by gaitProc IEEE200694112013202410.1109/JPROC.2006.886018 Chilgunde A, Kumar P, Ranganath S, WeiMin H (2004) Multi-camera target tracking in blind regions of cameras with non-overlapping fields of view. In: British machine vision conference KhanSShahMConsistent labeling of tracked objects in multiple cameras with overlapping fields of viewIEEE Trans Pattern Anal Mach Intell200325101355136010.1109/TPAMI.2003.1233912 Collins R, Gross R, Shi J (2002) Silhouette-based human identification from body shape and gait. In: Proc. IEEE conf. on automatic face and gesture recognition, pp 351–356 Sardis M, Anagnostopoulos V, Doulamis N (2009) Applied surveillance using biometrics on agents infrastructures. In: 5th Conference on artificial intelligence applications and innovations, Greek, April 2009 Huang T, Russell S (1997) Object identification in a Bayesian context. In: IJCAI97, pp 1276–1282 WangLTanTNingHHuWSilhouette analysis-based gait recognition for human identificationIEEE Trans PAMI2003251215051518 HuangPHarrisCNixonMRecognising humans by gait via parametric canonical spaceJ Artif Intell Eng199913435936610.1016/S0954-1810(99)00008-4 NixonMAguadoAFeature extraction & image processing20072LondonAcademic HuWTanTWangLMaybankSA survey on visual surveillance of object motion and behaviorsIEEE Trans Syst Man Cybern200434333435210.1109/TSMCC.2004.829274 StillmanSEssaITowards reliable multimodal sensing in aware environmentsPUI ’01: proc. workshop on perceptive user interfaces2001New YorkACM1610.1145/971478.971499 KettnakerVZabihRBayesian multi-camera surveillanceIEEE Conf Comput Vision Pattern Recogn19992259 Orrite-UrunuelaCdel RinconJHerrero-JarabaJRogezG2d silhouette and 3d skeletal models for human detection and trackingProc IEEE Conf ICPR20044244247 Kale A, Chowdhury A, Chellappa R (2003) Towards a view invariant gait recognition algorithm. In: Proc IEEE conf AVSS, pp 143–150 Fisher R (2002) Self-organization of randomly placed sensors, p IV: 146 ff GoffredoMSpencerNPearceDCarterJNNixonMSHuman perambulation as a self calibrating biometricLNCS, vol 47782007New YorkSpringer RahimiADunaganBDarrellTSimultaneous calibration and tracking with a network of non-overlapping sensorsProc Comput Vision Pattern Recogn20041I–187I–194 BenAbdelkader C, Davis LS, Cutler R (2002) Motion-based recognition of people in eigengait space. In: Proc IEEE conf AFG, pp 267–274. http://csdl.computer.org/comp/proceedings/fgr/2002/1602/00/16020267abs.htm Gilbert A, Bowden R (2006) Tracking objects across cameras by incrementally learning inter-camera colour calibration and patterns of activity, pp 125–136 Bouchrika I, Nixon MS (2007) Gait-based pedestrian detection for automated surveillance. In: International conference on computer vision systems Shutler J, Grant M, Nixon MS, Carter JN (2002) On a large sequence-based human gait database. In: Proc int conf recent advances in soft computing, pp 66–72 BouchrikaINixonMSModel-based feature extraction for gait analysis and recognitionLNCS, vol 44182007New YorkSpringer ZhangRVoglerCMetaxasDHuman gait recognition at sagittal planeJ Image Vis Comput200725332133010.1016/j.imavis.2005.10.007 Cai Y, Chen W, Huang K, Tan T (2007) Continuously tracking objects across multiple widely separated cameras. In: ACCV (1), pp 843–852 Tieu K, Dalley G, Grimson W (2005) Inference of non-overlapping camera network topology by measuring statistical dependence. In: Tenth IEEE conf. on computer vision, vol 2, pp 1842–1849. doi:10.1109/ICCV.2005.122 PhillipsPJMoonHRizviSARaussPJThe FERET evaluation methodology for face recognition algorithmsIEEE Trans Pattern Anal Mach Intell200022101090110410.1109/34.879790 Yamada Y (1999) Advanced method for improvement of obscure video image. In: Proc. IEEE 33rd annual carnahan conference on security technology, pp 440–445 Casia gait database (2006). http://www.sinobiometrics.com Goffredo M, Seely RD, Carter JN, Nixon MS (2008) Markerless view independent gait analysis with self-camera calibration. In: Proc. IEEE conf. on automatic face and gesture recognition Bhanu B, Han J (2003) Human recognition on combining kinematic and stationary features. In: Proc int conf AVBPA, pp 600–608 PhillipsPSarkarSRobledoIGrotherPBowyerKThe gait identification challenge problem: data sets and baseline algorithmProc Int Conf Pattern Recogn20021385388 WangLTanTHuWNingHAutomatic gait recognition based on statistical shape analysisIEEE Trans IP2003129112011312006856 Javed O, Rasheed Z, Shafique K, Shah M (2003) Tracking across multiple cameras with disjoint views. In: Proc. ninth IEEE conf. on computer vision, vol 2, pp 952–957. doi:10.1109/ICCV.2003.1238451 HaralickRMShapiroLGComputer and robot vision, vol 11992ReadingAddison-Wesley Makris D, Ellis T, Black J (2004) Bridging the gaps between cameras. In: Proc IEEE Comput Vis Pattern Recognit 2:II–205–II–210. doi:10.1109/CVPR.2004.1315165 ChauTA review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methodsGait Posture2001131496610.1016/S0966-6362(00)00094-11801641 Kang S, Min J, Paik JK (2001) Multiple-camera tracking system with seamless object handover. SPIE, pp 27–34. doi:10.1117/12.424949. http://link.aip.org/link/?PSI/4303/27/1 DempsterWTGaughranGRLProperties of body segments based on size and weightAm J Anat1965120335410.1002/aja.1001200104 Ilie A, Welch G (2005) Ensuring color consistency across multiple cameras. In: Tenth IEEE conf. on computer vision, vol 2, pp 1268–1275. doi:10.1109/ICCV.2005.88 378_CR3 378_CR24 378_CR2 378_CR25 378_CR4 378_CR7 378_CR6 378_CR21 378_CR9 378_CR22 S Khan (378_CR26) 2003; 25 A Rahimi (378_CR37) 2004; 1 378_CR23 378_CR45 R Zhang (378_CR46) 2007; 25 WT Dempster (378_CR12) 1965; 120 378_CR41 378_CR1 M Goffredo (378_CR16) 2007 M Nixon (378_CR32) 2007 C Orrite-Urunuela (378_CR34) 2004; 4 378_CR17 RM Haralick (378_CR18) 1992 378_CR39 P Huang (378_CR20) 1999; 13 378_CR13 PJ Phillips (378_CR35) 2000; 22 378_CR14 378_CR15 I Bouchrika (378_CR5) 2007 378_CR38 378_CR31 L Wang (378_CR43) 2003; 12 378_CR10 L Wang (378_CR44) 2003; 25 T Chau (378_CR8) 2001; 13 S Stillman (378_CR40) 2001 J Cutting (378_CR11) 1977; 9 MS Nixon (378_CR33) 2006; 94 G Veres (378_CR42) 2004; 2 V Kettnaker (378_CR27) 1999; 2 P Phillips (378_CR36) 2002; 1 W Hu (378_CR19) 2004; 34 378_CR28 378_CR29 MP Murray (378_CR30) 1964; 46 |
References_xml | – reference: BenAbdelkader C, Davis LS, Cutler R (2002) Motion-based recognition of people in eigengait space. In: Proc IEEE conf AFG, pp 267–274. http://csdl.computer.org/comp/proceedings/fgr/2002/1602/00/16020267abs.htm – reference: Middleton L, Wagg DK, Bazin AI, Carter JN, Nixon MS (2006) Developing a non-intrusive biometric environment. In: Proc IEEE int conf IROS, pp 723–728. doi:10.1109/IROS.2006.282619 – reference: Shutler J, Grant M, Nixon MS, Carter JN (2002) On a large sequence-based human gait database. In: Proc int conf recent advances in soft computing, pp 66–72 – reference: WangLTanTHuWNingHAutomatic gait recognition based on statistical shape analysisIEEE Trans IP2003129112011312006856 – reference: Bhanu B, Han J (2003) Human recognition on combining kinematic and stationary features. In: Proc int conf AVBPA, pp 600–608 – reference: Bouchrika I, Nixon MS (2007) Gait-based pedestrian detection for automated surveillance. In: International conference on computer vision systems – reference: NixonMAguadoAFeature extraction & image processing20072LondonAcademic – reference: Tieu K, Dalley G, Grimson W (2005) Inference of non-overlapping camera network topology by measuring statistical dependence. In: Tenth IEEE conf. on computer vision, vol 2, pp 1842–1849. doi:10.1109/ICCV.2005.122 – reference: RahimiADunaganBDarrellTSimultaneous calibration and tracking with a network of non-overlapping sensorsProc Comput Vision Pattern Recogn20041I–187I–194 – reference: GoffredoMSpencerNPearceDCarterJNNixonMSHuman perambulation as a self calibrating biometricLNCS, vol 47782007New YorkSpringer – reference: Cai Y, Chen W, Huang K, Tan T (2007) Continuously tracking objects across multiple widely separated cameras. In: ACCV (1), pp 843–852 – reference: CuttingJKozlowskiLRecognizing friends by their walk: gait perception without familiarity cuesBull Psychon Soc19779353356 – reference: Goffredo M, Seely RD, Carter JN, Nixon MS (2008) Markerless view independent gait analysis with self-camera calibration. In: Proc. IEEE conf. on automatic face and gesture recognition – reference: Ilie A, Welch G (2005) Ensuring color consistency across multiple cameras. In: Tenth IEEE conf. on computer vision, vol 2, pp 1268–1275. doi:10.1109/ICCV.2005.88 – reference: Black J, Ellis T, Rosin P (2002) Multi view image surveillance and tracking. In: Workshop on motion and video computing. Proc, pp 169–174. doi:10.1109/MOTION.2002.1182230 – reference: HuWTanTWangLMaybankSA survey on visual surveillance of object motion and behaviorsIEEE Trans Syst Man Cybern200434333435210.1109/TSMCC.2004.829274 – reference: PhillipsPJMoonHRizviSARaussPJThe FERET evaluation methodology for face recognition algorithmsIEEE Trans Pattern Anal Mach Intell200022101090110410.1109/34.879790 – reference: KettnakerVZabihRBayesian multi-camera surveillanceIEEE Conf Comput Vision Pattern Recogn19992259 – reference: BouchrikaINixonMSModel-based feature extraction for gait analysis and recognitionLNCS, vol 44182007New YorkSpringer – reference: Casia gait database (2006). http://www.sinobiometrics.com – reference: MurrayMPDroughtABKoryRCWalking patterns of normal menJ Bone Joint Surg196446335 – reference: Kale A, Chowdhury A, Chellappa R (2003) Towards a view invariant gait recognition algorithm. In: Proc IEEE conf AVSS, pp 143–150 – reference: Gilbert A, Bowden R (2006) Tracking objects across cameras by incrementally learning inter-camera colour calibration and patterns of activity, pp 125–136 – reference: WangLTanTNingHHuWSilhouette analysis-based gait recognition for human identificationIEEE Trans PAMI2003251215051518 – reference: Orrite-UrunuelaCdel RinconJHerrero-JarabaJRogezG2d silhouette and 3d skeletal models for human detection and trackingProc IEEE Conf ICPR20044244247 – reference: PhillipsPSarkarSRobledoIGrotherPBowyerKThe gait identification challenge problem: data sets and baseline algorithmProc Int Conf Pattern Recogn20021385388 – reference: Huang T, Russell S (1997) Object identification in a Bayesian context. In: IJCAI97, pp 1276–1282 – reference: ChauTA review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methodsGait Posture2001131496610.1016/S0966-6362(00)00094-11801641 – reference: HaralickRMShapiroLGComputer and robot vision, vol 11992ReadingAddison-Wesley – reference: Fisher R (2002) Self-organization of randomly placed sensors, p IV: 146 ff – reference: StillmanSEssaITowards reliable multimodal sensing in aware environmentsPUI ’01: proc. workshop on perceptive user interfaces2001New YorkACM1610.1145/971478.971499 – reference: Chilgunde A, Kumar P, Ranganath S, WeiMin H (2004) Multi-camera target tracking in blind regions of cameras with non-overlapping fields of view. In: British machine vision conference – reference: DempsterWTGaughranGRLProperties of body segments based on size and weightAm J Anat1965120335410.1002/aja.1001200104 – reference: Niu C, Grimson E (2006) Recovering non-overlapping network topology using far-field vehicle tracking data. In: ICPR (4), pp 944–949 – reference: ZhangRVoglerCMetaxasDHuman gait recognition at sagittal planeJ Image Vis Comput200725332133010.1016/j.imavis.2005.10.007 – reference: VeresGGordonLCarterJNNixonMSWhat image information is important in silhouette-based gait recognition?Proc IEEE Conf CVPR20042II–776II–782 – reference: Gross R, Shi J (2001) The cmu motion of body (mobo) database. Tech. Rep. CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University, Pittsburgh – reference: Kang S, Min J, Paik JK (2001) Multiple-camera tracking system with seamless object handover. SPIE, pp 27–34. doi:10.1117/12.424949. http://link.aip.org/link/?PSI/4303/27/1 – reference: Collins R, Gross R, Shi J (2002) Silhouette-based human identification from body shape and gait. In: Proc. IEEE conf. on automatic face and gesture recognition, pp 351–356 – reference: NixonMSCarterJNAutomatic recognition by gaitProc IEEE200694112013202410.1109/JPROC.2006.886018 – reference: Yamada Y (1999) Advanced method for improvement of obscure video image. In: Proc. IEEE 33rd annual carnahan conference on security technology, pp 440–445 – reference: HuangPHarrisCNixonMRecognising humans by gait via parametric canonical spaceJ Artif Intell Eng199913435936610.1016/S0954-1810(99)00008-4 – reference: KhanSShahMConsistent labeling of tracked objects in multiple cameras with overlapping fields of viewIEEE Trans Pattern Anal Mach Intell200325101355136010.1109/TPAMI.2003.1233912 – reference: Sardis M, Anagnostopoulos V, Doulamis N (2009) Applied surveillance using biometrics on agents infrastructures. In: 5th Conference on artificial intelligence applications and innovations, Greek, April 2009 – reference: Javed O, Rasheed Z, Shafique K, Shah M (2003) Tracking across multiple cameras with disjoint views. In: Proc. ninth IEEE conf. on computer vision, vol 2, pp 952–957. doi:10.1109/ICCV.2003.1238451 – reference: Makris D, Ellis T, Black J (2004) Bridging the gaps between cameras. In: Proc IEEE Comput Vis Pattern Recognit 2:II–205–II–210. doi:10.1109/CVPR.2004.1315165 – volume-title: LNCS, vol 4418 year: 2007 ident: 378_CR5 – ident: 378_CR1 – ident: 378_CR7 – volume: 120 start-page: 33 year: 1965 ident: 378_CR12 publication-title: Am J Anat doi: 10.1002/aja.1001200104 – volume: 94 start-page: 2013 issue: 11 year: 2006 ident: 378_CR33 publication-title: Proc IEEE doi: 10.1109/JPROC.2006.886018 – volume: 2 start-page: II–776 year: 2004 ident: 378_CR42 publication-title: Proc IEEE Conf CVPR – ident: 378_CR24 doi: 10.1109/AVSS.2003.1217914 – ident: 378_CR28 doi: 10.1109/CVPR.2004.1315165 – start-page: 1 volume-title: PUI ’01: proc. workshop on perceptive user interfaces year: 2001 ident: 378_CR40 – volume: 9 start-page: 353 year: 1977 ident: 378_CR11 publication-title: Bull Psychon Soc doi: 10.3758/BF03337021 – volume: 4 start-page: 244 year: 2004 ident: 378_CR34 publication-title: Proc IEEE Conf ICPR – ident: 378_CR6 doi: 10.1007/978-3-540-76386-4_80 – ident: 378_CR39 – volume: 13 start-page: 49 issue: 1 year: 2001 ident: 378_CR8 publication-title: Gait Posture doi: 10.1016/S0966-6362(00)00094-1 – volume: 13 start-page: 359 issue: 4 year: 1999 ident: 378_CR20 publication-title: J Artif Intell Eng doi: 10.1016/S0954-1810(99)00008-4 – ident: 378_CR10 doi: 10.1109/AFGR.2002.1004181 – volume: 1 start-page: 385 year: 2002 ident: 378_CR36 publication-title: Proc Int Conf Pattern Recogn – volume: 25 start-page: 1355 issue: 10 year: 2003 ident: 378_CR26 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2003.1233912 – ident: 378_CR25 doi: 10.1117/12.424949 – ident: 378_CR23 doi: 10.1109/ICCV.2003.1238451 – volume: 46 start-page: 335 year: 1964 ident: 378_CR30 publication-title: J Bone Joint Surg doi: 10.2106/00004623-196446020-00009 – ident: 378_CR4 – ident: 378_CR13 doi: 10.1007/3-540-47979-1_10 – volume-title: Computer and robot vision, vol 1 year: 1992 ident: 378_CR18 – ident: 378_CR31 – ident: 378_CR14 doi: 10.1007/11744047_10 – ident: 378_CR17 – volume: 25 start-page: 1505 issue: 12 year: 2003 ident: 378_CR44 publication-title: IEEE Trans PAMI doi: 10.1109/TPAMI.2003.1251144 – volume: 22 start-page: 1090 issue: 10 year: 2000 ident: 378_CR35 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.879790 – ident: 378_CR38 – ident: 378_CR2 doi: 10.1007/3-540-44887-X_71 – volume: 1 start-page: I–187 year: 2004 ident: 378_CR37 publication-title: Proc Comput Vision Pattern Recogn – ident: 378_CR41 doi: 10.1109/ICCV.2005.122 – volume: 12 start-page: 1120 issue: 9 year: 2003 ident: 378_CR43 publication-title: IEEE Trans IP – ident: 378_CR29 doi: 10.1109/IROS.2006.282619 – ident: 378_CR15 doi: 10.1109/AFGR.2008.4813366 – ident: 378_CR9 doi: 10.5244/C.18.42 – volume-title: LNCS, vol 4778 year: 2007 ident: 378_CR16 – ident: 378_CR45 doi: 10.1109/CCST.1999.797952 – volume: 34 start-page: 334 issue: 3 year: 2004 ident: 378_CR19 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMCC.2004.829274 – volume: 25 start-page: 321 issue: 3 year: 2007 ident: 378_CR46 publication-title: J Image Vis Comput doi: 10.1016/j.imavis.2005.10.007 – ident: 378_CR3 doi: 10.1109/MOTION.2002.1182230 – volume: 2 start-page: 259 year: 1999 ident: 378_CR27 publication-title: IEEE Conf Comput Vision Pattern Recogn – volume-title: Feature extraction & image processing year: 2007 ident: 378_CR32 – ident: 378_CR21 – ident: 378_CR22 doi: 10.1109/ICCV.2005.88 |
SSID | ssj0016524 |
Score | 2.0900218 |
Snippet | Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in... Issue Title: Special Issue on Analysis and Retrieval of Events/Actions and Workflows in Video Streams; Guest Editors: Anastasios D. Doulamis, Luc van Gool,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 75 |
SubjectTerms | Analysis Automation Biometrics Calibration Cameras Computer Communication Networks Computer Science Cooperation Data compression Data Structures and Information Theory Digital cameras Gait Image processing systems Multimedia Multimedia computer applications Multimedia Information Systems Recognition Special Purpose and Application-Based Systems Studies Surveillance Walking |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBx6pYVyUHT0qhj6SP4yLKIigeXNhbyGtlQbqybf39TrJ9qKjgrY90UiaZZCYz8w3AJdMqzYQK_BSVbZ-mMvMFFaGfUqpCXBypdnAMD4_JZErvZ2zW5HGXbbR765J0K3Wf7BbaVBJ3mB-j6cM2YYtZ0x0n8TQad66DhDWVbDP8ARaErSvzJxJfN6New_zmFHV7zd0-7DZKIhmvR_UANkwxhL22AANp5HEIO5_QBA-BP_VJAEQ0YCMEnxBRV0vUTI0mL2JREVyPV-t8BmymSRdDhPeLgrgQQ18Je1pFynr1bmxhIqR5BNO72-ebid_UT_BVTNPKF6HM8EJFFK0uJZVGU0WZKAr1XEcyVTmKn5QizhPJUIxzMTdxYgHxFKM6pDo-hkGxLMwJEGWR5Vhk5kEgUOR1JnJtskhGSMkkVHsQtIzkqgEXtzUuXnkPi2x5z5H33PKeMw-uuk_e1sgafzUetaPDGyEruU07tvB_gQeke4vSYV0eojDLuuRojNnqykHqwXU7pj2BX7s7_VfrEWy7mAIX4ncGg2pVm3NUVSp54abmB9YB384 priority: 102 providerName: Springer Nature |
Title | Performance analysis for automated gait extraction and recognition in multi-camera surveillance |
URI | https://link.springer.com/article/10.1007/s11042-009-0378-5 https://www.proquest.com/docview/521209400 https://www.proquest.com/docview/753654707 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLaAXeDAGzEeUw6cQBF9JG13QhvaQCAmhJgEpyivISTUwdbx-3G6tAMkOPWRNKmcOLFj-zPACTc6zaQOaIrCNmWpyqhkMqQpYzrExZGZEo7hbpBcD9nNE3_yvjlT71ZZrYnlQm3G2p2Rn7sYU4f1Fly8f1CXNMoZV30GjWVoYGmGulej2xvcP9RmhIT7rLYZ_gwPwsqsWcbOhS4ypbQNxKhJ8Z8b00La_GUgLfed_iase4GRdOYjvAVLNt-GjSoZA_G8uQ1r35AFd0DcLwICiPTAIwTfEDkrxiilWkNe5GtBcG2ezGMbsJohtT8RPr_mpHQ3pFq6kysynU0-rUtShG3uwrDfe7y8pj6XAtUxSwsqQ5XhjY4YamBaaYNqi7ZRFJqRiVSq28iKSsm4nSiOLN2WIxsnDhxPc2ZCZuI9WMnHud0Hoh3KHI_sKAgksr_JZNvYLFIRtmQTZpoQVIQU2gONu3wXb2IBkexoL5D2wtFe8Cac1p-8z1E2_qt8WI2O8Aw3FfX0aAKpS5FTnPlD5nY8mwpUzFym5SBtwlk1posG_uzu4N_uDmG19Cco3fuOYKWYzOwxiimFasFy1r9qQaPT73YH7nr1fNtr-SmKpcOo8wUSO-kM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcSilUbAvFB7iALBLHTrKHqkLQZUsf4tBKvRm_tqpUZdvdbBE_iv_IjDfJQqX21lsejq2Mx-MZz8w3AO-Ud0VpXMILVLa5LGzJjTQpL6R0KQpH6SMcw9FxPjyV38_U2RL8aXNhKKyylYlRUPuxozPyT5RjSlhvye7VNaeiUeRcbStozLniIPz-hRbbdGf_K07veyEGeydfhrwpKsBdJouam9SWeOGERFPEWedRf3dBiNSPvLCF6yNPWmuyfm4V8nbfjEKWE0qcU9Kn0mfY7yNYkRm2oMT0wbfOaZGrpoZuib-ukrR1osZMvZTyYKInIkO7Tf2_DS5021vu2LjLDdZgtVFP2ec5Pz2HpVCtw7O29ANrJME6PP0Hx_AF6B-L9ANmGpgThk-YmdVj1ImDZ-fmoma4E0zmmRTYzLMuegnvLyoWgxu5M3ROxqazyU2gkkjY50s4fRAib8ByNa7CK2COMO2UCKMkMShsfGn6PpTCCuwp5NL3IGkJqV0Da07VNS71ApCZaK-R9ppor1UPPnSfXM0xPe5rvNXOjm6W91R3zNgD1r3FdUnOFlOF8Wyq0Qykus5J0YOP7ZwuOrhzuM17h3sLj4cnR4f6cP_4YAuexEiGGFj4GpbrySy8QQWpttuRLRn8fOh18Bf5sh98 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED91RZrGw8bHEF0Z-GF7GbJIHDtJHxDaBhWMraomkHjz_FWENKWsTUH70_bfcU6ddCDBG2_5cGzpfHe58939DuCDsCbLlYlohsY25ZnOqeIqphnnJkblyG0Fx_BjkB6f828X4qIF_-paGJ9WWevESlHbsfFn5Hu-xtRjvUV7o5AVMTzsH1z_ob6BlA-01t005hxy6v7eovc23T85xK3-yFj_6OzrMQ0NBqhJeFZSFescLwzj6JYYbSza8sYxFtuRZTozPeRPrVXSS7VAPu-pkUtSjxhnBLcxtwnO-wKWMnSKojYsfTkaDH82IYxUhI66ORJCRHEdUq3q9mJfFVPFJRL04sT9n-LC0n0QnK3-ef0VeB2MVfJ5zl2r0HLFGrypG0GQoBfWYPk_VMN1kMNFMQJRAfSE4BOiZuUYLWRnyaW6KglSdzKvq8BhljS5THh_VZAq1ZEa5U_NyHQ2uXG-QRLO-RbOn4XMG9AuxoXbBGI8wp1gbhRFClWPzVXPupxphjO5lNsORDUhpQkg577Xxm-5gGf2tJdIe-lpL0UHPjWfXM8RPp4a3K13RwZhn8qGNTtAmrcopT70ogo3nk0lOoW-y3OUdWC33tPFBI8u9-7J5XbgJcqA_H4yOO3Cqyqtocoy3IJ2OZm592gtlXo78CWBX88tCnc7byUO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+for+automated+gait+extraction+and+recognition+in+multi-camera+surveillance&rft.jtitle=Multimedia+tools+and+applications&rft.au=Goffredo%2C+Michela&rft.au=Bouchrika%2C+Imed&rft.au=Carter%2C+John+N.&rft.au=Nixon%2C+Mark+S.&rft.date=2010-10-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=50&rft.issue=1&rft.spage=75&rft.epage=94&rft_id=info:doi/10.1007%2Fs11042-009-0378-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_009_0378_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |