Performance analysis for automated gait extraction and recognition in multi-camera surveillance

Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibr...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 50; no. 1; pp. 75 - 94
Main Authors Goffredo, Michela, Bouchrika, Imed, Carter, John N., Nixon, Mark S.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.10.2010
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of walking directions. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real video sequences, with subjects walking freely along different walking directions, have been performed. Since the choice of the cameras’ characteristics is a key-point for the development of a smart surveillance system, the performance of the proposed approach is measured with respect to different video properties: spatial resolution, frame-rate, data compression and image quality. The obtained results show that markerless gait analysis can be achieved without any knowledge of camera’s position and subject’s pose. The extracted gait parameters allow recognition of people walking from different views with a mean recognition rate of 92.2% and confirm that gait can be effectively used for subjects’ identification in a multi-camera surveillance scenario.
AbstractList Issue Title: Special Issue on Analysis and Retrieval of Events/Actions and Workflows in Video Streams; Guest Editors: Anastasios D. Doulamis, Luc van Gool, Mark Nixon, Nikolaos D. Doulamis and Theodora A. Varvarigou Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of walking directions. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real video sequences, with subjects walking freely along different walking directions, have been performed. Since the choice of the cameras' characteristics is a key-point for the development of a smart surveillance system, the performance of the proposed approach is measured with respect to different video properties: spatial resolution, frame-rate, data compression and image quality. The obtained results show that markerless gait analysis can be achieved without any knowledge of camera's position and subject's pose. The extracted gait parameters allow recognition of people walking from different views with a mean recognition rate of 92.2% and confirm that gait can be effectively used for subjects' identification in a multi-camera surveillance scenario.[PUBLICATION ABSTRACT]
Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of walking directions. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real video sequences, with subjects walking freely along different walking directions, have been performed. Since the choice of the cameras' characteristics is a key-point for the development of a smart surveillance system, the performance of the proposed approach is measured with respect to different video properties: spatial resolution, frame-rate, data compression and image quality. The obtained results show that markerless gait analysis can be achieved without any knowledge of camera's position and subject's pose. The extracted gait parameters allow recognition of people walking from different views with a mean recognition rate of 92.2% and confirm that gait can be effectively used for subjects' identification in a multi-camera surveillance scenario.
Author Nixon, Mark S.
Goffredo, Michela
Carter, John N.
Bouchrika, Imed
Author_xml – sequence: 1
  givenname: Michela
  surname: Goffredo
  fullname: Goffredo, Michela
  organization: School of Electronics and Computer Science, University of Southampton
– sequence: 2
  givenname: Imed
  surname: Bouchrika
  fullname: Bouchrika, Imed
  email: ib04r@ecs.soton.ac.uk
  organization: School of Electronics and Computer Science, University of Southampton
– sequence: 3
  givenname: John N.
  surname: Carter
  fullname: Carter, John N.
  organization: School of Electronics and Computer Science, University of Southampton
– sequence: 4
  givenname: Mark S.
  surname: Nixon
  fullname: Nixon, Mark S.
  organization: School of Electronics and Computer Science, University of Southampton
BookMark eNp9kE1LxDAQhoMouK7-AG_Fi6fo5Ktpj7L4BYIe9BzSNF2ytM2apKL_3tQVBEFPmQzPO8w8R2h_9KNF6JTABQGQl5EQ4BQD1BiYrLDYQwsiJMNSUrKfa1YBlgLIITqKcQNASkH5AqknGzofBj0aW-hR9x_RxSJ3Cj0lP-hk22KtXSrsewraJOfHjLVFsMavR_f1d2MxTH1y2OjBBl3EKbxZ1_fzzGN00Ok-2pPvd4lebq6fV3f44fH2fnX1gA3jMmFNmioXhvISiGlMW5alsZSStmtpI03NSN00mtVlI6oKat1ZVkrBuRG8JbxlS3S-m7sN_nWyManBRWPnJayfopKClYJLkJk8-0Vu_BTy5VEJSijUHCBDcgeZ4GMMtlPGJT1fmy24XhFQs3a1066ydjVrVyInya_kNrhBh49_M3SXiZkd1zb8rPR36BOJ05eQ
CitedBy_id crossref_primary_10_1016_j_jvlc_2014_10_004
crossref_primary_10_1142_S0218001415550010
crossref_primary_10_1109_TMRB_2023_3240285
crossref_primary_10_1016_j_forsciint_2016_02_043
crossref_primary_10_3390_s20143810
crossref_primary_10_1007_s10462_016_9474_x
crossref_primary_10_1007_s11042_012_1262_2
crossref_primary_10_1007_s11042_019_08007_z
crossref_primary_10_3390_s20185426
crossref_primary_10_1016_j_patcog_2014_04_014
crossref_primary_10_1007_s11042_016_3342_1
crossref_primary_10_1049_iet_cvi_2010_0166
crossref_primary_10_1007_s11042_014_2364_9
crossref_primary_10_1007_s11042_018_6865_9
crossref_primary_10_1080_21681163_2018_1538816
crossref_primary_10_1016_j_neucom_2015_10_065
crossref_primary_10_1016_j_patrec_2015_07_001
crossref_primary_10_1016_j_patcog_2014_12_008
crossref_primary_10_1016_j_cviu_2011_08_009
crossref_primary_10_1111_1556_4029_12322
crossref_primary_10_1007_s11042_015_2874_0
crossref_primary_10_1016_j_iot_2022_100541
crossref_primary_10_1016_j_jfranklin_2019_12_041
Cites_doi 10.1002/aja.1001200104
10.1109/JPROC.2006.886018
10.1109/AVSS.2003.1217914
10.1109/CVPR.2004.1315165
10.3758/BF03337021
10.1007/978-3-540-76386-4_80
10.1016/S0966-6362(00)00094-1
10.1016/S0954-1810(99)00008-4
10.1109/AFGR.2002.1004181
10.1109/TPAMI.2003.1233912
10.1117/12.424949
10.1109/ICCV.2003.1238451
10.2106/00004623-196446020-00009
10.1007/3-540-47979-1_10
10.1007/11744047_10
10.1109/TPAMI.2003.1251144
10.1109/34.879790
10.1007/3-540-44887-X_71
10.1109/ICCV.2005.122
10.1109/IROS.2006.282619
10.1109/AFGR.2008.4813366
10.5244/C.18.42
10.1109/CCST.1999.797952
10.1109/TSMCC.2004.829274
10.1016/j.imavis.2005.10.007
10.1109/MOTION.2002.1182230
10.1109/ICCV.2005.88
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2009
Springer Science+Business Media, LLC 2010
Copyright_xml – notice: Springer Science+Business Media, LLC 2009
– notice: Springer Science+Business Media, LLC 2010
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-009-0378-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 94
ExternalDocumentID 2067112751
10_1007_s11042_009_0378_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c347t-a1b8347c24601cbcd666ce221dfd2b7c9319bba396b58809afe367544c54d14d3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 11 00:29:00 EDT 2025
Sat Aug 16 21:26:33 EDT 2025
Tue Jul 01 02:06:21 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Fri Feb 21 02:33:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biometrics
Multi-view
Surveillance
Gait analysis
Gait recognition
Object handover
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-a1b8347c24601cbcd666ce221dfd2b7c9319bba396b58809afe367544c54d14d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 521209400
PQPubID 54626
PageCount 20
ParticipantIDs proquest_miscellaneous_753654707
proquest_journals_521209400
crossref_citationtrail_10_1007_s11042_009_0378_5
crossref_primary_10_1007_s11042_009_0378_5
springer_journals_10_1007_s11042_009_0378_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20101000
2010-10-00
20101001
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 20101000
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2010
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Niu C, Grimson E (2006) Recovering non-overlapping network topology using far-field vehicle tracking data. In: ICPR (4), pp 944–949
Black J, Ellis T, Rosin P (2002) Multi view image surveillance and tracking. In: Workshop on motion and video computing. Proc, pp 169–174. doi:10.1109/MOTION.2002.1182230
VeresGGordonLCarterJNNixonMSWhat image information is important in silhouette-based gait recognition?Proc IEEE Conf CVPR20042II–776II–782
CuttingJKozlowskiLRecognizing friends by their walk: gait perception without familiarity cuesBull Psychon Soc19779353356
Middleton L, Wagg DK, Bazin AI, Carter JN, Nixon MS (2006) Developing a non-intrusive biometric environment. In: Proc IEEE int conf IROS, pp 723–728. doi:10.1109/IROS.2006.282619
MurrayMPDroughtABKoryRCWalking patterns of normal menJ Bone Joint Surg196446335
Gross R, Shi J (2001) The cmu motion of body (mobo) database. Tech. Rep. CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University, Pittsburgh
NixonMSCarterJNAutomatic recognition by gaitProc IEEE200694112013202410.1109/JPROC.2006.886018
Chilgunde A, Kumar P, Ranganath S, WeiMin H (2004) Multi-camera target tracking in blind regions of cameras with non-overlapping fields of view. In: British machine vision conference
KhanSShahMConsistent labeling of tracked objects in multiple cameras with overlapping fields of viewIEEE Trans Pattern Anal Mach Intell200325101355136010.1109/TPAMI.2003.1233912
Collins R, Gross R, Shi J (2002) Silhouette-based human identification from body shape and gait. In: Proc. IEEE conf. on automatic face and gesture recognition, pp 351–356
Sardis M, Anagnostopoulos V, Doulamis N (2009) Applied surveillance using biometrics on agents infrastructures. In: 5th Conference on artificial intelligence applications and innovations, Greek, April 2009
Huang T, Russell S (1997) Object identification in a Bayesian context. In: IJCAI97, pp 1276–1282
WangLTanTNingHHuWSilhouette analysis-based gait recognition for human identificationIEEE Trans PAMI2003251215051518
HuangPHarrisCNixonMRecognising humans by gait via parametric canonical spaceJ Artif Intell Eng199913435936610.1016/S0954-1810(99)00008-4
NixonMAguadoAFeature extraction & image processing20072LondonAcademic
HuWTanTWangLMaybankSA survey on visual surveillance of object motion and behaviorsIEEE Trans Syst Man Cybern200434333435210.1109/TSMCC.2004.829274
StillmanSEssaITowards reliable multimodal sensing in aware environmentsPUI ’01: proc. workshop on perceptive user interfaces2001New YorkACM1610.1145/971478.971499
KettnakerVZabihRBayesian multi-camera surveillanceIEEE Conf Comput Vision Pattern Recogn19992259
Orrite-UrunuelaCdel RinconJHerrero-JarabaJRogezG2d silhouette and 3d skeletal models for human detection and trackingProc IEEE Conf ICPR20044244247
Kale A, Chowdhury A, Chellappa R (2003) Towards a view invariant gait recognition algorithm. In: Proc IEEE conf AVSS, pp 143–150
Fisher R (2002) Self-organization of randomly placed sensors, p IV: 146 ff
GoffredoMSpencerNPearceDCarterJNNixonMSHuman perambulation as a self calibrating biometricLNCS, vol 47782007New YorkSpringer
RahimiADunaganBDarrellTSimultaneous calibration and tracking with a network of non-overlapping sensorsProc Comput Vision Pattern Recogn20041I–187I–194
BenAbdelkader C, Davis LS, Cutler R (2002) Motion-based recognition of people in eigengait space. In: Proc IEEE conf AFG, pp 267–274. http://csdl.computer.org/comp/proceedings/fgr/2002/1602/00/16020267abs.htm
Gilbert A, Bowden R (2006) Tracking objects across cameras by incrementally learning inter-camera colour calibration and patterns of activity, pp 125–136
Bouchrika I, Nixon MS (2007) Gait-based pedestrian detection for automated surveillance. In: International conference on computer vision systems
Shutler J, Grant M, Nixon MS, Carter JN (2002) On a large sequence-based human gait database. In: Proc int conf recent advances in soft computing, pp 66–72
BouchrikaINixonMSModel-based feature extraction for gait analysis and recognitionLNCS, vol 44182007New YorkSpringer
ZhangRVoglerCMetaxasDHuman gait recognition at sagittal planeJ Image Vis Comput200725332133010.1016/j.imavis.2005.10.007
Cai Y, Chen W, Huang K, Tan T (2007) Continuously tracking objects across multiple widely separated cameras. In: ACCV (1), pp 843–852
Tieu K, Dalley G, Grimson W (2005) Inference of non-overlapping camera network topology by measuring statistical dependence. In: Tenth IEEE conf. on computer vision, vol 2, pp 1842–1849. doi:10.1109/ICCV.2005.122
PhillipsPJMoonHRizviSARaussPJThe FERET evaluation methodology for face recognition algorithmsIEEE Trans Pattern Anal Mach Intell200022101090110410.1109/34.879790
Yamada Y (1999) Advanced method for improvement of obscure video image. In: Proc. IEEE 33rd annual carnahan conference on security technology, pp 440–445
Casia gait database (2006). http://www.sinobiometrics.com
Goffredo M, Seely RD, Carter JN, Nixon MS (2008) Markerless view independent gait analysis with self-camera calibration. In: Proc. IEEE conf. on automatic face and gesture recognition
Bhanu B, Han J (2003) Human recognition on combining kinematic and stationary features. In: Proc int conf AVBPA, pp 600–608
PhillipsPSarkarSRobledoIGrotherPBowyerKThe gait identification challenge problem: data sets and baseline algorithmProc Int Conf Pattern Recogn20021385388
WangLTanTHuWNingHAutomatic gait recognition based on statistical shape analysisIEEE Trans IP2003129112011312006856
Javed O, Rasheed Z, Shafique K, Shah M (2003) Tracking across multiple cameras with disjoint views. In: Proc. ninth IEEE conf. on computer vision, vol 2, pp 952–957. doi:10.1109/ICCV.2003.1238451
HaralickRMShapiroLGComputer and robot vision, vol 11992ReadingAddison-Wesley
Makris D, Ellis T, Black J (2004) Bridging the gaps between cameras. In: Proc IEEE Comput Vis Pattern Recognit 2:II–205–II–210. doi:10.1109/CVPR.2004.1315165
ChauTA review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methodsGait Posture2001131496610.1016/S0966-6362(00)00094-11801641
Kang S, Min J, Paik JK (2001) Multiple-camera tracking system with seamless object handover. SPIE, pp 27–34. doi:10.1117/12.424949. http://link.aip.org/link/?PSI/4303/27/1
DempsterWTGaughranGRLProperties of body segments based on size and weightAm J Anat1965120335410.1002/aja.1001200104
Ilie A, Welch G (2005) Ensuring color consistency across multiple cameras. In: Tenth IEEE conf. on computer vision, vol 2, pp 1268–1275. doi:10.1109/ICCV.2005.88
378_CR3
378_CR24
378_CR2
378_CR25
378_CR4
378_CR7
378_CR6
378_CR21
378_CR9
378_CR22
S Khan (378_CR26) 2003; 25
A Rahimi (378_CR37) 2004; 1
378_CR23
378_CR45
R Zhang (378_CR46) 2007; 25
WT Dempster (378_CR12) 1965; 120
378_CR41
378_CR1
M Goffredo (378_CR16) 2007
M Nixon (378_CR32) 2007
C Orrite-Urunuela (378_CR34) 2004; 4
378_CR17
RM Haralick (378_CR18) 1992
378_CR39
P Huang (378_CR20) 1999; 13
378_CR13
PJ Phillips (378_CR35) 2000; 22
378_CR14
378_CR15
I Bouchrika (378_CR5) 2007
378_CR38
378_CR31
L Wang (378_CR43) 2003; 12
378_CR10
L Wang (378_CR44) 2003; 25
T Chau (378_CR8) 2001; 13
S Stillman (378_CR40) 2001
J Cutting (378_CR11) 1977; 9
MS Nixon (378_CR33) 2006; 94
G Veres (378_CR42) 2004; 2
V Kettnaker (378_CR27) 1999; 2
P Phillips (378_CR36) 2002; 1
W Hu (378_CR19) 2004; 34
378_CR28
378_CR29
MP Murray (378_CR30) 1964; 46
References_xml – reference: BenAbdelkader C, Davis LS, Cutler R (2002) Motion-based recognition of people in eigengait space. In: Proc IEEE conf AFG, pp 267–274. http://csdl.computer.org/comp/proceedings/fgr/2002/1602/00/16020267abs.htm
– reference: Middleton L, Wagg DK, Bazin AI, Carter JN, Nixon MS (2006) Developing a non-intrusive biometric environment. In: Proc IEEE int conf IROS, pp 723–728. doi:10.1109/IROS.2006.282619
– reference: Shutler J, Grant M, Nixon MS, Carter JN (2002) On a large sequence-based human gait database. In: Proc int conf recent advances in soft computing, pp 66–72
– reference: WangLTanTHuWNingHAutomatic gait recognition based on statistical shape analysisIEEE Trans IP2003129112011312006856
– reference: Bhanu B, Han J (2003) Human recognition on combining kinematic and stationary features. In: Proc int conf AVBPA, pp 600–608
– reference: Bouchrika I, Nixon MS (2007) Gait-based pedestrian detection for automated surveillance. In: International conference on computer vision systems
– reference: NixonMAguadoAFeature extraction & image processing20072LondonAcademic
– reference: Tieu K, Dalley G, Grimson W (2005) Inference of non-overlapping camera network topology by measuring statistical dependence. In: Tenth IEEE conf. on computer vision, vol 2, pp 1842–1849. doi:10.1109/ICCV.2005.122
– reference: RahimiADunaganBDarrellTSimultaneous calibration and tracking with a network of non-overlapping sensorsProc Comput Vision Pattern Recogn20041I–187I–194
– reference: GoffredoMSpencerNPearceDCarterJNNixonMSHuman perambulation as a self calibrating biometricLNCS, vol 47782007New YorkSpringer
– reference: Cai Y, Chen W, Huang K, Tan T (2007) Continuously tracking objects across multiple widely separated cameras. In: ACCV (1), pp 843–852
– reference: CuttingJKozlowskiLRecognizing friends by their walk: gait perception without familiarity cuesBull Psychon Soc19779353356
– reference: Goffredo M, Seely RD, Carter JN, Nixon MS (2008) Markerless view independent gait analysis with self-camera calibration. In: Proc. IEEE conf. on automatic face and gesture recognition
– reference: Ilie A, Welch G (2005) Ensuring color consistency across multiple cameras. In: Tenth IEEE conf. on computer vision, vol 2, pp 1268–1275. doi:10.1109/ICCV.2005.88
– reference: Black J, Ellis T, Rosin P (2002) Multi view image surveillance and tracking. In: Workshop on motion and video computing. Proc, pp 169–174. doi:10.1109/MOTION.2002.1182230
– reference: HuWTanTWangLMaybankSA survey on visual surveillance of object motion and behaviorsIEEE Trans Syst Man Cybern200434333435210.1109/TSMCC.2004.829274
– reference: PhillipsPJMoonHRizviSARaussPJThe FERET evaluation methodology for face recognition algorithmsIEEE Trans Pattern Anal Mach Intell200022101090110410.1109/34.879790
– reference: KettnakerVZabihRBayesian multi-camera surveillanceIEEE Conf Comput Vision Pattern Recogn19992259
– reference: BouchrikaINixonMSModel-based feature extraction for gait analysis and recognitionLNCS, vol 44182007New YorkSpringer
– reference: Casia gait database (2006). http://www.sinobiometrics.com
– reference: MurrayMPDroughtABKoryRCWalking patterns of normal menJ Bone Joint Surg196446335
– reference: Kale A, Chowdhury A, Chellappa R (2003) Towards a view invariant gait recognition algorithm. In: Proc IEEE conf AVSS, pp 143–150
– reference: Gilbert A, Bowden R (2006) Tracking objects across cameras by incrementally learning inter-camera colour calibration and patterns of activity, pp 125–136
– reference: WangLTanTNingHHuWSilhouette analysis-based gait recognition for human identificationIEEE Trans PAMI2003251215051518
– reference: Orrite-UrunuelaCdel RinconJHerrero-JarabaJRogezG2d silhouette and 3d skeletal models for human detection and trackingProc IEEE Conf ICPR20044244247
– reference: PhillipsPSarkarSRobledoIGrotherPBowyerKThe gait identification challenge problem: data sets and baseline algorithmProc Int Conf Pattern Recogn20021385388
– reference: Huang T, Russell S (1997) Object identification in a Bayesian context. In: IJCAI97, pp 1276–1282
– reference: ChauTA review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methodsGait Posture2001131496610.1016/S0966-6362(00)00094-11801641
– reference: HaralickRMShapiroLGComputer and robot vision, vol 11992ReadingAddison-Wesley
– reference: Fisher R (2002) Self-organization of randomly placed sensors, p IV: 146 ff
– reference: StillmanSEssaITowards reliable multimodal sensing in aware environmentsPUI ’01: proc. workshop on perceptive user interfaces2001New YorkACM1610.1145/971478.971499
– reference: Chilgunde A, Kumar P, Ranganath S, WeiMin H (2004) Multi-camera target tracking in blind regions of cameras with non-overlapping fields of view. In: British machine vision conference
– reference: DempsterWTGaughranGRLProperties of body segments based on size and weightAm J Anat1965120335410.1002/aja.1001200104
– reference: Niu C, Grimson E (2006) Recovering non-overlapping network topology using far-field vehicle tracking data. In: ICPR (4), pp 944–949
– reference: ZhangRVoglerCMetaxasDHuman gait recognition at sagittal planeJ Image Vis Comput200725332133010.1016/j.imavis.2005.10.007
– reference: VeresGGordonLCarterJNNixonMSWhat image information is important in silhouette-based gait recognition?Proc IEEE Conf CVPR20042II–776II–782
– reference: Gross R, Shi J (2001) The cmu motion of body (mobo) database. Tech. Rep. CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University, Pittsburgh
– reference: Kang S, Min J, Paik JK (2001) Multiple-camera tracking system with seamless object handover. SPIE, pp 27–34. doi:10.1117/12.424949. http://link.aip.org/link/?PSI/4303/27/1
– reference: Collins R, Gross R, Shi J (2002) Silhouette-based human identification from body shape and gait. In: Proc. IEEE conf. on automatic face and gesture recognition, pp 351–356
– reference: NixonMSCarterJNAutomatic recognition by gaitProc IEEE200694112013202410.1109/JPROC.2006.886018
– reference: Yamada Y (1999) Advanced method for improvement of obscure video image. In: Proc. IEEE 33rd annual carnahan conference on security technology, pp 440–445
– reference: HuangPHarrisCNixonMRecognising humans by gait via parametric canonical spaceJ Artif Intell Eng199913435936610.1016/S0954-1810(99)00008-4
– reference: KhanSShahMConsistent labeling of tracked objects in multiple cameras with overlapping fields of viewIEEE Trans Pattern Anal Mach Intell200325101355136010.1109/TPAMI.2003.1233912
– reference: Sardis M, Anagnostopoulos V, Doulamis N (2009) Applied surveillance using biometrics on agents infrastructures. In: 5th Conference on artificial intelligence applications and innovations, Greek, April 2009
– reference: Javed O, Rasheed Z, Shafique K, Shah M (2003) Tracking across multiple cameras with disjoint views. In: Proc. ninth IEEE conf. on computer vision, vol 2, pp 952–957. doi:10.1109/ICCV.2003.1238451
– reference: Makris D, Ellis T, Black J (2004) Bridging the gaps between cameras. In: Proc IEEE Comput Vis Pattern Recognit 2:II–205–II–210. doi:10.1109/CVPR.2004.1315165
– volume-title: LNCS, vol 4418
  year: 2007
  ident: 378_CR5
– ident: 378_CR1
– ident: 378_CR7
– volume: 120
  start-page: 33
  year: 1965
  ident: 378_CR12
  publication-title: Am J Anat
  doi: 10.1002/aja.1001200104
– volume: 94
  start-page: 2013
  issue: 11
  year: 2006
  ident: 378_CR33
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2006.886018
– volume: 2
  start-page: II–776
  year: 2004
  ident: 378_CR42
  publication-title: Proc IEEE Conf CVPR
– ident: 378_CR24
  doi: 10.1109/AVSS.2003.1217914
– ident: 378_CR28
  doi: 10.1109/CVPR.2004.1315165
– start-page: 1
  volume-title: PUI ’01: proc. workshop on perceptive user interfaces
  year: 2001
  ident: 378_CR40
– volume: 9
  start-page: 353
  year: 1977
  ident: 378_CR11
  publication-title: Bull Psychon Soc
  doi: 10.3758/BF03337021
– volume: 4
  start-page: 244
  year: 2004
  ident: 378_CR34
  publication-title: Proc IEEE Conf ICPR
– ident: 378_CR6
  doi: 10.1007/978-3-540-76386-4_80
– ident: 378_CR39
– volume: 13
  start-page: 49
  issue: 1
  year: 2001
  ident: 378_CR8
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(00)00094-1
– volume: 13
  start-page: 359
  issue: 4
  year: 1999
  ident: 378_CR20
  publication-title: J Artif Intell Eng
  doi: 10.1016/S0954-1810(99)00008-4
– ident: 378_CR10
  doi: 10.1109/AFGR.2002.1004181
– volume: 1
  start-page: 385
  year: 2002
  ident: 378_CR36
  publication-title: Proc Int Conf Pattern Recogn
– volume: 25
  start-page: 1355
  issue: 10
  year: 2003
  ident: 378_CR26
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2003.1233912
– ident: 378_CR25
  doi: 10.1117/12.424949
– ident: 378_CR23
  doi: 10.1109/ICCV.2003.1238451
– volume: 46
  start-page: 335
  year: 1964
  ident: 378_CR30
  publication-title: J Bone Joint Surg
  doi: 10.2106/00004623-196446020-00009
– ident: 378_CR4
– ident: 378_CR13
  doi: 10.1007/3-540-47979-1_10
– volume-title: Computer and robot vision, vol 1
  year: 1992
  ident: 378_CR18
– ident: 378_CR31
– ident: 378_CR14
  doi: 10.1007/11744047_10
– ident: 378_CR17
– volume: 25
  start-page: 1505
  issue: 12
  year: 2003
  ident: 378_CR44
  publication-title: IEEE Trans PAMI
  doi: 10.1109/TPAMI.2003.1251144
– volume: 22
  start-page: 1090
  issue: 10
  year: 2000
  ident: 378_CR35
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.879790
– ident: 378_CR38
– ident: 378_CR2
  doi: 10.1007/3-540-44887-X_71
– volume: 1
  start-page: I–187
  year: 2004
  ident: 378_CR37
  publication-title: Proc Comput Vision Pattern Recogn
– ident: 378_CR41
  doi: 10.1109/ICCV.2005.122
– volume: 12
  start-page: 1120
  issue: 9
  year: 2003
  ident: 378_CR43
  publication-title: IEEE Trans IP
– ident: 378_CR29
  doi: 10.1109/IROS.2006.282619
– ident: 378_CR15
  doi: 10.1109/AFGR.2008.4813366
– ident: 378_CR9
  doi: 10.5244/C.18.42
– volume-title: LNCS, vol 4778
  year: 2007
  ident: 378_CR16
– ident: 378_CR45
  doi: 10.1109/CCST.1999.797952
– volume: 34
  start-page: 334
  issue: 3
  year: 2004
  ident: 378_CR19
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCC.2004.829274
– volume: 25
  start-page: 321
  issue: 3
  year: 2007
  ident: 378_CR46
  publication-title: J Image Vis Comput
  doi: 10.1016/j.imavis.2005.10.007
– ident: 378_CR3
  doi: 10.1109/MOTION.2002.1182230
– volume: 2
  start-page: 259
  year: 1999
  ident: 378_CR27
  publication-title: IEEE Conf Comput Vision Pattern Recogn
– volume-title: Feature extraction & image processing
  year: 2007
  ident: 378_CR32
– ident: 378_CR21
– ident: 378_CR22
  doi: 10.1109/ICCV.2005.88
SSID ssj0016524
Score 2.0900218
Snippet Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in...
Issue Title: Special Issue on Analysis and Retrieval of Events/Actions and Workflows in Video Streams; Guest Editors: Anastasios D. Doulamis, Luc van Gool,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms Analysis
Automation
Biometrics
Calibration
Cameras
Computer Communication Networks
Computer Science
Cooperation
Data compression
Data Structures and Information Theory
Digital cameras
Gait
Image processing systems
Multimedia
Multimedia computer applications
Multimedia Information Systems
Recognition
Special Purpose and Application-Based Systems
Studies
Surveillance
Walking
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBx6pYVyUHT0qhj6SP4yLKIigeXNhbyGtlQbqybf39TrJ9qKjgrY90UiaZZCYz8w3AJdMqzYQK_BSVbZ-mMvMFFaGfUqpCXBypdnAMD4_JZErvZ2zW5HGXbbR765J0K3Wf7BbaVBJ3mB-j6cM2YYtZ0x0n8TQad66DhDWVbDP8ARaErSvzJxJfN6New_zmFHV7zd0-7DZKIhmvR_UANkwxhL22AANp5HEIO5_QBA-BP_VJAEQ0YCMEnxBRV0vUTI0mL2JREVyPV-t8BmymSRdDhPeLgrgQQ18Je1pFynr1bmxhIqR5BNO72-ebid_UT_BVTNPKF6HM8EJFFK0uJZVGU0WZKAr1XEcyVTmKn5QizhPJUIxzMTdxYgHxFKM6pDo-hkGxLMwJEGWR5Vhk5kEgUOR1JnJtskhGSMkkVHsQtIzkqgEXtzUuXnkPi2x5z5H33PKeMw-uuk_e1sgafzUetaPDGyEruU07tvB_gQeke4vSYV0eojDLuuRojNnqykHqwXU7pj2BX7s7_VfrEWy7mAIX4ncGg2pVm3NUVSp54abmB9YB384
  priority: 102
  providerName: Springer Nature
Title Performance analysis for automated gait extraction and recognition in multi-camera surveillance
URI https://link.springer.com/article/10.1007/s11042-009-0378-5
https://www.proquest.com/docview/521209400
https://www.proquest.com/docview/753654707
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLaAXeDAGzEeUw6cQBF9JG13QhvaQCAmhJgEpyivISTUwdbx-3G6tAMkOPWRNKmcOLFj-zPACTc6zaQOaIrCNmWpyqhkMqQpYzrExZGZEo7hbpBcD9nNE3_yvjlT71ZZrYnlQm3G2p2Rn7sYU4f1Fly8f1CXNMoZV30GjWVoYGmGulej2xvcP9RmhIT7rLYZ_gwPwsqsWcbOhS4ypbQNxKhJ8Z8b00La_GUgLfed_iase4GRdOYjvAVLNt-GjSoZA_G8uQ1r35AFd0DcLwICiPTAIwTfEDkrxiilWkNe5GtBcG2ezGMbsJohtT8RPr_mpHQ3pFq6kysynU0-rUtShG3uwrDfe7y8pj6XAtUxSwsqQ5XhjY4YamBaaYNqi7ZRFJqRiVSq28iKSsm4nSiOLN2WIxsnDhxPc2ZCZuI9WMnHud0Hoh3KHI_sKAgksr_JZNvYLFIRtmQTZpoQVIQU2gONu3wXb2IBkexoL5D2wtFe8Cac1p-8z1E2_qt8WI2O8Aw3FfX0aAKpS5FTnPlD5nY8mwpUzFym5SBtwlk1posG_uzu4N_uDmG19Cco3fuOYKWYzOwxiimFasFy1r9qQaPT73YH7nr1fNtr-SmKpcOo8wUSO-kM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcSilUbAvFB7iALBLHTrKHqkLQZUsf4tBKvRm_tqpUZdvdbBE_iv_IjDfJQqX21lsejq2Mx-MZz8w3AO-Ud0VpXMILVLa5LGzJjTQpL6R0KQpH6SMcw9FxPjyV38_U2RL8aXNhKKyylYlRUPuxozPyT5RjSlhvye7VNaeiUeRcbStozLniIPz-hRbbdGf_K07veyEGeydfhrwpKsBdJouam9SWeOGERFPEWedRf3dBiNSPvLCF6yNPWmuyfm4V8nbfjEKWE0qcU9Kn0mfY7yNYkRm2oMT0wbfOaZGrpoZuib-ukrR1osZMvZTyYKInIkO7Tf2_DS5021vu2LjLDdZgtVFP2ec5Pz2HpVCtw7O29ANrJME6PP0Hx_AF6B-L9ANmGpgThk-YmdVj1ImDZ-fmoma4E0zmmRTYzLMuegnvLyoWgxu5M3ROxqazyU2gkkjY50s4fRAib8ByNa7CK2COMO2UCKMkMShsfGn6PpTCCuwp5NL3IGkJqV0Da07VNS71ApCZaK-R9ppor1UPPnSfXM0xPe5rvNXOjm6W91R3zNgD1r3FdUnOFlOF8Wyq0Qykus5J0YOP7ZwuOrhzuM17h3sLj4cnR4f6cP_4YAuexEiGGFj4GpbrySy8QQWpttuRLRn8fOh18Bf5sh98
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED91RZrGw8bHEF0Z-GF7GbJIHDtJHxDaBhWMraomkHjz_FWENKWsTUH70_bfcU6ddCDBG2_5cGzpfHe58939DuCDsCbLlYlohsY25ZnOqeIqphnnJkblyG0Fx_BjkB6f828X4qIF_-paGJ9WWevESlHbsfFn5Hu-xtRjvUV7o5AVMTzsH1z_ob6BlA-01t005hxy6v7eovc23T85xK3-yFj_6OzrMQ0NBqhJeFZSFescLwzj6JYYbSza8sYxFtuRZTozPeRPrVXSS7VAPu-pkUtSjxhnBLcxtwnO-wKWMnSKojYsfTkaDH82IYxUhI66ORJCRHEdUq3q9mJfFVPFJRL04sT9n-LC0n0QnK3-ef0VeB2MVfJ5zl2r0HLFGrypG0GQoBfWYPk_VMN1kMNFMQJRAfSE4BOiZuUYLWRnyaW6KglSdzKvq8BhljS5THh_VZAq1ZEa5U_NyHQ2uXG-QRLO-RbOn4XMG9AuxoXbBGI8wp1gbhRFClWPzVXPupxphjO5lNsORDUhpQkg577Xxm-5gGf2tJdIe-lpL0UHPjWfXM8RPp4a3K13RwZhn8qGNTtAmrcopT70ogo3nk0lOoW-y3OUdWC33tPFBI8u9-7J5XbgJcqA_H4yOO3Cqyqtocoy3IJ2OZm592gtlXo78CWBX88tCnc7byUO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+for+automated+gait+extraction+and+recognition+in+multi-camera+surveillance&rft.jtitle=Multimedia+tools+and+applications&rft.au=Goffredo%2C+Michela&rft.au=Bouchrika%2C+Imed&rft.au=Carter%2C+John+N.&rft.au=Nixon%2C+Mark+S.&rft.date=2010-10-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=50&rft.issue=1&rft.spage=75&rft.epage=94&rft_id=info:doi/10.1007%2Fs11042-009-0378-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_009_0378_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon