3D-DXA: Assessing the Femoral Shape, the Trabecular Macrostructure and the Cortex in 3D from DXA images

The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 36; no. 1; pp. 27 - 39
Main Authors Humbert, Ludovic, Martelli, Yves, Fonolla, Roger, Steghofer, Martin, Di Gregorio, Silvana, Malouf, Jorge, Romera, Jordi, Barquero, Luis Miguel Del Rio
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model together with a 3D-2D registration approach are used to model the femoral shape and bone density distribution in 3D from an anteroposterior DXA projection. A model-based algorithm is subsequently used to segment the cortex and build a 3D map of the cortical thickness and density. Measurements characterising the geometry and density distribution were computed for various regions of interest in both cortical and trabecular compartments. Models and measurements provided by the "3D-DXA" software algorithm were evaluated using a database of 157 study subjects, by comparing 3D-DXA analyses (using DXA scanners from three manufacturers) with measurements performed by Quantitative Computed Tomography (QCT). The mean point-to-surface distance between 3D-DXA and QCT femoral shapes was 0.93 mm. The mean absolute error between cortical thickness and density estimates measured by 3D-DXA and QCT was 0.33 mm and 72 mg/cm 3 . Correlation coefficients (R) between the 3D-DXA and QCT measurements were 0.86, 0.93, and 0.95 for the volumetric bone mineral density at the trabecular, cortical, and integral compartments respectively, and 0.91 for the mean cortical thickness. 3D-DXA provides a detailed analysis of the proximal femur, including a separate assessment of the cortical layer and trabecular macrostructure, which could potentially improve osteoporosis management while maintaining DXA as the standard routine modality.
AbstractList The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model together with a 3D-2D registration approach are used to model the femoral shape and bone density distribution in 3D from an anteroposterior DXA projection. A model-based algorithm is subsequently used to segment the cortex and build a 3D map of the cortical thickness and density. Measurements characterising the geometry and density distribution were computed for various regions of interest in both cortical and trabecular compartments. Models and measurements provided by the "3D-DXA" software algorithm were evaluated using a database of 157 study subjects, by comparing 3D-DXA analyses (using DXA scanners from three manufacturers) with measurements performed by Quantitative Computed Tomography (QCT). The mean point-to-surface distance between 3D-DXA and QCT femoral shapes was 0.93 mm. The mean absolute error between cortical thickness and density estimates measured by 3D-DXA and QCT was 0.33 mm and 72 mg/cm . Correlation coefficients (R) between the 3D-DXA and QCT measurements were 0.86, 0.93, and 0.95 for the volumetric bone mineral density at the trabecular, cortical, and integral compartments respectively, and 0.91 for the mean cortical thickness. 3D-DXA provides a detailed analysis of the proximal femur, including a separate assessment of the cortical layer and trabecular macrostructure, which could potentially improve osteoporosis management while maintaining DXA as the standard routine modality.
The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model together with a 3D-2D registration approach are used to model the femoral shape and bone density distribution in 3D from an anteroposterior DXA projection. A model-based algorithm is subsequently used to segment the cortex and build a 3D map of the cortical thickness and density. Measurements characterising the geometry and density distribution were computed for various regions of interest in both cortical and trabecular compartments. Models and measurements provided by the "3D-DXA" software algorithm were evaluated using a database of 157 study subjects, by comparing 3D-DXA analyses (using DXA scanners from three manufacturers) with measurements performed by Quantitative Computed Tomography (QCT). The mean point-to-surface distance between 3D-DXA and QCT femoral shapes was 0.93 mm. The mean absolute error between cortical thickness and density estimates measured by 3D-DXA and QCT was 0.33 mm and 72 mg/cm 3 . Correlation coefficients (R) between the 3D-DXA and QCT measurements were 0.86, 0.93, and 0.95 for the volumetric bone mineral density at the trabecular, cortical, and integral compartments respectively, and 0.91 for the mean cortical thickness. 3D-DXA provides a detailed analysis of the proximal femur, including a separate assessment of the cortical layer and trabecular macrostructure, which could potentially improve osteoporosis management while maintaining DXA as the standard routine modality.
The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model together with a 3D-2D registration approach are used to model the femoral shape and bone density distribution in 3D from an anteroposterior DXA projection. A model-based algorithm is subsequently used to segment the cortex and build a 3D map of the cortical thickness and density. Measurements characterising the geometry and density distribution were computed for various regions of interest in both cortical and trabecular compartments. Models and measurements provided by the “3D-DXA” software algorithm were evaluated using a database of 157 study subjects, by comparing 3D-DXA analyses (using DXA scanners from three manufacturers) with measurements performed by Quantitative Computed Tomography (QCT). The mean point-to-surface distance between 3D-DXA and QCT femoral shapes was 0.93 mm. The mean absolute error between cortical thickness and density estimates measured by 3D-DXA and QCT was 0.33 mm and 72 mg/cm3. Correlation coefficients (R) between the 3D-DXA and QCT measurements were 0.86, 0.93, and 0.95 for the volumetric bone mineral density at the trabecular, cortical, and integral compartments respectively, and 0.91 for the mean cortical thickness. 3D-DXA provides a detailed analysis of the proximal femur, including a separate assessment of the cortical layer and trabecular macrostructure, which could potentially improve osteoporosis management while maintaining DXA as the standard routine modality.
The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model together with a 3D-2D registration approach are used to model the femoral shape and bone density distribution in 3D from an anteroposterior DXA projection. A model-based algorithm is subsequently used to segment the cortex and build a 3D map of the cortical thickness and density. Measurements characterising the geometry and density distribution were computed for various regions of interest in both cortical and trabecular compartments. Models and measurements provided by the "3D-DXA" software algorithm were evaluated using a database of 157 study subjects, by comparing 3D-DXA analyses (using DXA scanners from three manufacturers) with measurements performed by Quantitative Computed Tomography (QCT). The mean point-to-surface distance between 3D-DXA and QCT femoral shapes was 0.93 mm. The mean absolute error between cortical thickness and density estimates measured by 3D-DXA and QCT was 0.33 mm and 72 mg/cm3. Correlation coefficients (R) between the 3D-DXA and QCT measurements were 0.86, 0.93, and 0.95 for the volumetric bone mineral density at the trabecular, cortical, and integral compartments respectively, and 0.91 for the mean cortical thickness. 3D-DXA provides a detailed analysis of the proximal femur, including a separate assessment of the cortical layer and trabecular macrostructure, which could potentially improve osteoporosis management while maintaining DXA as the standard routine modality.The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model together with a 3D-2D registration approach are used to model the femoral shape and bone density distribution in 3D from an anteroposterior DXA projection. A model-based algorithm is subsequently used to segment the cortex and build a 3D map of the cortical thickness and density. Measurements characterising the geometry and density distribution were computed for various regions of interest in both cortical and trabecular compartments. Models and measurements provided by the "3D-DXA" software algorithm were evaluated using a database of 157 study subjects, by comparing 3D-DXA analyses (using DXA scanners from three manufacturers) with measurements performed by Quantitative Computed Tomography (QCT). The mean point-to-surface distance between 3D-DXA and QCT femoral shapes was 0.93 mm. The mean absolute error between cortical thickness and density estimates measured by 3D-DXA and QCT was 0.33 mm and 72 mg/cm3. Correlation coefficients (R) between the 3D-DXA and QCT measurements were 0.86, 0.93, and 0.95 for the volumetric bone mineral density at the trabecular, cortical, and integral compartments respectively, and 0.91 for the mean cortical thickness. 3D-DXA provides a detailed analysis of the proximal femur, including a separate assessment of the cortical layer and trabecular macrostructure, which could potentially improve osteoporosis management while maintaining DXA as the standard routine modality.
Author Steghofer, Martin
Di Gregorio, Silvana
Malouf, Jorge
Romera, Jordi
Barquero, Luis Miguel Del Rio
Martelli, Yves
Fonolla, Roger
Humbert, Ludovic
Author_xml – sequence: 1
  givenname: Ludovic
  orcidid: 0000-0002-3675-7908
  surname: Humbert
  fullname: Humbert, Ludovic
  email: ludovic.humbert@galgomedical.com
  organization: Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
– sequence: 2
  givenname: Yves
  surname: Martelli
  fullname: Martelli, Yves
  email: yves.martelli@galgomedical.com
  organization: Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
– sequence: 3
  givenname: Roger
  surname: Fonolla
  fullname: Fonolla, Roger
  email: roger.fonolla@galgomedical.com
  organization: Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
– sequence: 4
  givenname: Martin
  surname: Steghofer
  fullname: Steghofer, Martin
  email: martin.steghofer@galgomedical.com
  organization: Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
– sequence: 5
  givenname: Silvana
  surname: Di Gregorio
  fullname: Di Gregorio, Silvana
  email: sgregorio@cetir.es
  organization: CETIR Grup Mèdic, Barcelona, Spain
– sequence: 6
  givenname: Jorge
  surname: Malouf
  fullname: Malouf, Jorge
  email: jmalouf@santpau.cat
  organization: Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
– sequence: 7
  givenname: Jordi
  surname: Romera
  fullname: Romera, Jordi
  email: jordi.romera@galgomedical.com
  organization: Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
– sequence: 8
  givenname: Luis Miguel Del Rio
  surname: Barquero
  fullname: Barquero, Luis Miguel Del Rio
  email: ldelrio@cetir.es
  organization: CETIR Grup Mèdic, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27448343$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rGzEQxUVJaZy090KhCHrJoevqW6vejN20gYQc4kBuQtqddTbshyNpof3vI8dODznkMAwMv_eYmXeCjoZxAIQ-UzKnlJgf66uLOSNUzZk0nAv1Ds2olGXBpLg7QjPCdFkQotgxOonxgRAqJDEf0DHTQpRc8Bna8FWxulv8xIsYIcZ22OB0D_gc-jG4Dt_cuy18fx6tg_NQTZ0L-MpVYYwpTFWaAmA31M_EcgwJ_uJ2wHyFmzD2ODvjtncbiB_R-8Z1ET4d-im6Pf-1Xv4pLq9_XywXl0XFhU6Fqb0rOVOeO-N9LXUuSYkTvlHeU8U4r8rGE2NUw3xpBHO1rJRkwpeOcsdP0dnedxvGxwlisn0bK-g6N8A4RUtLpjQXUuqMfnuFPoxTGPJ2mcqA0prQTH09UJPvobbbkA8K_-zLCzOg9sDuJzFAY6s2udSOQwqu7SwldpeVzVnZXVb2kFUWklfCF-83JF_2khYA_uNaUqWM4U9_Xpvu
CODEN ITMID4
CitedBy_id crossref_primary_10_1007_s00259_024_06912_6
crossref_primary_10_2215_CJN_0000000000000213
crossref_primary_10_1007_s11926_020_00892_w
crossref_primary_10_1007_s00198_024_07244_9
crossref_primary_10_1016_j_cmpb_2020_105484
crossref_primary_10_1016_j_jocd_2021_11_007
crossref_primary_10_3390_ma13010106
crossref_primary_10_1007_s00198_020_05723_3
crossref_primary_10_3390_jcm8091370
crossref_primary_10_1371_journal_pone_0175857
crossref_primary_10_1007_s00198_019_04894_y
crossref_primary_10_1007_s11657_019_0680_4
crossref_primary_10_1007_s11657_021_00921_w
crossref_primary_10_1016_j_endinu_2020_01_005
crossref_primary_10_1007_s00198_017_4268_9
crossref_primary_10_1007_s10439_021_02787_y
crossref_primary_10_3389_fendo_2022_1069224
crossref_primary_10_1093_comjnl_bxz011
crossref_primary_10_1016_j_medcle_2024_05_030
crossref_primary_10_3390_ijms22147318
crossref_primary_10_1016_j_bone_2020_115362
crossref_primary_10_1007_s00223_025_01349_x
crossref_primary_10_3389_fmed_2025_1471418
crossref_primary_10_3390_jcm9061732
crossref_primary_10_1016_j_jocd_2018_05_001
crossref_primary_10_1016_j_medcli_2024_05_014
crossref_primary_10_1007_s00223_023_01110_2
crossref_primary_10_1093_jbmr_zjae028
crossref_primary_10_1007_s40200_024_01487_3
crossref_primary_10_1016_j_jocd_2024_101471
crossref_primary_10_3389_fmed_2024_1341077
crossref_primary_10_1530_EJE_22_0687
crossref_primary_10_1007_s00198_020_05806_1
crossref_primary_10_1016_j_medengphy_2020_01_015
crossref_primary_10_1093_jbmrpl_ziae003
crossref_primary_10_2106_JBJS_23_01334
crossref_primary_10_1016_j_bone_2021_115939
crossref_primary_10_1007_s11914_021_00711_w
crossref_primary_10_1016_j_bone_2020_115678
crossref_primary_10_1007_s00198_019_05208_y
crossref_primary_10_1016_j_bone_2021_115936
crossref_primary_10_1016_j_bone_2021_116005
crossref_primary_10_11124_JBIES_22_00175
crossref_primary_10_1016_j_eprac_2021_08_006
crossref_primary_10_1002_ajhb_24034
crossref_primary_10_1002_rcs_2503
crossref_primary_10_1016_j_jocd_2017_05_012
crossref_primary_10_1210_clinem_dgab259
crossref_primary_10_1002_jbmr_4878
crossref_primary_10_1016_j_jocd_2021_01_010
crossref_primary_10_3389_fbioe_2023_1111020
crossref_primary_10_1007_s00198_018_4624_4
crossref_primary_10_1016_j_endien_2020_01_008
crossref_primary_10_1016_j_bone_2019_01_001
crossref_primary_10_1080_02640414_2018_1483178
crossref_primary_10_1016_j_jocd_2018_11_004
crossref_primary_10_1002_jbm4_10612
crossref_primary_10_1007_s11657_019_0645_7
crossref_primary_10_1055_a_1928_9824
crossref_primary_10_1109_TMI_2018_2845909
crossref_primary_10_1007_s11657_024_01415_1
crossref_primary_10_1016_j_eprac_2024_10_015
crossref_primary_10_1016_j_jbiomech_2021_110315
crossref_primary_10_1007_s00198_020_05641_4
crossref_primary_10_1016_j_jocd_2017_05_002
crossref_primary_10_1093_ndt_gfz195
crossref_primary_10_1109_TMI_2022_3209648
crossref_primary_10_1093_jbmr_zjae202
crossref_primary_10_1016_j_bone_2024_117270
crossref_primary_10_1007_s10237_022_01642_w
crossref_primary_10_1016_j_eprac_2024_01_004
crossref_primary_10_1007_s11657_021_00933_6
crossref_primary_10_1016_j_bone_2025_117457
crossref_primary_10_1210_clinem_dgz060
crossref_primary_10_1007_s00198_019_05195_0
crossref_primary_10_1080_10255842_2020_1789863
crossref_primary_10_1186_s12889_020_09607_3
crossref_primary_10_1093_ckj_sfae240
crossref_primary_10_1007_s00198_021_06013_2
crossref_primary_10_3390_jcm10040657
Cites_doi 10.1109/34.24792
10.1046/j.1532-5415.2002.50455.x
10.1002/jbmr.1856
10.1007/s10237-011-0352-9
10.1007/s001980070064
10.1359/jbmr.060506
10.1359/jbmr.040916
10.1007/978-3-642-04271-3_1
10.1016/j.media.2012.02.008
10.1097/00004424-199001000-00004
10.1007/s00198-014-2794-2
10.1109/TMI.2003.812265
10.1016/j.jocd.2013.08.004
10.1117/12.2006389
10.1002/jbmr.2241
10.1007/s00198-006-0074-5
10.1118/1.1521940
10.1359/jbmr.1998.13.12.1915
10.2105/AJPH.87.10.1630
10.1016/j.jocd.2015.06.011
10.1007/s00198-008-0712-1
10.1016/j.jbiomech.2014.06.027
10.1001/archinte.165.15.1762
10.1002/jbmr.5650070902
10.1002/jbmr.140
10.1002/jbmr.270
10.1109/TMI.2011.2163074
10.1118/1.4944501
10.1109/34.927467
10.1007/s10916-015-0266-7
10.1093/qjmed/hcn022
10.1109/TSMC.1979.4310076
10.1007/978-3-642-04271-3_98
10.1016/j.neuroimage.2006.01.015
10.1016/j.media.2014.11.012
10.1359/jbmr.1997.12.1.119
10.1088/0031-9155/43/3/013
10.1016/j.jocd.2007.12.010
10.1007/s00198-008-0665-4
10.1097/BOR.0000000000000183
10.1016/S0140-6736(05)66870-5
10.1007/s10439-010-0196-y
10.1109/TVCG.2013.159
10.1109/TPAMI.2010.46
10.1002/jbmr.1693
10.1016/j.media.2015.06.001
10.1016/j.bone.2012.11.042
10.1093/oxfordjournals.aje.a116756
10.1007/BF02291478
10.1016/j.media.2010.01.003
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2016.2593346
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 39
ExternalDocumentID 27448343
10_1109_TMI_2016_2593346
7516699
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Centro para el Desarrollo Tecnológico Industrial, Ministerio de Economía y Competitividad
  funderid: 10.13039/501100003329
– fundername: Eurostars program
  grantid: 9 140
– fundername: Programa Estatal de Promoción del Talento y su Empleabilidad - Torres Quevedo, Ministerio de Economía y Competitividad
  grantid: SPTQ1300X006124XV0
  funderid: 10.13039/501100003329
– fundername: Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Ministerio de Economía y Competitividad
  grantid: RTC-2014-2740-1
  funderid: 10.13039/501100003329
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-9dba8326b3a9bbd57bd5510a4bf6bb16233c8fb0996f2b8942ad5c6524b8a13a3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Jul 10 22:40:28 EDT 2025
Sun Jun 29 16:10:49 EDT 2025
Mon Jul 21 06:00:03 EDT 2025
Tue Jul 01 03:15:57 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Wed Aug 27 05:51:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-9dba8326b3a9bbd57bd5510a4bf6bb16233c8fb0996f2b8942ad5c6524b8a13a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3675-7908
PMID 27448343
PQID 1855767701
PQPubID 85460
PageCount 13
ParticipantIDs proquest_journals_1855767701
pubmed_primary_27448343
crossref_citationtrail_10_1109_TMI_2016_2593346
crossref_primary_10_1109_TMI_2016_2593346
ieee_primary_7516699
proquest_miscellaneous_1826734557
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Jan.
2017-1-00
2017-Jan
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
roweis (ref41) 1998
ref17
ref16
ref19
yoo (ref45) 2002; 85
ref51
ref50
ref46
ref47
ref42
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref35
press (ref44) 1992
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
hangartner (ref18) 2007; 7
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
kanis (ref4) 2007
bateman (ref48) 2012; 12
References_xml – ident: ref39
  doi: 10.1109/34.24792
– ident: ref6
  doi: 10.1046/j.1532-5415.2002.50455.x
– ident: ref12
  doi: 10.1002/jbmr.1856
– ident: ref28
  doi: 10.1007/s10237-011-0352-9
– ident: ref1
  doi: 10.1007/s001980070064
– ident: ref32
  doi: 10.1359/jbmr.060506
– ident: ref33
  doi: 10.1359/jbmr.040916
– volume: 7
  start-page: 9
  year: 2007
  ident: ref18
  article-title: Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and microCT images
  publication-title: J Musculoskel Neuron Interact
– ident: ref42
  doi: 10.1007/978-3-642-04271-3_1
– ident: ref23
  doi: 10.1016/j.media.2012.02.008
– ident: ref11
  doi: 10.1097/00004424-199001000-00004
– ident: ref9
  doi: 10.1007/s00198-014-2794-2
– ident: ref36
  doi: 10.1109/TMI.2003.812265
– ident: ref35
  doi: 10.1016/j.jocd.2013.08.004
– ident: ref26
  doi: 10.1117/12.2006389
– ident: ref56
  doi: 10.1002/jbmr.2241
– ident: ref14
  doi: 10.1007/s00198-006-0074-5
– ident: ref17
  doi: 10.1118/1.1521940
– ident: ref2
  doi: 10.1359/jbmr.1998.13.12.1915
– ident: ref7
  doi: 10.2105/AJPH.87.10.1630
– ident: ref55
  doi: 10.1016/j.jocd.2015.06.011
– ident: ref10
  doi: 10.1007/s00198-008-0712-1
– ident: ref13
  doi: 10.1016/j.jbiomech.2014.06.027
– volume: 85
  start-page: 586
  year: 2002
  ident: ref45
  article-title: Engineering and algorithm design for an image processing API: A technical report on ITK-The insight toolkit
  publication-title: Studies Health Technol Inf
– ident: ref34
  doi: 10.1001/archinte.165.15.1762
– ident: ref3
  doi: 10.1002/jbmr.5650070902
– ident: ref25
  doi: 10.1002/jbmr.140
– ident: ref54
  doi: 10.1002/jbmr.270
– ident: ref29
  doi: 10.1109/TMI.2011.2163074
– ident: ref20
  doi: 10.1118/1.4944501
– ident: ref30
  doi: 10.1109/34.927467
– year: 1992
  ident: ref44
  publication-title: Numerical Recipes in C The Art of Scientific Computing
– ident: ref51
  doi: 10.1007/s10916-015-0266-7
– start-page: 626
  year: 1998
  ident: ref41
  article-title: EM algorithms for PCA and SPCA
  publication-title: Proc Conf Adv Neural Inf Process Syst
– year: 2007
  ident: ref4
  article-title: Assessment of osteoporosis at the primary health care level
– ident: ref8
  doi: 10.1093/qjmed/hcn022
– ident: ref43
  doi: 10.1109/TSMC.1979.4310076
– ident: ref52
  doi: 10.1007/978-3-642-04271-3_98
– ident: ref37
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: ref21
  doi: 10.1016/j.media.2014.11.012
– ident: ref50
  doi: 10.1359/jbmr.1997.12.1.119
– ident: ref19
  doi: 10.1088/0031-9155/43/3/013
– ident: ref24
  doi: 10.1016/j.jocd.2007.12.010
– ident: ref27
  doi: 10.1007/s00198-008-0665-4
– ident: ref15
  doi: 10.1097/BOR.0000000000000183
– volume: 12
  start-page: 101
  year: 2012
  ident: ref48
  article-title: Medical management in the acute hip fracture patient: A comprehensive review for the internist
  publication-title: The Ochsner J
– ident: ref16
  doi: 10.1016/S0140-6736(05)66870-5
– ident: ref49
  doi: 10.1007/s10439-010-0196-y
– ident: ref46
  doi: 10.1109/TVCG.2013.159
– ident: ref38
  doi: 10.1109/TPAMI.2010.46
– ident: ref47
  doi: 10.1002/jbmr.1693
– ident: ref31
  doi: 10.1016/j.media.2015.06.001
– ident: ref53
  doi: 10.1016/j.bone.2012.11.042
– ident: ref5
  doi: 10.1093/oxfordjournals.aje.a116756
– ident: ref40
  doi: 10.1007/BF02291478
– ident: ref22
  doi: 10.1016/j.media.2010.01.003
SSID ssj0014509
Score 2.5137427
Snippet The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27
SubjectTerms Absorptiometry, Photon
Algorithms
Biomedical materials
Bone Density
Bone mass
Bone mineral density
Bones
Brain modeling
Cancellous bone
Compartments
Computational modeling
Computed tomography
Correlation coefficients
Cortical bone
cortical thickness
Critical components
Density distribution
Dual energy X-ray absorptiometry
DXA
Femur
Fracture toughness
Geographical variations
Hip joint
Humans
image registration
Imaging, Three-Dimensional
Macrostructure
Mathematical models
Osteoporosis
proximal femur
Shape
Solid modeling
Thickness measurement
Three-dimensional displays
Tomography, X-Ray Computed
Two dimensional models
Title 3D-DXA: Assessing the Femoral Shape, the Trabecular Macrostructure and the Cortex in 3D from DXA images
URI https://ieeexplore.ieee.org/document/7516699
https://www.ncbi.nlm.nih.gov/pubmed/27448343
https://www.proquest.com/docview/1855767701
https://www.proquest.com/docview/1826734557
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLe2PSB42GAD1m2gIPGCtN61TZo0e5t2nAbS8cIm3VuVr8IE9CZ2JyH-euz0Q4AA8VY1TtrITvxz7NgAL1GFZ8o7m4bAXSpEk6VWaJ8GVSplfRDYj6It3snLa_F2WS634HS8CxNCiMFnYUKP0ZfvV25DR2VTVeZSar0N22i4dXe1Ro-BKLtwjoIyxmayGFySmZ5eLd5QDJecINTnXFDVIsqLV3HBf9FGsbzK35Fm1DjzPVgM_9oFmnyabNZ24r7_lsbxfyfzEHZ76MnOO1l5BFuh3YcHPyUk3Id7i97VfgAf-CydLc_PWOcWxmaGWJHNKTIXR3n_0dyG0_gK1Z3tSuyyhaF5xpS0m6-BmdZHiguK6P3GblrGZ4wutDAcmd18wb3s7jFcz19fXVymfVWG1HGh1qn21uA2IC032lpfIkcRdWVG2EZamyOc4q5qLCJP2RS20qIwvnSyLIStTM4NfwI77aoNh8C8qRrhq0Y7irOTzqCt7myZN7itFFUmEpgO3Kldn7KcKmd8rqPpkukaWVsTa-uetQm8Gnvcduk6_kF7QFwZ6XqGJHAyCEDdr-e7GlENGmZKZXkCL8ZmXInkXjFtWG2IppCKCyRM4GknOOPYg7wd_fmbx3C_ILgQj3ZOYAf5FJ4h2Fnb51HKfwATI_aW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GgLBFowUi9IzW4SO3bMrep2tYWmF7bS3iK_AlVLtqK7EuLXM3YeAkQRtyh-JNY39nz2jGcA9lGFJ8IaHTtHTcxYncSaSRs7kQuhrWPYzntbnPHZOfuwyBcbcDDchXHOBeczN_KPwZZvl2btj8rGIk85l_IO3EW9n2ftba3BZsDy1qEj8zFjE571RslEjufliffi4iMk-5Qyn7fIR8YrKKO_6aOQYOV2rhl0zvQxlP3ftq4ml6P1So_Mjz8COf7vcJ7Ao458ksNWWp7Chmu24OEvIQm34F7ZGdu34TOdxJPF4XvSGoaxmCBbJFPvm4u9fPqirt1BeIUKT7dJdkmp_DhDUNr1N0dUY0ONI-_T-51cNIROiL_SQrBncvEVV7ObHTifHs-PZnGXlyE2lIlVLK1WuBBwTZXU2uaIKfKuRDFdc61TJFTUFLVG7snrTBeSZcrmhucZ04VKqaLPYLNZNu4FEKuKmtmilsZ72nGjcLdudJ7WuLBkRcIiGPfoVKYLWu5zZ1xVYfOSyAqhrTy0VQdtBO-GFtdtwI5_1N32qAz1OkAi2O0FoOpm9E2FvAa3ZkIkaQRvh2Kci97Aohq3XPs6GRcURVNE8LwVnKHvXt5e_v2bb-D-bF6eVqcnZx9fwYPMk4dw0LMLm4iZ20Pqs9Kvg8T_BBxB-eA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-DXA%3A+Assessing+the+Femoral+Shape%2C+the+Trabecular+Macrostructure+and+the+Cortex+in+3D+from+DXA+images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Humbert%2C+Ludovic&rft.au=Martelli%2C+Yves&rft.au=Fonolla%2C+Roger&rft.au=Steghofer%2C+Martin&rft.date=2017-01-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=36&rft.issue=1&rft.spage=27&rft_id=info:doi/10.1109%2FTMI.2016.2593346&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon