Atomically precise thiolate-protected gold nanoclusters: current advances in solar-powered photoredox catalysis
Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for solving the deteriorating energy crisis and environmental issues in the future. In recent years, atomically precise gold nanoclusters, which have...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 17; pp. 941 - 9426 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
02.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for solving the deteriorating energy crisis and environmental issues in the future. In recent years, atomically precise gold nanoclusters, which have emerged as novel light-harvesting antennas possessing the merits of unique atomic stacking fashion, the quantum confinement effect, enriched catalytically active sites and a discrete energy band structure, have been drawing enormous attention in diverse fields. Despite the advancement, there is deficiency of a systematic, comprehensive, and insightful summary on the gold nanocluster-based photosystems to reinforce our fundamental understanding of the charge transport characteristics of metal nanoclusters in photocatalysis. Herein, our review summarizes the latest progress in gold nanocluster mediated photocatalysis and photoelectrocatalysis for diverse applications including non-selective photocatalytic organic pollutant mineralization, photocatalytic selective organic transformation, photocatalytic hydrogen generation, photocatalytic CO
2
reduction, and photoelectrochemical (PEC) water splitting. Moreover, we discuss the underlying photocatalytic and PEC mechanisms associated with the energy band and electronic structure of gold nanoclusters. Finally, perspectives and challenges of gold nanocluster-based photosystems are outlined. It is anticipated that our review could inspire ideas on how to smartly utilize atomically precise metal nanoclusters for crafting high-efficiency photosystems towards solar energy conversion.
The latest developments in atomically precise gold nanocluster based photosystems for solar energy conversion are comprehensively summarized and elucidated. |
---|---|
AbstractList | Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for solving the deteriorating energy crisis and environmental issues in the future. In recent years, atomically precise gold nanoclusters, which have emerged as novel light-harvesting antennas possessing the merits of unique atomic stacking fashion, the quantum confinement effect, enriched catalytically active sites and a discrete energy band structure, have been drawing enormous attention in diverse fields. Despite the advancement, there is deficiency of a systematic, comprehensive, and insightful summary on the gold nanocluster-based photosystems to reinforce our fundamental understanding of the charge transport characteristics of metal nanoclusters in photocatalysis. Herein, our review summarizes the latest progress in gold nanocluster mediated photocatalysis and photoelectrocatalysis for diverse applications including non-selective photocatalytic organic pollutant mineralization, photocatalytic selective organic transformation, photocatalytic hydrogen generation, photocatalytic CO
2
reduction, and photoelectrochemical (PEC) water splitting. Moreover, we discuss the underlying photocatalytic and PEC mechanisms associated with the energy band and electronic structure of gold nanoclusters. Finally, perspectives and challenges of gold nanocluster-based photosystems are outlined. It is anticipated that our review could inspire ideas on how to smartly utilize atomically precise metal nanoclusters for crafting high-efficiency photosystems towards solar energy conversion.
The latest developments in atomically precise gold nanocluster based photosystems for solar energy conversion are comprehensively summarized and elucidated. Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for solving the deteriorating energy crisis and environmental issues in the future. In recent years, atomically precise gold nanoclusters, which have emerged as novel light-harvesting antennas possessing the merits of unique atomic stacking fashion, the quantum confinement effect, enriched catalytically active sites and a discrete energy band structure, have been drawing enormous attention in diverse fields. Despite the advancement, there is deficiency of a systematic, comprehensive, and insightful summary on the gold nanocluster-based photosystems to reinforce our fundamental understanding of the charge transport characteristics of metal nanoclusters in photocatalysis. Herein, our review summarizes the latest progress in gold nanocluster mediated photocatalysis and photoelectrocatalysis for diverse applications including non-selective photocatalytic organic pollutant mineralization, photocatalytic selective organic transformation, photocatalytic hydrogen generation, photocatalytic CO2 reduction, and photoelectrochemical (PEC) water splitting. Moreover, we discuss the underlying photocatalytic and PEC mechanisms associated with the energy band and electronic structure of gold nanoclusters. Finally, perspectives and challenges of gold nanocluster-based photosystems are outlined. It is anticipated that our review could inspire ideas on how to smartly utilize atomically precise metal nanoclusters for crafting high-efficiency photosystems towards solar energy conversion. Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for solving the deteriorating energy crisis and environmental issues in the future. In recent years, atomically precise gold nanoclusters, which have emerged as novel light-harvesting antennas possessing the merits of unique atomic stacking fashion, the quantum confinement effect, enriched catalytically active sites and a discrete energy band structure, have been drawing enormous attention in diverse fields. Despite the advancement, there is deficiency of a systematic, comprehensive, and insightful summary on the gold nanocluster-based photosystems to reinforce our fundamental understanding of the charge transport characteristics of metal nanoclusters in photocatalysis. Herein, our review summarizes the latest progress in gold nanocluster mediated photocatalysis and photoelectrocatalysis for diverse applications including non-selective photocatalytic organic pollutant mineralization, photocatalytic selective organic transformation, photocatalytic hydrogen generation, photocatalytic CO 2 reduction, and photoelectrochemical (PEC) water splitting. Moreover, we discuss the underlying photocatalytic and PEC mechanisms associated with the energy band and electronic structure of gold nanoclusters. Finally, perspectives and challenges of gold nanocluster-based photosystems are outlined. It is anticipated that our review could inspire ideas on how to smartly utilize atomically precise metal nanoclusters for crafting high-efficiency photosystems towards solar energy conversion. |
Author | Liang, Hao Xiao, Fang-Xing Chen, Qing Mo, Qiao-Ling Wu, Yue |
AuthorAffiliation | Fuzhou University College of Materials Science and Engineering |
AuthorAffiliation_xml | – sequence: 0 name: College of Materials Science and Engineering – sequence: 0 name: Fuzhou University |
Author_xml | – sequence: 1 givenname: Hao surname: Liang fullname: Liang, Hao – sequence: 2 givenname: Qing surname: Chen fullname: Chen, Qing – sequence: 3 givenname: Qiao-Ling surname: Mo fullname: Mo, Qiao-Ling – sequence: 4 givenname: Yue surname: Wu fullname: Wu, Yue – sequence: 5 givenname: Fang-Xing surname: Xiao fullname: Xiao, Fang-Xing |
BookMark | eNptkU1LAzEQhoNUsNZevAsBb8LqZLMfibdaP6HgpfclTbI2ZZusSar23xutVBDnMgPzvDO8M8doYJ3VCJ0SuCRA-ZWiUQAhZbE4QMMcSsjqgleDfc3YERqHsIIUDKDifIjcJLq1kaLrtrj3WpqgcVwa14mos967qGXUCr-4TmErrJPdJkTtwzWWG--1jVioN2GlDthYHJLOZ7171z6J-qWLLhXuA0sRRbcNJpygw1Z0QY9_8gjN7-_m08ds9vzwNJ3MMkmLOma8VKytc8UFAw5FVWgtSFXSUpO8LQUr1QK4rJMHolJnQRnJQdaqpoIyJekIne_GJguvGx1is3Ibb9PGJmfAKNQUaKJgR0nvQvC6baSJIhpnoxemawg0X4dtbul88n3YmyS5-CPpvVkLv_0fPtvBPsg99_sl-gmU4IaB |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_3c02951 crossref_primary_10_1039_D4CC05255B crossref_primary_10_1039_D4NJ00797B crossref_primary_10_1039_D4TA05117C crossref_primary_10_1021_acs_inorgchem_3c02857 crossref_primary_10_1016_j_jddst_2024_106594 crossref_primary_10_1021_acs_chemmater_3c00974 crossref_primary_10_1016_j_cjsc_2023_100173 crossref_primary_10_26599_POM_2023_9140050 crossref_primary_10_1021_acs_inorgchem_3c03283 crossref_primary_10_1039_D3NR05857C crossref_primary_10_1016_j_mtcomm_2024_109348 crossref_primary_10_1039_D4DT00340C crossref_primary_10_1016_j_pmatsci_2023_101229 crossref_primary_10_1039_D3CC04973F crossref_primary_10_1002_smll_202400958 crossref_primary_10_1021_acs_inorgchem_3c02700 crossref_primary_10_1002_adom_202403539 crossref_primary_10_1021_acsami_4c01938 crossref_primary_10_1002_smll_202405228 crossref_primary_10_1021_acsanm_3c05964 crossref_primary_10_1021_acs_inorgchem_4c01383 crossref_primary_10_1039_D4NH00197D crossref_primary_10_1021_acsmaterialslett_4c00622 crossref_primary_10_1021_acs_inorgchem_3c04083 crossref_primary_10_1016_j_mcat_2025_114892 crossref_primary_10_1039_D4CS00962B crossref_primary_10_1002_adfm_202303737 crossref_primary_10_1016_j_cej_2024_153608 |
Cites_doi | 10.1007/430_2013_138 10.1016/S0920-5861(03)00273-6 10.1021/acs.accounts.8b00065 10.1021/jp805786p 10.1021/jp953556v 10.1002/adfm.202110848 10.1039/C9CS00633H 10.1021/acsnano.8b03940 10.1021/ja411061e 10.1021/ja307449z 10.1021/cr3004899 10.1021/jacs.5b06323 10.1016/j.ceramint.2018.07.137 10.1016/j.apcatb.2012.07.021 10.1039/c3nr01888a 10.1021/cm500260z 10.1039/D2TA02755K 10.1016/j.apcatb.2013.02.006 10.1021/jp9023298 10.1016/j.elecom.2010.05.021 10.1021/jp971438x 10.1021/cr010371d 10.1039/c0cc01021a 10.1039/c2jm16298a 10.1021/es9502278 10.1039/C9TA11579J 10.1021/ja0561441 10.1021/ja028285y 10.1038/238037a0 10.1021/ja042192u 10.1021/am201721e 10.1039/D2TA00572G 10.1021/ja103592z 10.1007/s12274-017-1935-2 10.1039/D0TA02122A 10.1007/BF03215573 10.1007/s12274-014-0403-5 10.1039/C2CS35367A 10.1007/s42452-019-0473-9 10.1038/s41467-017-00970-1 10.1021/acs.chemrev.5b00703 10.1039/D1TA10284B 10.1039/D0TA07235D 10.1002/anie.201509381 10.1039/C7TA04333C 10.1007/430_2014_143 10.1002/smll.201401919 10.1021/ja403807f 10.1002/adfm.202106338 10.1021/jacs.5b03483 10.1002/anie.201600267 10.1039/C7TA09119B 10.1039/b904491d 10.1038/srep22742 10.1039/C1EE02875H 10.1039/D0TA05297C 10.1002/adfm.202210332 10.1038/s41467-017-01736-5 10.1002/cnma.201700336 10.1021/ja801279a 10.1039/C8TA10379H 10.1002/slct.201600671 10.1021/ar300213z 10.1021/ja00183a049 10.1039/C9TA07569K 10.1021/ja0659929 10.1039/D2TA08547J 10.1016/j.cclet.2018.01.043 10.1039/C7NR06697J 10.1039/C8TA02802H 10.1016/j.nantod.2017.12.009 10.1021/acs.jpcc.8b00151 10.1021/ja5017365 10.1016/j.apcatb.2011.03.026 10.1039/D0NR02596H 10.1126/sciadv.aat7259 10.1021/acsaem.9b00426 10.1039/C6CC01243D 10.1021/jacs.5b11174 10.1126/science.1066130 10.1039/c3cc41210e 10.1016/j.jcat.2017.07.027 10.1021/acsami.5b09091 10.1021/jz402441d 10.1021/acscatal.6b03509 10.1103/PhysRevMaterials.1.045404 10.1038/382607a0 10.1007/s10562-006-0030-1 10.1021/acs.inorgchem.9b03073 10.1021/acscatal.7b00239 10.1039/C8TA08841A 10.1504/IJNT.2018.098432 10.1126/sciadv.1500441 10.1039/C4CP00753K 10.1039/C9CC04562G 10.1021/acsami.9b14543 10.1021/acs.chemrev.5b00407 10.1021/ja505429f 10.1021/acs.jpcb.7b09442 10.1002/chem.201203158 10.1021/jz401447w 10.1039/C9TA01144G 10.1016/j.cattod.2018.09.010 10.1039/c3ta01450a 10.1021/acs.inorgchem.0c00780 10.1039/c2nr30480e 10.1039/c2cs15325d 10.1021/jp0202690 10.1021/cs300682d 10.1021/ar100048c 10.1021/acs.jpcc.9b10132 10.1002/admi.201701098 10.1039/C9TA08107K 10.1021/jp5122432 10.1039/c2nr32171h 10.1021/acsami.5b09987 10.1016/S1001-0742(07)60014-X 10.1021/ic8024588 10.1021/jp106337k 10.1021/acscatal.2c01667 10.1021/jacs.8b06723 10.1002/adma.200904317 10.1039/b926014p 10.1557/jmr.2004.19.2.628 10.1039/C2NR32760K 10.1021/ja071122v 10.1039/D2TA07813A 10.1039/C6RA23014H 10.1021/ar400209a 10.1039/C6NR01702A 10.1016/j.cplett.2006.08.081 10.1002/adma.200903934 10.1021/cm060362r 10.1016/j.jcis.2018.06.055 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d3ta01154b |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 9426 |
ExternalDocumentID | 10_1039_D3TA01154B d3ta01154b |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c347t-95d8f72d9a8090464eea16535e12f5a85db09c70691dea1b38120c7d73a38dc3 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 11:59:53 EDT 2025 Tue Jul 01 01:13:39 EDT 2025 Thu Apr 24 22:53:02 EDT 2025 Tue Dec 17 20:58:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-95d8f72d9a8090464eea16535e12f5a85db09c70691dea1b38120c7d73a38dc3 |
Notes | 2 https://fxxiao.fzu.edu.cn Fang-Xing Xiao is currently a full professor at Fuzhou University, China. He received his BSc and MSc degrees from National Huaqiao University in 2006 and 2009, and his PhD degree from Fuzhou University in 2013. From 2013 to 2017, he worked as a postdoctoral research fellow at the Nanyang Technological University. His research group works on heterogeneous photoredox catalysis, predominantly centered on designing composite catalysts, fundamental investigation on catalyst structures and catalytic mechanisms, and probing their multifarious redox applications in photocatalysis and photoelectrocatalysis. More detailed information can be found at his research group website Hao Liang received a Bachelor's degree in Materials Science and Engineering (2019) from Nanjing Institute of Technology, and an MS degree (2022) in Materials Engineering from Fuzhou University. His research interest is centered on developing metal nanocluster-based materials for photocatalytic hydrogen generation and selective organic conversion. Chen Qing is currently a second-year master student at Fuzhou University under the supervision of Prof. Fang-Xing Xiao. She holds a Bachelor's degree in Materials Science and Engineering from Anhui University of Science and Technology (2020). Her research interest is centered on developing transition metal sulfide-based materials for photocatalytic CO reduction. Yue Wu is currently an associate Professor at Fuzhou University, China. She received her BS degree from the College of Chemistry, Central China Normal University, in 2016, and her PhD degree from the Department of Chemistry, Tsinghua University, in 2022. Her research interest focuses on rational design and controlled synthesis of nanomaterials, and their surface/interface structure modulation for catalysis. Qiao-Ling Mo is a third-year PhD student at Fuzhou University under the supervision of Prof. Xiao. She holds a Bachelor's degree in Materials Chemistry (2015) from Jiangxi University of Science and Technology, and an MS degree (2018) in Materials Physics and Chemistry from Fuzhou University. Her PhD research interest is centered on developing layered transition metal chalcogenide materials for photocatalytic selective organic conversion and photoelectrochemical water splitting. . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5673-5362 |
PQID | 2808307303 |
PQPubID | 2047523 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1039_D3TA01154B crossref_citationtrail_10_1039_D3TA01154B rsc_primary_d3ta01154b proquest_journals_2808307303 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-02 |
PublicationDateYYYYMMDD | 2023-05-02 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ho-Wu (D3TA01154B/cit22/1) 2017; 121 Yamazoe (D3TA01154B/cit4/1) 2014; 47 Jiang (D3TA01154B/cit138/1) 2017; 9 Haarstrick (D3TA01154B/cit69/1) 1996; 30 Negishi (D3TA01154B/cit96/1) 2013; 5 Xiao (D3TA01154B/cit64/1) 2015; 137 Xiao (D3TA01154B/cit71/1) 2015; 11 Zhao (D3TA01154B/cit29/1) 2011; 104 Kogo (D3TA01154B/cit113/1) 2012; 4 Li (D3TA01154B/cit134/1) 2019; 7 Wei (D3TA01154B/cit129/1) 2022; 32 Tian (D3TA01154B/cit61/1) 2005; 127 Zeng (D3TA01154B/cit135/1) 2018; 6 Sakai (D3TA01154B/cit112/1) 2010; 22 Hayyan (D3TA01154B/cit90/1) 2016; 116 Li (D3TA01154B/cit126/1) 2022; 32 Mor (D3TA01154B/cit66/1) 2004; 19 Cui (D3TA01154B/cit120/1) 2018; 140 Yan (D3TA01154B/cit73/1) 2006; 429 Huang (D3TA01154B/cit92/1) 2019; 55 Xiao (D3TA01154B/cit136/1) 2018; 5 Chong (D3TA01154B/cit43/1) 2018; 4 Ye (D3TA01154B/cit108/1) 2012; 134 Chen (D3TA01154B/cit62/1) 2013; 42 Long (D3TA01154B/cit79/1) 2008; 130 Wei (D3TA01154B/cit105/1) 2020; 8 Bain (D3TA01154B/cit24/1) 1989; 111 Zeng (D3TA01154B/cit114/1) 2018; 6 Yan (D3TA01154B/cit21/1) 2018; 4 Liu (D3TA01154B/cit104/1) 2016; 8 Dai (D3TA01154B/cit109/1) 2019; 7 Chai (D3TA01154B/cit44/1) 2016; 6 Ling (D3TA01154B/cit51/1) 2018; 530 Li (D3TA01154B/cit85/1) 2017; 7 Zeng (D3TA01154B/cit137/1) 2018; 6 Warren (D3TA01154B/cit63/1) 2012; 5 Gould (D3TA01154B/cit41/1) 2014; 16 Tesana (D3TA01154B/cit65/1) 2018; 15 Mrowetz (D3TA01154B/cit81/1) 2007; 40 Li (D3TA01154B/cit80/1) 2006; 18 Jiang (D3TA01154B/cit49/1) 2009; 48 Fujishima (D3TA01154B/cit102/1) 1972; 238 Xiao (D3TA01154B/cit119/1) 2017; 9 Liu (D3TA01154B/cit60/1) 2016; 6 Kurashige (D3TA01154B/cit34/1) 2013; 49 Mo (D3TA01154B/cit123/1) 2023; 33 Zheng (D3TA01154B/cit78/1) 2006; 128 Mo (D3TA01154B/cit131/1) 2020; 8 Mingos (D3TA01154B/cit27/1) 2014; 161 Zhang (D3TA01154B/cit28/1) 2018; 11 Yamashita (D3TA01154B/cit70/1) 2003; 84 Sharma (D3TA01154B/cit75/1) 2016; 1 Comotti (D3TA01154B/cit82/1) 2006; 128 Lin (D3TA01154B/cit6/1) 2020; 59 Schaaff (D3TA01154B/cit12/1) 1997; 101 Chen (D3TA01154B/cit58/1) 2014; 136 Xiao (D3TA01154B/cit91/1) 2015; 7 Ding (D3TA01154B/cit98/1) 2017; 1 Jin (D3TA01154B/cit1/1) 2016; 116 Yao (D3TA01154B/cit11/1) 2018; 51 Roth (D3TA01154B/cit57/1) 2001; 294 Iwase (D3TA01154B/cit100/1) 2013; 136–137 Zhang (D3TA01154B/cit86/1) 2018; 29 Abbas (D3TA01154B/cit54/1) 2016; 138 Tang (D3TA01154B/cit128/1) 2022; 10 Hou (D3TA01154B/cit107/1) 2019; 7 Zhu (D3TA01154B/cit20/1) 2008; 112 Liao (D3TA01154B/cit37/1) 2015; 137 Gottlieb (D3TA01154B/cit33/1) 2013; 19 Negishi (D3TA01154B/cit31/1) 2010; 46 Ogilby (D3TA01154B/cit88/1) 2010; 39 Iwase (D3TA01154B/cit101/1) 2006; 108 Zhu (D3TA01154B/cit2/1) 2010; 22 Lu (D3TA01154B/cit3/1) 2012; 41 Chen (D3TA01154B/cit9/1) 2017; 7 Hou (D3TA01154B/cit127/1) 2022; 10 Yao (D3TA01154B/cit15/1) 2017; 8 Ruibin (D3TA01154B/cit116/1) 2014; 31 Shi (D3TA01154B/cit106/1) 2018; 12 Hou (D3TA01154B/cit110/1) 2020; 59 Xu (D3TA01154B/cit26/1) 2017; 354 Kurashige (D3TA01154B/cit56/1) 2019; 2 Kurashige (D3TA01154B/cit99/1) 2018; 122 Kawasaki (D3TA01154B/cit76/1) 2014; 26 Li (D3TA01154B/cit52/1) 2007; 129 Liang (D3TA01154B/cit139/1) 2017; 5 Shen (D3TA01154B/cit95/1) 2012; 126 Lai (D3TA01154B/cit68/1) 2012; 22 Bhunia (D3TA01154B/cit42/1) 2019; 1 Kacprzak (D3TA01154B/cit48/1) 2009; 11 Chen (D3TA01154B/cit55/1) 2013; 135 Xi (D3TA01154B/cit67/1) 2012; 4 Kumara (D3TA01154B/cit32/1) 2014; 5 Tada (D3TA01154B/cit50/1) 2002; 106 Walter (D3TA01154B/cit46/1) 2009; 113 Xiao (D3TA01154B/cit122/1) 2023; 11 Yuichi (D3TA01154B/cit47/1) 2010; 23 Parker (D3TA01154B/cit19/1) 2010; 43 Bootharaju (D3TA01154B/cit35/1) 2016; 55 Mirkin (D3TA01154B/cit25/1) 1996; 382 Xie (D3TA01154B/cit93/1) 2020; 340 Naya (D3TA01154B/cit84/1) 2013; 3 Li (D3TA01154B/cit40/1) 2016; 52 Schweitzer (D3TA01154B/cit89/1) 2003; 103 Bo (D3TA01154B/cit121/1) 2020; 12 Negishi (D3TA01154B/cit97/1) 2015; 119 Li (D3TA01154B/cit87/1) 2012; 4 Michael G (D3TA01154B/cit103/1) 2010; 11 Luo (D3TA01154B/cit13/1) 2014; 136 Yang (D3TA01154B/cit74/1) 2007; 19 Sreedhar (D3TA01154B/cit118/1) 2018; 44 Nasr (D3TA01154B/cit72/1) 1996; 100 Tang (D3TA01154B/cit111/1) 2022; 12 Kogo (D3TA01154B/cit10/1) 2010; 12 Lin (D3TA01154B/cit130/1) 2020; 8 Han (D3TA01154B/cit23/1) 2016; 8 Kogo (D3TA01154B/cit94/1) 2010; 12 Li (D3TA01154B/cit17/1) 2013; 46 Li (D3TA01154B/cit133/1) 2020; 12 Li (D3TA01154B/cit53/1) 2019; 7 Chen (D3TA01154B/cit8/1) 2014; 136 Xu (D3TA01154B/cit132/1) 2020; 8 Yao (D3TA01154B/cit14/1) 2017; 8 Wang (D3TA01154B/cit16/1) 2015; 1 Akimov (D3TA01154B/cit5/1) 2013; 113 Li (D3TA01154B/cit124/1) 2023; 11 Lee (D3TA01154B/cit77/1) 2010; 114 Qian (D3TA01154B/cit18/1) 2010; 132 Zhu (D3TA01154B/cit125/1) 2022; 10 Yu (D3TA01154B/cit59/1) 2013; 4 Soldan (D3TA01154B/cit36/1) 2016; 55 Zhao (D3TA01154B/cit39/1) 2018; 18 Kong (D3TA01154B/cit7/1) 2013; 5 Kang (D3TA01154B/cit38/1) 2020; 49 Xiao (D3TA01154B/cit117/1) 2013; 1 Konishi (D3TA01154B/cit30/1) 2014; 161 Luo (D3TA01154B/cit83/1) 2002; 124 Dai (D3TA01154B/cit115/1) 2020; 124 Jin (D3TA01154B/cit45/1) 2014; 7 |
References_xml | – volume: 161 start-page: 1 year: 2014 ident: D3TA01154B/cit27/1 publication-title: Struct. Bonding doi: 10.1007/430_2013_138 – volume: 84 start-page: 191 year: 2003 ident: D3TA01154B/cit70/1 publication-title: Catal. Today doi: 10.1016/S0920-5861(03)00273-6 – volume: 51 start-page: 1338 year: 2018 ident: D3TA01154B/cit11/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00065 – volume: 112 start-page: 14221 year: 2008 ident: D3TA01154B/cit20/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jp805786p – volume: 100 start-page: 8436 year: 1996 ident: D3TA01154B/cit72/1 publication-title: J. Phys. Chem. doi: 10.1021/jp953556v – volume: 32 start-page: 2110848 year: 2022 ident: D3TA01154B/cit126/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110848 – volume: 49 start-page: 6443 year: 2020 ident: D3TA01154B/cit38/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00633H – volume: 12 start-page: 6335 year: 2018 ident: D3TA01154B/cit106/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b03940 – volume: 136 start-page: 92 year: 2014 ident: D3TA01154B/cit58/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411061e – volume: 134 start-page: 15720 year: 2012 ident: D3TA01154B/cit108/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307449z – volume: 113 start-page: 4496 year: 2013 ident: D3TA01154B/cit5/1 publication-title: Chem. Rev. doi: 10.1021/cr3004899 – volume: 137 start-page: 10735 year: 2015 ident: D3TA01154B/cit64/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06323 – volume: 44 start-page: 18978 year: 2018 ident: D3TA01154B/cit118/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.07.137 – volume: 126 start-page: 153 year: 2012 ident: D3TA01154B/cit95/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2012.07.021 – volume: 5 start-page: 7188 year: 2013 ident: D3TA01154B/cit96/1 publication-title: Nanoscale doi: 10.1039/c3nr01888a – volume: 26 start-page: 2777 year: 2014 ident: D3TA01154B/cit76/1 publication-title: Chem. Mater. doi: 10.1021/cm500260z – volume: 10 start-page: 11926 year: 2022 ident: D3TA01154B/cit125/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02755K – volume: 136–137 start-page: 89 year: 2013 ident: D3TA01154B/cit100/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2013.02.006 – volume: 113 start-page: 15834 year: 2009 ident: D3TA01154B/cit46/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp9023298 – volume: 12 start-page: 996 year: 2010 ident: D3TA01154B/cit94/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.05.021 – volume: 101 start-page: 7885 year: 1997 ident: D3TA01154B/cit12/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp971438x – volume: 103 start-page: 1685 year: 2003 ident: D3TA01154B/cit89/1 publication-title: Chem. Rev. doi: 10.1021/cr010371d – volume: 46 start-page: 4713 year: 2010 ident: D3TA01154B/cit31/1 publication-title: Chem. Commun. doi: 10.1039/c0cc01021a – volume: 22 start-page: 7420 year: 2012 ident: D3TA01154B/cit68/1 publication-title: J. Mater. Chem. doi: 10.1039/c2jm16298a – volume: 30 start-page: 817 year: 1996 ident: D3TA01154B/cit69/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es9502278 – volume: 8 start-page: 177 year: 2020 ident: D3TA01154B/cit105/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11579J – volume: 128 start-page: 917 year: 2006 ident: D3TA01154B/cit82/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0561441 – volume: 124 start-page: 13988 year: 2002 ident: D3TA01154B/cit83/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028285y – volume: 238 start-page: 37 year: 1972 ident: D3TA01154B/cit102/1 publication-title: Nature doi: 10.1038/238037a0 – volume: 127 start-page: 7632 year: 2005 ident: D3TA01154B/cit61/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042192u – volume: 4 start-page: 1093 year: 2012 ident: D3TA01154B/cit67/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am201721e – volume: 31 start-page: 5274 year: 2014 ident: D3TA01154B/cit116/1 publication-title: Adv. Mater. – volume: 10 start-page: 7006 year: 2022 ident: D3TA01154B/cit127/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA00572G – volume: 132 start-page: 8280 year: 2010 ident: D3TA01154B/cit18/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103592z – volume: 11 start-page: 5787 year: 2018 ident: D3TA01154B/cit28/1 publication-title: Nano Res. doi: 10.1007/s12274-017-1935-2 – volume: 8 start-page: 8360 year: 2020 ident: D3TA01154B/cit132/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02122A – volume: 40 start-page: 154 year: 2007 ident: D3TA01154B/cit81/1 publication-title: Gold Bull. doi: 10.1007/BF03215573 – volume: 7 start-page: 285 year: 2014 ident: D3TA01154B/cit45/1 publication-title: Nano Res. doi: 10.1007/s12274-014-0403-5 – volume: 42 start-page: 2679 year: 2013 ident: D3TA01154B/cit62/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35367A – volume: 1 start-page: 449 year: 2019 ident: D3TA01154B/cit42/1 publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-0473-9 – volume: 9 start-page: 16922 year: 2017 ident: D3TA01154B/cit138/1 publication-title: J. Mater. Chem. A – volume: 8 start-page: 927 year: 2017 ident: D3TA01154B/cit14/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00970-1 – volume: 116 start-page: 10346 year: 2016 ident: D3TA01154B/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00703 – volume: 10 start-page: 4032 year: 2022 ident: D3TA01154B/cit128/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA10284B – volume: 8 start-page: 20151 year: 2020 ident: D3TA01154B/cit130/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA07235D – volume: 55 start-page: 922 year: 2016 ident: D3TA01154B/cit35/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509381 – volume: 5 start-page: 15601 year: 2017 ident: D3TA01154B/cit139/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04333C – volume: 161 start-page: 49 year: 2014 ident: D3TA01154B/cit30/1 publication-title: Struct. Bonding doi: 10.1007/430_2014_143 – volume: 11 start-page: 554 year: 2015 ident: D3TA01154B/cit71/1 publication-title: Small doi: 10.1002/smll.201401919 – volume: 135 start-page: 8822 year: 2013 ident: D3TA01154B/cit55/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403807f – volume: 32 start-page: 2106338 year: 2022 ident: D3TA01154B/cit129/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106338 – volume: 137 start-page: 9511 year: 2015 ident: D3TA01154B/cit37/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03483 – volume: 55 start-page: 5749 year: 2016 ident: D3TA01154B/cit36/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600267 – volume: 6 start-page: 1700 year: 2018 ident: D3TA01154B/cit137/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09119B – volume: 11 start-page: 7123 year: 2009 ident: D3TA01154B/cit48/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b904491d – volume: 6 start-page: 22742 year: 2016 ident: D3TA01154B/cit60/1 publication-title: Sci. Rep. doi: 10.1038/srep22742 – volume: 5 start-page: 5133 year: 2012 ident: D3TA01154B/cit63/1 publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02875H – volume: 8 start-page: 16392 year: 2020 ident: D3TA01154B/cit131/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05297C – volume: 33 start-page: 2210332 year: 2023 ident: D3TA01154B/cit123/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202210332 – volume: 8 start-page: 1555 year: 2017 ident: D3TA01154B/cit15/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01736-5 – volume: 4 start-page: 482 year: 2018 ident: D3TA01154B/cit43/1 publication-title: ChemNanoMat doi: 10.1002/cnma.201700336 – volume: 11 start-page: 6446 year: 2010 ident: D3TA01154B/cit103/1 publication-title: Chem. Rev. – volume: 130 start-page: 10103 year: 2008 ident: D3TA01154B/cit79/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801279a – volume: 7 start-page: 2741 year: 2019 ident: D3TA01154B/cit109/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10379H – volume: 1 start-page: 2963 year: 2016 ident: D3TA01154B/cit75/1 publication-title: Chemistryselect doi: 10.1002/slct.201600671 – volume: 46 start-page: 1749 year: 2013 ident: D3TA01154B/cit17/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar300213z – volume: 111 start-page: 321 year: 1989 ident: D3TA01154B/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00183a049 – volume: 7 start-page: 21182 year: 2019 ident: D3TA01154B/cit134/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07569K – volume: 128 start-page: 14278 year: 2006 ident: D3TA01154B/cit78/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0659929 – volume: 11 start-page: 2402 year: 2023 ident: D3TA01154B/cit122/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA08547J – volume: 29 start-page: 687 year: 2018 ident: D3TA01154B/cit86/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2018.01.043 – volume: 9 start-page: 17118 year: 2017 ident: D3TA01154B/cit119/1 publication-title: Nanoscale doi: 10.1039/C7NR06697J – volume: 6 start-page: 11154 year: 2018 ident: D3TA01154B/cit114/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02802H – volume: 18 start-page: 86 year: 2018 ident: D3TA01154B/cit39/1 publication-title: Nano Today doi: 10.1016/j.nantod.2017.12.009 – volume: 122 start-page: 13669 year: 2018 ident: D3TA01154B/cit99/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b00151 – volume: 136 start-page: 6075 year: 2014 ident: D3TA01154B/cit8/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5017365 – volume: 23 start-page: 6219 year: 2010 ident: D3TA01154B/cit47/1 publication-title: Phys. Chem. Chem. Phys. – volume: 104 start-page: 239 year: 2011 ident: D3TA01154B/cit29/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2011.03.026 – volume: 12 start-page: 12196 year: 2020 ident: D3TA01154B/cit121/1 publication-title: Nanoscale doi: 10.1039/D0NR02596H – volume: 4 start-page: eaat7259 year: 2018 ident: D3TA01154B/cit21/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat7259 – volume: 2 start-page: 4175 year: 2019 ident: D3TA01154B/cit56/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00426 – volume: 52 start-page: 5194 year: 2016 ident: D3TA01154B/cit40/1 publication-title: Chem. Commun. doi: 10.1039/C6CC01243D – volume: 138 start-page: 390 year: 2016 ident: D3TA01154B/cit54/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11174 – volume: 294 start-page: 2524 year: 2001 ident: D3TA01154B/cit57/1 publication-title: Science doi: 10.1126/science.1066130 – volume: 49 start-page: 5447 year: 2013 ident: D3TA01154B/cit34/1 publication-title: Chem. Commun. doi: 10.1039/c3cc41210e – volume: 354 start-page: 1 year: 2017 ident: D3TA01154B/cit26/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2017.07.027 – volume: 7 start-page: 28105 year: 2015 ident: D3TA01154B/cit91/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09091 – volume: 5 start-page: 461 year: 2014 ident: D3TA01154B/cit32/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz402441d – volume: 7 start-page: 3632 year: 2017 ident: D3TA01154B/cit9/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03509 – volume: 1 start-page: 045404 year: 2017 ident: D3TA01154B/cit98/1 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.045404 – volume: 382 start-page: 607 year: 1996 ident: D3TA01154B/cit25/1 publication-title: Nature doi: 10.1038/382607a0 – volume: 108 start-page: 7 year: 2006 ident: D3TA01154B/cit101/1 publication-title: Catal. Lett. doi: 10.1007/s10562-006-0030-1 – volume: 59 start-page: 1364 year: 2020 ident: D3TA01154B/cit6/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b03073 – volume: 7 start-page: 3368 year: 2017 ident: D3TA01154B/cit85/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b00239 – volume: 6 start-page: 24686 year: 2018 ident: D3TA01154B/cit135/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08841A – volume: 15 start-page: 669 year: 2018 ident: D3TA01154B/cit65/1 publication-title: Int. J. Nanotechnol. doi: 10.1504/IJNT.2018.098432 – volume: 1 start-page: e1500441 year: 2015 ident: D3TA01154B/cit16/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500441 – volume: 16 start-page: 21049 year: 2014 ident: D3TA01154B/cit41/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00753K – volume: 55 start-page: 10591 year: 2019 ident: D3TA01154B/cit92/1 publication-title: Chem. Commun. doi: 10.1039/C9CC04562G – volume: 12 start-page: 4373 year: 2020 ident: D3TA01154B/cit133/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14543 – volume: 116 start-page: 3029 year: 2016 ident: D3TA01154B/cit90/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00407 – volume: 136 start-page: 10577 year: 2014 ident: D3TA01154B/cit13/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505429f – volume: 121 start-page: 10073 year: 2017 ident: D3TA01154B/cit22/1 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b09442 – volume: 19 start-page: 4238 year: 2013 ident: D3TA01154B/cit33/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201203158 – volume: 4 start-page: 2847 year: 2013 ident: D3TA01154B/cit59/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401447w – volume: 7 start-page: 8938 year: 2019 ident: D3TA01154B/cit53/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01144G – volume: 340 start-page: 121 year: 2020 ident: D3TA01154B/cit93/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.09.010 – volume: 1 start-page: 5790 year: 2013 ident: D3TA01154B/cit117/1 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta01450a – volume: 59 start-page: 7325 year: 2020 ident: D3TA01154B/cit110/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c00780 – volume: 4 start-page: 4217 year: 2012 ident: D3TA01154B/cit113/1 publication-title: Nanoscale doi: 10.1039/c2nr30480e – volume: 41 start-page: 3594 year: 2012 ident: D3TA01154B/cit3/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15325d – volume: 106 start-page: 8714 year: 2002 ident: D3TA01154B/cit50/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp0202690 – volume: 3 start-page: 10 year: 2013 ident: D3TA01154B/cit84/1 publication-title: ACS Catal. doi: 10.1021/cs300682d – volume: 43 start-page: 1289 year: 2010 ident: D3TA01154B/cit19/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar100048c – volume: 124 start-page: 4989 year: 2020 ident: D3TA01154B/cit115/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b10132 – volume: 5 start-page: 1701098 year: 2018 ident: D3TA01154B/cit136/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201701098 – volume: 7 start-page: 22487 year: 2019 ident: D3TA01154B/cit107/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08107K – volume: 119 start-page: 11224 year: 2015 ident: D3TA01154B/cit97/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp5122432 – volume: 4 start-page: 6714 year: 2012 ident: D3TA01154B/cit87/1 publication-title: Nanoscale doi: 10.1039/c2nr32171h – volume: 8 start-page: 1067 year: 2016 ident: D3TA01154B/cit23/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09987 – volume: 19 start-page: 86 year: 2007 ident: D3TA01154B/cit74/1 publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(07)60014-X – volume: 48 start-page: 2720 year: 2009 ident: D3TA01154B/cit49/1 publication-title: Inorg. Chem. doi: 10.1021/ic8024588 – volume: 114 start-page: 18366 year: 2010 ident: D3TA01154B/cit77/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp106337k – volume: 12 start-page: 9023 year: 2022 ident: D3TA01154B/cit111/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c01667 – volume: 140 start-page: 16514 year: 2018 ident: D3TA01154B/cit120/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06723 – volume: 22 start-page: 3185 year: 2010 ident: D3TA01154B/cit112/1 publication-title: Adv. Mater. doi: 10.1002/adma.200904317 – volume: 39 start-page: 3181 year: 2010 ident: D3TA01154B/cit88/1 publication-title: Chem. Soc. Rev. doi: 10.1039/b926014p – volume: 19 start-page: 628 year: 2004 ident: D3TA01154B/cit66/1 publication-title: J. Mater. Res. doi: 10.1557/jmr.2004.19.2.628 – volume: 5 start-page: 1009 year: 2013 ident: D3TA01154B/cit7/1 publication-title: Nanoscale doi: 10.1039/C2NR32760K – volume: 12 start-page: 996 year: 2010 ident: D3TA01154B/cit10/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.05.021 – volume: 129 start-page: 9401 year: 2007 ident: D3TA01154B/cit52/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071122v – volume: 11 start-page: 589 year: 2023 ident: D3TA01154B/cit124/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA07813A – volume: 6 start-page: 111399 year: 2016 ident: D3TA01154B/cit44/1 publication-title: RSC Adv. doi: 10.1039/C6RA23014H – volume: 47 start-page: 816 year: 2014 ident: D3TA01154B/cit4/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar400209a – volume: 8 start-page: 10145 year: 2016 ident: D3TA01154B/cit104/1 publication-title: Nanoscale doi: 10.1039/C6NR01702A – volume: 429 start-page: 606 year: 2006 ident: D3TA01154B/cit73/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.08.081 – volume: 22 start-page: 1915 year: 2010 ident: D3TA01154B/cit2/1 publication-title: Adv. Mater. doi: 10.1002/adma.200903934 – volume: 18 start-page: 4270 year: 2006 ident: D3TA01154B/cit80/1 publication-title: Chem. Mater. doi: 10.1021/cm060362r – volume: 530 start-page: 120 year: 2018 ident: D3TA01154B/cit51/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.06.055 |
SSID | ssj0000800699 |
Score | 2.5223973 |
SecondaryResourceType | review_article |
Snippet | Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 941 |
SubjectTerms | Carbon dioxide Catalysis Charge transport Chemical fuels Electronic structure Energy Energy bands Energy conversion Gold Hydrogen production Mineralization Nanoclusters New technology Photocatalysis Photoredox catalysis Quantum confinement Solar energy Solar energy conversion Transport properties Water splitting |
Title | Atomically precise thiolate-protected gold nanoclusters: current advances in solar-powered photoredox catalysis |
URI | https://www.proquest.com/docview/2808307303 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA6zsy_6IN4Wx10loC8yZG2bpG18q7oyyiAIFfdtSJvMOjC0w04Lsv_F_-rJpZdld0F9KSVpSyfna85lzvkOQq-DuAC9JQVhNJCEFZqRQrCEGLJzUYaSh8omyH6NF9_Zl3N-Ppn8HmUttU1xWl7dWlfyP1KFMZCrqZL9B8n2D4UBOAf5whEkDMe_knHW1Lba30QoDEvFXoMduQFntdHEEzCAPXlRb9W8klVdbltDi2CT4ErPy-RzAGxW7N64uWRn-qbBbbufNfjjWtW_5jbGY6hL7jBlwep1P3dedv3jTueZKwXqZiy1uCs0tLH6rnDL5Ob2Yf3lxoevF7IeEg_czvitU7I2RdiNyJosR8M_WqtRWj2OZUQuc3AU3owCHhh2U7cj6_GY63vb79nhGJvJaAcWjkfLK3PBXD3-DUURUMOzqmgjLSFRMajDPklxmDxAhxF4IdEUHWZn-edlH8Qz5nZse5T2b95R4FLxdnjAdaNn8GQOLrs2M9acyR-iB154OHOgeoQmunqM7o_YKZ-geoAX9vDCN-GFDbzwGF7vsAcX7sCFNxW-Bi48gAv34HqK8k9n-YcF8f05SElZ0hDBVbpOIiVkGgjzF7nWMow55TqM1lymXBWBKBNYoVDBTAHGYRSUiUqopKkq6RGaVnWlnyHMmRQq1pyqNWOmODtg4KbrVIKBnq6FnKE33fqtSs9db1qobFc2h4KK1UeaZ3at38_Qq_7anWNsufWqk04MK_9F71dRCg6J0Xl0ho5ANP39gySf3zVxjO4NiD5B0-ay1S_AXm2Klx41fwA1zptq |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+precise+thiolate-protected+gold+nanoclusters%3A+current+advances+in+solar-powered+photoredox+catalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Liang%2C+Hao&rft.au=Chen%2C+Qing&rft.au=Mo%2C+Qiao-Ling&rft.au=Wu%2C+Yue&rft.date=2023-05-02&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=17&rft.spage=941&rft.epage=9426&rft_id=info:doi/10.1039%2Fd3ta01154b&rft.externalDocID=d3ta01154b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |