Atomically precise thiolate-protected gold nanoclusters: current advances in solar-powered photoredox catalysis

Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for solving the deteriorating energy crisis and environmental issues in the future. In recent years, atomically precise gold nanoclusters, which have...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 17; pp. 941 - 9426
Main Authors Liang, Hao, Chen, Qing, Mo, Qiao-Ling, Wu, Yue, Xiao, Fang-Xing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 02.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for solving the deteriorating energy crisis and environmental issues in the future. In recent years, atomically precise gold nanoclusters, which have emerged as novel light-harvesting antennas possessing the merits of unique atomic stacking fashion, the quantum confinement effect, enriched catalytically active sites and a discrete energy band structure, have been drawing enormous attention in diverse fields. Despite the advancement, there is deficiency of a systematic, comprehensive, and insightful summary on the gold nanocluster-based photosystems to reinforce our fundamental understanding of the charge transport characteristics of metal nanoclusters in photocatalysis. Herein, our review summarizes the latest progress in gold nanocluster mediated photocatalysis and photoelectrocatalysis for diverse applications including non-selective photocatalytic organic pollutant mineralization, photocatalytic selective organic transformation, photocatalytic hydrogen generation, photocatalytic CO 2 reduction, and photoelectrochemical (PEC) water splitting. Moreover, we discuss the underlying photocatalytic and PEC mechanisms associated with the energy band and electronic structure of gold nanoclusters. Finally, perspectives and challenges of gold nanocluster-based photosystems are outlined. It is anticipated that our review could inspire ideas on how to smartly utilize atomically precise metal nanoclusters for crafting high-efficiency photosystems towards solar energy conversion. The latest developments in atomically precise gold nanocluster based photosystems for solar energy conversion are comprehensively summarized and elucidated.
AbstractList Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for solving the deteriorating energy crisis and environmental issues in the future. In recent years, atomically precise gold nanoclusters, which have emerged as novel light-harvesting antennas possessing the merits of unique atomic stacking fashion, the quantum confinement effect, enriched catalytically active sites and a discrete energy band structure, have been drawing enormous attention in diverse fields. Despite the advancement, there is deficiency of a systematic, comprehensive, and insightful summary on the gold nanocluster-based photosystems to reinforce our fundamental understanding of the charge transport characteristics of metal nanoclusters in photocatalysis. Herein, our review summarizes the latest progress in gold nanocluster mediated photocatalysis and photoelectrocatalysis for diverse applications including non-selective photocatalytic organic pollutant mineralization, photocatalytic selective organic transformation, photocatalytic hydrogen generation, photocatalytic CO 2 reduction, and photoelectrochemical (PEC) water splitting. Moreover, we discuss the underlying photocatalytic and PEC mechanisms associated with the energy band and electronic structure of gold nanoclusters. Finally, perspectives and challenges of gold nanocluster-based photosystems are outlined. It is anticipated that our review could inspire ideas on how to smartly utilize atomically precise metal nanoclusters for crafting high-efficiency photosystems towards solar energy conversion. The latest developments in atomically precise gold nanocluster based photosystems for solar energy conversion are comprehensively summarized and elucidated.
Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for solving the deteriorating energy crisis and environmental issues in the future. In recent years, atomically precise gold nanoclusters, which have emerged as novel light-harvesting antennas possessing the merits of unique atomic stacking fashion, the quantum confinement effect, enriched catalytically active sites and a discrete energy band structure, have been drawing enormous attention in diverse fields. Despite the advancement, there is deficiency of a systematic, comprehensive, and insightful summary on the gold nanocluster-based photosystems to reinforce our fundamental understanding of the charge transport characteristics of metal nanoclusters in photocatalysis. Herein, our review summarizes the latest progress in gold nanocluster mediated photocatalysis and photoelectrocatalysis for diverse applications including non-selective photocatalytic organic pollutant mineralization, photocatalytic selective organic transformation, photocatalytic hydrogen generation, photocatalytic CO2 reduction, and photoelectrochemical (PEC) water splitting. Moreover, we discuss the underlying photocatalytic and PEC mechanisms associated with the energy band and electronic structure of gold nanoclusters. Finally, perspectives and challenges of gold nanocluster-based photosystems are outlined. It is anticipated that our review could inspire ideas on how to smartly utilize atomically precise metal nanoclusters for crafting high-efficiency photosystems towards solar energy conversion.
Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for solving the deteriorating energy crisis and environmental issues in the future. In recent years, atomically precise gold nanoclusters, which have emerged as novel light-harvesting antennas possessing the merits of unique atomic stacking fashion, the quantum confinement effect, enriched catalytically active sites and a discrete energy band structure, have been drawing enormous attention in diverse fields. Despite the advancement, there is deficiency of a systematic, comprehensive, and insightful summary on the gold nanocluster-based photosystems to reinforce our fundamental understanding of the charge transport characteristics of metal nanoclusters in photocatalysis. Herein, our review summarizes the latest progress in gold nanocluster mediated photocatalysis and photoelectrocatalysis for diverse applications including non-selective photocatalytic organic pollutant mineralization, photocatalytic selective organic transformation, photocatalytic hydrogen generation, photocatalytic CO 2 reduction, and photoelectrochemical (PEC) water splitting. Moreover, we discuss the underlying photocatalytic and PEC mechanisms associated with the energy band and electronic structure of gold nanoclusters. Finally, perspectives and challenges of gold nanocluster-based photosystems are outlined. It is anticipated that our review could inspire ideas on how to smartly utilize atomically precise metal nanoclusters for crafting high-efficiency photosystems towards solar energy conversion.
Author Liang, Hao
Xiao, Fang-Xing
Chen, Qing
Mo, Qiao-Ling
Wu, Yue
AuthorAffiliation Fuzhou University
College of Materials Science and Engineering
AuthorAffiliation_xml – sequence: 0
  name: College of Materials Science and Engineering
– sequence: 0
  name: Fuzhou University
Author_xml – sequence: 1
  givenname: Hao
  surname: Liang
  fullname: Liang, Hao
– sequence: 2
  givenname: Qing
  surname: Chen
  fullname: Chen, Qing
– sequence: 3
  givenname: Qiao-Ling
  surname: Mo
  fullname: Mo, Qiao-Ling
– sequence: 4
  givenname: Yue
  surname: Wu
  fullname: Wu, Yue
– sequence: 5
  givenname: Fang-Xing
  surname: Xiao
  fullname: Xiao, Fang-Xing
BookMark eNptkU1LAzEQhoNUsNZevAsBb8LqZLMfibdaP6HgpfclTbI2ZZusSar23xutVBDnMgPzvDO8M8doYJ3VCJ0SuCRA-ZWiUQAhZbE4QMMcSsjqgleDfc3YERqHsIIUDKDifIjcJLq1kaLrtrj3WpqgcVwa14mos967qGXUCr-4TmErrJPdJkTtwzWWG--1jVioN2GlDthYHJLOZ7171z6J-qWLLhXuA0sRRbcNJpygw1Z0QY9_8gjN7-_m08ds9vzwNJ3MMkmLOma8VKytc8UFAw5FVWgtSFXSUpO8LQUr1QK4rJMHolJnQRnJQdaqpoIyJekIne_GJguvGx1is3Ibb9PGJmfAKNQUaKJgR0nvQvC6baSJIhpnoxemawg0X4dtbul88n3YmyS5-CPpvVkLv_0fPtvBPsg99_sl-gmU4IaB
CitedBy_id crossref_primary_10_1021_acs_inorgchem_3c02951
crossref_primary_10_1039_D4CC05255B
crossref_primary_10_1039_D4NJ00797B
crossref_primary_10_1039_D4TA05117C
crossref_primary_10_1021_acs_inorgchem_3c02857
crossref_primary_10_1016_j_jddst_2024_106594
crossref_primary_10_1021_acs_chemmater_3c00974
crossref_primary_10_1016_j_cjsc_2023_100173
crossref_primary_10_26599_POM_2023_9140050
crossref_primary_10_1021_acs_inorgchem_3c03283
crossref_primary_10_1039_D3NR05857C
crossref_primary_10_1016_j_mtcomm_2024_109348
crossref_primary_10_1039_D4DT00340C
crossref_primary_10_1016_j_pmatsci_2023_101229
crossref_primary_10_1039_D3CC04973F
crossref_primary_10_1002_smll_202400958
crossref_primary_10_1021_acs_inorgchem_3c02700
crossref_primary_10_1002_adom_202403539
crossref_primary_10_1021_acsami_4c01938
crossref_primary_10_1002_smll_202405228
crossref_primary_10_1021_acsanm_3c05964
crossref_primary_10_1021_acs_inorgchem_4c01383
crossref_primary_10_1039_D4NH00197D
crossref_primary_10_1021_acsmaterialslett_4c00622
crossref_primary_10_1021_acs_inorgchem_3c04083
crossref_primary_10_1016_j_mcat_2025_114892
crossref_primary_10_1039_D4CS00962B
crossref_primary_10_1002_adfm_202303737
crossref_primary_10_1016_j_cej_2024_153608
Cites_doi 10.1007/430_2013_138
10.1016/S0920-5861(03)00273-6
10.1021/acs.accounts.8b00065
10.1021/jp805786p
10.1021/jp953556v
10.1002/adfm.202110848
10.1039/C9CS00633H
10.1021/acsnano.8b03940
10.1021/ja411061e
10.1021/ja307449z
10.1021/cr3004899
10.1021/jacs.5b06323
10.1016/j.ceramint.2018.07.137
10.1016/j.apcatb.2012.07.021
10.1039/c3nr01888a
10.1021/cm500260z
10.1039/D2TA02755K
10.1016/j.apcatb.2013.02.006
10.1021/jp9023298
10.1016/j.elecom.2010.05.021
10.1021/jp971438x
10.1021/cr010371d
10.1039/c0cc01021a
10.1039/c2jm16298a
10.1021/es9502278
10.1039/C9TA11579J
10.1021/ja0561441
10.1021/ja028285y
10.1038/238037a0
10.1021/ja042192u
10.1021/am201721e
10.1039/D2TA00572G
10.1021/ja103592z
10.1007/s12274-017-1935-2
10.1039/D0TA02122A
10.1007/BF03215573
10.1007/s12274-014-0403-5
10.1039/C2CS35367A
10.1007/s42452-019-0473-9
10.1038/s41467-017-00970-1
10.1021/acs.chemrev.5b00703
10.1039/D1TA10284B
10.1039/D0TA07235D
10.1002/anie.201509381
10.1039/C7TA04333C
10.1007/430_2014_143
10.1002/smll.201401919
10.1021/ja403807f
10.1002/adfm.202106338
10.1021/jacs.5b03483
10.1002/anie.201600267
10.1039/C7TA09119B
10.1039/b904491d
10.1038/srep22742
10.1039/C1EE02875H
10.1039/D0TA05297C
10.1002/adfm.202210332
10.1038/s41467-017-01736-5
10.1002/cnma.201700336
10.1021/ja801279a
10.1039/C8TA10379H
10.1002/slct.201600671
10.1021/ar300213z
10.1021/ja00183a049
10.1039/C9TA07569K
10.1021/ja0659929
10.1039/D2TA08547J
10.1016/j.cclet.2018.01.043
10.1039/C7NR06697J
10.1039/C8TA02802H
10.1016/j.nantod.2017.12.009
10.1021/acs.jpcc.8b00151
10.1021/ja5017365
10.1016/j.apcatb.2011.03.026
10.1039/D0NR02596H
10.1126/sciadv.aat7259
10.1021/acsaem.9b00426
10.1039/C6CC01243D
10.1021/jacs.5b11174
10.1126/science.1066130
10.1039/c3cc41210e
10.1016/j.jcat.2017.07.027
10.1021/acsami.5b09091
10.1021/jz402441d
10.1021/acscatal.6b03509
10.1103/PhysRevMaterials.1.045404
10.1038/382607a0
10.1007/s10562-006-0030-1
10.1021/acs.inorgchem.9b03073
10.1021/acscatal.7b00239
10.1039/C8TA08841A
10.1504/IJNT.2018.098432
10.1126/sciadv.1500441
10.1039/C4CP00753K
10.1039/C9CC04562G
10.1021/acsami.9b14543
10.1021/acs.chemrev.5b00407
10.1021/ja505429f
10.1021/acs.jpcb.7b09442
10.1002/chem.201203158
10.1021/jz401447w
10.1039/C9TA01144G
10.1016/j.cattod.2018.09.010
10.1039/c3ta01450a
10.1021/acs.inorgchem.0c00780
10.1039/c2nr30480e
10.1039/c2cs15325d
10.1021/jp0202690
10.1021/cs300682d
10.1021/ar100048c
10.1021/acs.jpcc.9b10132
10.1002/admi.201701098
10.1039/C9TA08107K
10.1021/jp5122432
10.1039/c2nr32171h
10.1021/acsami.5b09987
10.1016/S1001-0742(07)60014-X
10.1021/ic8024588
10.1021/jp106337k
10.1021/acscatal.2c01667
10.1021/jacs.8b06723
10.1002/adma.200904317
10.1039/b926014p
10.1557/jmr.2004.19.2.628
10.1039/C2NR32760K
10.1021/ja071122v
10.1039/D2TA07813A
10.1039/C6RA23014H
10.1021/ar400209a
10.1039/C6NR01702A
10.1016/j.cplett.2006.08.081
10.1002/adma.200903934
10.1021/cm060362r
10.1016/j.jcis.2018.06.055
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d3ta01154b
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 9426
ExternalDocumentID 10_1039_D3TA01154B
d3ta01154b
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c347t-95d8f72d9a8090464eea16535e12f5a85db09c70691dea1b38120c7d73a38dc3
ISSN 2050-7488
IngestDate Mon Jun 30 11:59:53 EDT 2025
Tue Jul 01 01:13:39 EDT 2025
Thu Apr 24 22:53:02 EDT 2025
Tue Dec 17 20:58:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-95d8f72d9a8090464eea16535e12f5a85db09c70691dea1b38120c7d73a38dc3
Notes 2
https://fxxiao.fzu.edu.cn
Fang-Xing Xiao is currently a full professor at Fuzhou University, China. He received his BSc and MSc degrees from National Huaqiao University in 2006 and 2009, and his PhD degree from Fuzhou University in 2013. From 2013 to 2017, he worked as a postdoctoral research fellow at the Nanyang Technological University. His research group works on heterogeneous photoredox catalysis, predominantly centered on designing composite catalysts, fundamental investigation on catalyst structures and catalytic mechanisms, and probing their multifarious redox applications in photocatalysis and photoelectrocatalysis. More detailed information can be found at his research group website
Hao Liang received a Bachelor's degree in Materials Science and Engineering (2019) from Nanjing Institute of Technology, and an MS degree (2022) in Materials Engineering from Fuzhou University. His research interest is centered on developing metal nanocluster-based materials for photocatalytic hydrogen generation and selective organic conversion.
Chen Qing is currently a second-year master student at Fuzhou University under the supervision of Prof. Fang-Xing Xiao. She holds a Bachelor's degree in Materials Science and Engineering from Anhui University of Science and Technology (2020). Her research interest is centered on developing transition metal sulfide-based materials for photocatalytic CO
reduction.
Yue Wu is currently an associate Professor at Fuzhou University, China. She received her BS degree from the College of Chemistry, Central China Normal University, in 2016, and her PhD degree from the Department of Chemistry, Tsinghua University, in 2022. Her research interest focuses on rational design and controlled synthesis of nanomaterials, and their surface/interface structure modulation for catalysis.
Qiao-Ling Mo is a third-year PhD student at Fuzhou University under the supervision of Prof. Xiao. She holds a Bachelor's degree in Materials Chemistry (2015) from Jiangxi University of Science and Technology, and an MS degree (2018) in Materials Physics and Chemistry from Fuzhou University. Her PhD research interest is centered on developing layered transition metal chalcogenide materials for photocatalytic selective organic conversion and photoelectrochemical water splitting.
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5673-5362
PQID 2808307303
PQPubID 2047523
PageCount 26
ParticipantIDs crossref_primary_10_1039_D3TA01154B
crossref_citationtrail_10_1039_D3TA01154B
rsc_primary_d3ta01154b
proquest_journals_2808307303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-02
PublicationDateYYYYMMDD 2023-05-02
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-02
  day: 02
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ho-Wu (D3TA01154B/cit22/1) 2017; 121
Yamazoe (D3TA01154B/cit4/1) 2014; 47
Jiang (D3TA01154B/cit138/1) 2017; 9
Haarstrick (D3TA01154B/cit69/1) 1996; 30
Negishi (D3TA01154B/cit96/1) 2013; 5
Xiao (D3TA01154B/cit64/1) 2015; 137
Xiao (D3TA01154B/cit71/1) 2015; 11
Zhao (D3TA01154B/cit29/1) 2011; 104
Kogo (D3TA01154B/cit113/1) 2012; 4
Li (D3TA01154B/cit134/1) 2019; 7
Wei (D3TA01154B/cit129/1) 2022; 32
Tian (D3TA01154B/cit61/1) 2005; 127
Zeng (D3TA01154B/cit135/1) 2018; 6
Sakai (D3TA01154B/cit112/1) 2010; 22
Hayyan (D3TA01154B/cit90/1) 2016; 116
Li (D3TA01154B/cit126/1) 2022; 32
Mor (D3TA01154B/cit66/1) 2004; 19
Cui (D3TA01154B/cit120/1) 2018; 140
Yan (D3TA01154B/cit73/1) 2006; 429
Huang (D3TA01154B/cit92/1) 2019; 55
Xiao (D3TA01154B/cit136/1) 2018; 5
Chong (D3TA01154B/cit43/1) 2018; 4
Ye (D3TA01154B/cit108/1) 2012; 134
Chen (D3TA01154B/cit62/1) 2013; 42
Long (D3TA01154B/cit79/1) 2008; 130
Wei (D3TA01154B/cit105/1) 2020; 8
Bain (D3TA01154B/cit24/1) 1989; 111
Zeng (D3TA01154B/cit114/1) 2018; 6
Yan (D3TA01154B/cit21/1) 2018; 4
Liu (D3TA01154B/cit104/1) 2016; 8
Dai (D3TA01154B/cit109/1) 2019; 7
Chai (D3TA01154B/cit44/1) 2016; 6
Ling (D3TA01154B/cit51/1) 2018; 530
Li (D3TA01154B/cit85/1) 2017; 7
Zeng (D3TA01154B/cit137/1) 2018; 6
Warren (D3TA01154B/cit63/1) 2012; 5
Gould (D3TA01154B/cit41/1) 2014; 16
Tesana (D3TA01154B/cit65/1) 2018; 15
Mrowetz (D3TA01154B/cit81/1) 2007; 40
Li (D3TA01154B/cit80/1) 2006; 18
Jiang (D3TA01154B/cit49/1) 2009; 48
Fujishima (D3TA01154B/cit102/1) 1972; 238
Xiao (D3TA01154B/cit119/1) 2017; 9
Liu (D3TA01154B/cit60/1) 2016; 6
Kurashige (D3TA01154B/cit34/1) 2013; 49
Mo (D3TA01154B/cit123/1) 2023; 33
Zheng (D3TA01154B/cit78/1) 2006; 128
Mo (D3TA01154B/cit131/1) 2020; 8
Mingos (D3TA01154B/cit27/1) 2014; 161
Zhang (D3TA01154B/cit28/1) 2018; 11
Yamashita (D3TA01154B/cit70/1) 2003; 84
Sharma (D3TA01154B/cit75/1) 2016; 1
Comotti (D3TA01154B/cit82/1) 2006; 128
Lin (D3TA01154B/cit6/1) 2020; 59
Schaaff (D3TA01154B/cit12/1) 1997; 101
Chen (D3TA01154B/cit58/1) 2014; 136
Xiao (D3TA01154B/cit91/1) 2015; 7
Ding (D3TA01154B/cit98/1) 2017; 1
Jin (D3TA01154B/cit1/1) 2016; 116
Yao (D3TA01154B/cit11/1) 2018; 51
Roth (D3TA01154B/cit57/1) 2001; 294
Iwase (D3TA01154B/cit100/1) 2013; 136–137
Zhang (D3TA01154B/cit86/1) 2018; 29
Abbas (D3TA01154B/cit54/1) 2016; 138
Tang (D3TA01154B/cit128/1) 2022; 10
Hou (D3TA01154B/cit107/1) 2019; 7
Zhu (D3TA01154B/cit20/1) 2008; 112
Liao (D3TA01154B/cit37/1) 2015; 137
Gottlieb (D3TA01154B/cit33/1) 2013; 19
Negishi (D3TA01154B/cit31/1) 2010; 46
Ogilby (D3TA01154B/cit88/1) 2010; 39
Iwase (D3TA01154B/cit101/1) 2006; 108
Zhu (D3TA01154B/cit2/1) 2010; 22
Lu (D3TA01154B/cit3/1) 2012; 41
Chen (D3TA01154B/cit9/1) 2017; 7
Hou (D3TA01154B/cit127/1) 2022; 10
Yao (D3TA01154B/cit15/1) 2017; 8
Ruibin (D3TA01154B/cit116/1) 2014; 31
Shi (D3TA01154B/cit106/1) 2018; 12
Hou (D3TA01154B/cit110/1) 2020; 59
Xu (D3TA01154B/cit26/1) 2017; 354
Kurashige (D3TA01154B/cit56/1) 2019; 2
Kurashige (D3TA01154B/cit99/1) 2018; 122
Kawasaki (D3TA01154B/cit76/1) 2014; 26
Li (D3TA01154B/cit52/1) 2007; 129
Liang (D3TA01154B/cit139/1) 2017; 5
Shen (D3TA01154B/cit95/1) 2012; 126
Lai (D3TA01154B/cit68/1) 2012; 22
Bhunia (D3TA01154B/cit42/1) 2019; 1
Kacprzak (D3TA01154B/cit48/1) 2009; 11
Chen (D3TA01154B/cit55/1) 2013; 135
Xi (D3TA01154B/cit67/1) 2012; 4
Kumara (D3TA01154B/cit32/1) 2014; 5
Tada (D3TA01154B/cit50/1) 2002; 106
Walter (D3TA01154B/cit46/1) 2009; 113
Xiao (D3TA01154B/cit122/1) 2023; 11
Yuichi (D3TA01154B/cit47/1) 2010; 23
Parker (D3TA01154B/cit19/1) 2010; 43
Bootharaju (D3TA01154B/cit35/1) 2016; 55
Mirkin (D3TA01154B/cit25/1) 1996; 382
Xie (D3TA01154B/cit93/1) 2020; 340
Naya (D3TA01154B/cit84/1) 2013; 3
Li (D3TA01154B/cit40/1) 2016; 52
Schweitzer (D3TA01154B/cit89/1) 2003; 103
Bo (D3TA01154B/cit121/1) 2020; 12
Negishi (D3TA01154B/cit97/1) 2015; 119
Li (D3TA01154B/cit87/1) 2012; 4
Michael G (D3TA01154B/cit103/1) 2010; 11
Luo (D3TA01154B/cit13/1) 2014; 136
Yang (D3TA01154B/cit74/1) 2007; 19
Sreedhar (D3TA01154B/cit118/1) 2018; 44
Nasr (D3TA01154B/cit72/1) 1996; 100
Tang (D3TA01154B/cit111/1) 2022; 12
Kogo (D3TA01154B/cit10/1) 2010; 12
Lin (D3TA01154B/cit130/1) 2020; 8
Han (D3TA01154B/cit23/1) 2016; 8
Kogo (D3TA01154B/cit94/1) 2010; 12
Li (D3TA01154B/cit17/1) 2013; 46
Li (D3TA01154B/cit133/1) 2020; 12
Li (D3TA01154B/cit53/1) 2019; 7
Chen (D3TA01154B/cit8/1) 2014; 136
Xu (D3TA01154B/cit132/1) 2020; 8
Yao (D3TA01154B/cit14/1) 2017; 8
Wang (D3TA01154B/cit16/1) 2015; 1
Akimov (D3TA01154B/cit5/1) 2013; 113
Li (D3TA01154B/cit124/1) 2023; 11
Lee (D3TA01154B/cit77/1) 2010; 114
Qian (D3TA01154B/cit18/1) 2010; 132
Zhu (D3TA01154B/cit125/1) 2022; 10
Yu (D3TA01154B/cit59/1) 2013; 4
Soldan (D3TA01154B/cit36/1) 2016; 55
Zhao (D3TA01154B/cit39/1) 2018; 18
Kong (D3TA01154B/cit7/1) 2013; 5
Kang (D3TA01154B/cit38/1) 2020; 49
Xiao (D3TA01154B/cit117/1) 2013; 1
Konishi (D3TA01154B/cit30/1) 2014; 161
Luo (D3TA01154B/cit83/1) 2002; 124
Dai (D3TA01154B/cit115/1) 2020; 124
Jin (D3TA01154B/cit45/1) 2014; 7
References_xml – volume: 161
  start-page: 1
  year: 2014
  ident: D3TA01154B/cit27/1
  publication-title: Struct. Bonding
  doi: 10.1007/430_2013_138
– volume: 84
  start-page: 191
  year: 2003
  ident: D3TA01154B/cit70/1
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(03)00273-6
– volume: 51
  start-page: 1338
  year: 2018
  ident: D3TA01154B/cit11/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00065
– volume: 112
  start-page: 14221
  year: 2008
  ident: D3TA01154B/cit20/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jp805786p
– volume: 100
  start-page: 8436
  year: 1996
  ident: D3TA01154B/cit72/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp953556v
– volume: 32
  start-page: 2110848
  year: 2022
  ident: D3TA01154B/cit126/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110848
– volume: 49
  start-page: 6443
  year: 2020
  ident: D3TA01154B/cit38/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00633H
– volume: 12
  start-page: 6335
  year: 2018
  ident: D3TA01154B/cit106/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03940
– volume: 136
  start-page: 92
  year: 2014
  ident: D3TA01154B/cit58/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411061e
– volume: 134
  start-page: 15720
  year: 2012
  ident: D3TA01154B/cit108/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307449z
– volume: 113
  start-page: 4496
  year: 2013
  ident: D3TA01154B/cit5/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr3004899
– volume: 137
  start-page: 10735
  year: 2015
  ident: D3TA01154B/cit64/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06323
– volume: 44
  start-page: 18978
  year: 2018
  ident: D3TA01154B/cit118/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.07.137
– volume: 126
  start-page: 153
  year: 2012
  ident: D3TA01154B/cit95/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2012.07.021
– volume: 5
  start-page: 7188
  year: 2013
  ident: D3TA01154B/cit96/1
  publication-title: Nanoscale
  doi: 10.1039/c3nr01888a
– volume: 26
  start-page: 2777
  year: 2014
  ident: D3TA01154B/cit76/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm500260z
– volume: 10
  start-page: 11926
  year: 2022
  ident: D3TA01154B/cit125/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02755K
– volume: 136–137
  start-page: 89
  year: 2013
  ident: D3TA01154B/cit100/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2013.02.006
– volume: 113
  start-page: 15834
  year: 2009
  ident: D3TA01154B/cit46/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9023298
– volume: 12
  start-page: 996
  year: 2010
  ident: D3TA01154B/cit94/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.05.021
– volume: 101
  start-page: 7885
  year: 1997
  ident: D3TA01154B/cit12/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp971438x
– volume: 103
  start-page: 1685
  year: 2003
  ident: D3TA01154B/cit89/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr010371d
– volume: 46
  start-page: 4713
  year: 2010
  ident: D3TA01154B/cit31/1
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01021a
– volume: 22
  start-page: 7420
  year: 2012
  ident: D3TA01154B/cit68/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16298a
– volume: 30
  start-page: 817
  year: 1996
  ident: D3TA01154B/cit69/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9502278
– volume: 8
  start-page: 177
  year: 2020
  ident: D3TA01154B/cit105/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11579J
– volume: 128
  start-page: 917
  year: 2006
  ident: D3TA01154B/cit82/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0561441
– volume: 124
  start-page: 13988
  year: 2002
  ident: D3TA01154B/cit83/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028285y
– volume: 238
  start-page: 37
  year: 1972
  ident: D3TA01154B/cit102/1
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 127
  start-page: 7632
  year: 2005
  ident: D3TA01154B/cit61/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042192u
– volume: 4
  start-page: 1093
  year: 2012
  ident: D3TA01154B/cit67/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am201721e
– volume: 31
  start-page: 5274
  year: 2014
  ident: D3TA01154B/cit116/1
  publication-title: Adv. Mater.
– volume: 10
  start-page: 7006
  year: 2022
  ident: D3TA01154B/cit127/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA00572G
– volume: 132
  start-page: 8280
  year: 2010
  ident: D3TA01154B/cit18/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103592z
– volume: 11
  start-page: 5787
  year: 2018
  ident: D3TA01154B/cit28/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1935-2
– volume: 8
  start-page: 8360
  year: 2020
  ident: D3TA01154B/cit132/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02122A
– volume: 40
  start-page: 154
  year: 2007
  ident: D3TA01154B/cit81/1
  publication-title: Gold Bull.
  doi: 10.1007/BF03215573
– volume: 7
  start-page: 285
  year: 2014
  ident: D3TA01154B/cit45/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0403-5
– volume: 42
  start-page: 2679
  year: 2013
  ident: D3TA01154B/cit62/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35367A
– volume: 1
  start-page: 449
  year: 2019
  ident: D3TA01154B/cit42/1
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-0473-9
– volume: 9
  start-page: 16922
  year: 2017
  ident: D3TA01154B/cit138/1
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 927
  year: 2017
  ident: D3TA01154B/cit14/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00970-1
– volume: 116
  start-page: 10346
  year: 2016
  ident: D3TA01154B/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00703
– volume: 10
  start-page: 4032
  year: 2022
  ident: D3TA01154B/cit128/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA10284B
– volume: 8
  start-page: 20151
  year: 2020
  ident: D3TA01154B/cit130/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA07235D
– volume: 55
  start-page: 922
  year: 2016
  ident: D3TA01154B/cit35/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201509381
– volume: 5
  start-page: 15601
  year: 2017
  ident: D3TA01154B/cit139/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04333C
– volume: 161
  start-page: 49
  year: 2014
  ident: D3TA01154B/cit30/1
  publication-title: Struct. Bonding
  doi: 10.1007/430_2014_143
– volume: 11
  start-page: 554
  year: 2015
  ident: D3TA01154B/cit71/1
  publication-title: Small
  doi: 10.1002/smll.201401919
– volume: 135
  start-page: 8822
  year: 2013
  ident: D3TA01154B/cit55/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403807f
– volume: 32
  start-page: 2106338
  year: 2022
  ident: D3TA01154B/cit129/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106338
– volume: 137
  start-page: 9511
  year: 2015
  ident: D3TA01154B/cit37/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03483
– volume: 55
  start-page: 5749
  year: 2016
  ident: D3TA01154B/cit36/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600267
– volume: 6
  start-page: 1700
  year: 2018
  ident: D3TA01154B/cit137/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09119B
– volume: 11
  start-page: 7123
  year: 2009
  ident: D3TA01154B/cit48/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b904491d
– volume: 6
  start-page: 22742
  year: 2016
  ident: D3TA01154B/cit60/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep22742
– volume: 5
  start-page: 5133
  year: 2012
  ident: D3TA01154B/cit63/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02875H
– volume: 8
  start-page: 16392
  year: 2020
  ident: D3TA01154B/cit131/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05297C
– volume: 33
  start-page: 2210332
  year: 2023
  ident: D3TA01154B/cit123/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210332
– volume: 8
  start-page: 1555
  year: 2017
  ident: D3TA01154B/cit15/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01736-5
– volume: 4
  start-page: 482
  year: 2018
  ident: D3TA01154B/cit43/1
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201700336
– volume: 11
  start-page: 6446
  year: 2010
  ident: D3TA01154B/cit103/1
  publication-title: Chem. Rev.
– volume: 130
  start-page: 10103
  year: 2008
  ident: D3TA01154B/cit79/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801279a
– volume: 7
  start-page: 2741
  year: 2019
  ident: D3TA01154B/cit109/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10379H
– volume: 1
  start-page: 2963
  year: 2016
  ident: D3TA01154B/cit75/1
  publication-title: Chemistryselect
  doi: 10.1002/slct.201600671
– volume: 46
  start-page: 1749
  year: 2013
  ident: D3TA01154B/cit17/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300213z
– volume: 111
  start-page: 321
  year: 1989
  ident: D3TA01154B/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00183a049
– volume: 7
  start-page: 21182
  year: 2019
  ident: D3TA01154B/cit134/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07569K
– volume: 128
  start-page: 14278
  year: 2006
  ident: D3TA01154B/cit78/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0659929
– volume: 11
  start-page: 2402
  year: 2023
  ident: D3TA01154B/cit122/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA08547J
– volume: 29
  start-page: 687
  year: 2018
  ident: D3TA01154B/cit86/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.01.043
– volume: 9
  start-page: 17118
  year: 2017
  ident: D3TA01154B/cit119/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR06697J
– volume: 6
  start-page: 11154
  year: 2018
  ident: D3TA01154B/cit114/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02802H
– volume: 18
  start-page: 86
  year: 2018
  ident: D3TA01154B/cit39/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.12.009
– volume: 122
  start-page: 13669
  year: 2018
  ident: D3TA01154B/cit99/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b00151
– volume: 136
  start-page: 6075
  year: 2014
  ident: D3TA01154B/cit8/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5017365
– volume: 23
  start-page: 6219
  year: 2010
  ident: D3TA01154B/cit47/1
  publication-title: Phys. Chem. Chem. Phys.
– volume: 104
  start-page: 239
  year: 2011
  ident: D3TA01154B/cit29/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2011.03.026
– volume: 12
  start-page: 12196
  year: 2020
  ident: D3TA01154B/cit121/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR02596H
– volume: 4
  start-page: eaat7259
  year: 2018
  ident: D3TA01154B/cit21/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat7259
– volume: 2
  start-page: 4175
  year: 2019
  ident: D3TA01154B/cit56/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00426
– volume: 52
  start-page: 5194
  year: 2016
  ident: D3TA01154B/cit40/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01243D
– volume: 138
  start-page: 390
  year: 2016
  ident: D3TA01154B/cit54/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11174
– volume: 294
  start-page: 2524
  year: 2001
  ident: D3TA01154B/cit57/1
  publication-title: Science
  doi: 10.1126/science.1066130
– volume: 49
  start-page: 5447
  year: 2013
  ident: D3TA01154B/cit34/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc41210e
– volume: 354
  start-page: 1
  year: 2017
  ident: D3TA01154B/cit26/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.07.027
– volume: 7
  start-page: 28105
  year: 2015
  ident: D3TA01154B/cit91/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09091
– volume: 5
  start-page: 461
  year: 2014
  ident: D3TA01154B/cit32/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz402441d
– volume: 7
  start-page: 3632
  year: 2017
  ident: D3TA01154B/cit9/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03509
– volume: 1
  start-page: 045404
  year: 2017
  ident: D3TA01154B/cit98/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.045404
– volume: 382
  start-page: 607
  year: 1996
  ident: D3TA01154B/cit25/1
  publication-title: Nature
  doi: 10.1038/382607a0
– volume: 108
  start-page: 7
  year: 2006
  ident: D3TA01154B/cit101/1
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-006-0030-1
– volume: 59
  start-page: 1364
  year: 2020
  ident: D3TA01154B/cit6/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b03073
– volume: 7
  start-page: 3368
  year: 2017
  ident: D3TA01154B/cit85/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00239
– volume: 6
  start-page: 24686
  year: 2018
  ident: D3TA01154B/cit135/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08841A
– volume: 15
  start-page: 669
  year: 2018
  ident: D3TA01154B/cit65/1
  publication-title: Int. J. Nanotechnol.
  doi: 10.1504/IJNT.2018.098432
– volume: 1
  start-page: e1500441
  year: 2015
  ident: D3TA01154B/cit16/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500441
– volume: 16
  start-page: 21049
  year: 2014
  ident: D3TA01154B/cit41/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00753K
– volume: 55
  start-page: 10591
  year: 2019
  ident: D3TA01154B/cit92/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04562G
– volume: 12
  start-page: 4373
  year: 2020
  ident: D3TA01154B/cit133/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14543
– volume: 116
  start-page: 3029
  year: 2016
  ident: D3TA01154B/cit90/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00407
– volume: 136
  start-page: 10577
  year: 2014
  ident: D3TA01154B/cit13/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505429f
– volume: 121
  start-page: 10073
  year: 2017
  ident: D3TA01154B/cit22/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b09442
– volume: 19
  start-page: 4238
  year: 2013
  ident: D3TA01154B/cit33/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201203158
– volume: 4
  start-page: 2847
  year: 2013
  ident: D3TA01154B/cit59/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401447w
– volume: 7
  start-page: 8938
  year: 2019
  ident: D3TA01154B/cit53/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01144G
– volume: 340
  start-page: 121
  year: 2020
  ident: D3TA01154B/cit93/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.09.010
– volume: 1
  start-page: 5790
  year: 2013
  ident: D3TA01154B/cit117/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta01450a
– volume: 59
  start-page: 7325
  year: 2020
  ident: D3TA01154B/cit110/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c00780
– volume: 4
  start-page: 4217
  year: 2012
  ident: D3TA01154B/cit113/1
  publication-title: Nanoscale
  doi: 10.1039/c2nr30480e
– volume: 41
  start-page: 3594
  year: 2012
  ident: D3TA01154B/cit3/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15325d
– volume: 106
  start-page: 8714
  year: 2002
  ident: D3TA01154B/cit50/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0202690
– volume: 3
  start-page: 10
  year: 2013
  ident: D3TA01154B/cit84/1
  publication-title: ACS Catal.
  doi: 10.1021/cs300682d
– volume: 43
  start-page: 1289
  year: 2010
  ident: D3TA01154B/cit19/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100048c
– volume: 124
  start-page: 4989
  year: 2020
  ident: D3TA01154B/cit115/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b10132
– volume: 5
  start-page: 1701098
  year: 2018
  ident: D3TA01154B/cit136/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201701098
– volume: 7
  start-page: 22487
  year: 2019
  ident: D3TA01154B/cit107/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08107K
– volume: 119
  start-page: 11224
  year: 2015
  ident: D3TA01154B/cit97/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5122432
– volume: 4
  start-page: 6714
  year: 2012
  ident: D3TA01154B/cit87/1
  publication-title: Nanoscale
  doi: 10.1039/c2nr32171h
– volume: 8
  start-page: 1067
  year: 2016
  ident: D3TA01154B/cit23/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09987
– volume: 19
  start-page: 86
  year: 2007
  ident: D3TA01154B/cit74/1
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(07)60014-X
– volume: 48
  start-page: 2720
  year: 2009
  ident: D3TA01154B/cit49/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic8024588
– volume: 114
  start-page: 18366
  year: 2010
  ident: D3TA01154B/cit77/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106337k
– volume: 12
  start-page: 9023
  year: 2022
  ident: D3TA01154B/cit111/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c01667
– volume: 140
  start-page: 16514
  year: 2018
  ident: D3TA01154B/cit120/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06723
– volume: 22
  start-page: 3185
  year: 2010
  ident: D3TA01154B/cit112/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904317
– volume: 39
  start-page: 3181
  year: 2010
  ident: D3TA01154B/cit88/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b926014p
– volume: 19
  start-page: 628
  year: 2004
  ident: D3TA01154B/cit66/1
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2004.19.2.628
– volume: 5
  start-page: 1009
  year: 2013
  ident: D3TA01154B/cit7/1
  publication-title: Nanoscale
  doi: 10.1039/C2NR32760K
– volume: 12
  start-page: 996
  year: 2010
  ident: D3TA01154B/cit10/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.05.021
– volume: 129
  start-page: 9401
  year: 2007
  ident: D3TA01154B/cit52/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071122v
– volume: 11
  start-page: 589
  year: 2023
  ident: D3TA01154B/cit124/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA07813A
– volume: 6
  start-page: 111399
  year: 2016
  ident: D3TA01154B/cit44/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA23014H
– volume: 47
  start-page: 816
  year: 2014
  ident: D3TA01154B/cit4/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400209a
– volume: 8
  start-page: 10145
  year: 2016
  ident: D3TA01154B/cit104/1
  publication-title: Nanoscale
  doi: 10.1039/C6NR01702A
– volume: 429
  start-page: 606
  year: 2006
  ident: D3TA01154B/cit73/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.08.081
– volume: 22
  start-page: 1915
  year: 2010
  ident: D3TA01154B/cit2/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903934
– volume: 18
  start-page: 4270
  year: 2006
  ident: D3TA01154B/cit80/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm060362r
– volume: 530
  start-page: 120
  year: 2018
  ident: D3TA01154B/cit51/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.06.055
SSID ssj0000800699
Score 2.5223973
SecondaryResourceType review_article
Snippet Photocatalysis has been regarded as an emerging technology to convert renewable solar energy to chemical fuels, providing unprecedented opportunities for...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 941
SubjectTerms Carbon dioxide
Catalysis
Charge transport
Chemical fuels
Electronic structure
Energy
Energy bands
Energy conversion
Gold
Hydrogen production
Mineralization
Nanoclusters
New technology
Photocatalysis
Photoredox catalysis
Quantum confinement
Solar energy
Solar energy conversion
Transport properties
Water splitting
Title Atomically precise thiolate-protected gold nanoclusters: current advances in solar-powered photoredox catalysis
URI https://www.proquest.com/docview/2808307303
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA6zsy_6IN4Wx10loC8yZG2bpG18q7oyyiAIFfdtSJvMOjC0w04Lsv_F_-rJpZdld0F9KSVpSyfna85lzvkOQq-DuAC9JQVhNJCEFZqRQrCEGLJzUYaSh8omyH6NF9_Zl3N-Ppn8HmUttU1xWl7dWlfyP1KFMZCrqZL9B8n2D4UBOAf5whEkDMe_knHW1Lba30QoDEvFXoMduQFntdHEEzCAPXlRb9W8klVdbltDi2CT4ErPy-RzAGxW7N64uWRn-qbBbbufNfjjWtW_5jbGY6hL7jBlwep1P3dedv3jTueZKwXqZiy1uCs0tLH6rnDL5Ob2Yf3lxoevF7IeEg_czvitU7I2RdiNyJosR8M_WqtRWj2OZUQuc3AU3owCHhh2U7cj6_GY63vb79nhGJvJaAcWjkfLK3PBXD3-DUURUMOzqmgjLSFRMajDPklxmDxAhxF4IdEUHWZn-edlH8Qz5nZse5T2b95R4FLxdnjAdaNn8GQOLrs2M9acyR-iB154OHOgeoQmunqM7o_YKZ-geoAX9vDCN-GFDbzwGF7vsAcX7sCFNxW-Bi48gAv34HqK8k9n-YcF8f05SElZ0hDBVbpOIiVkGgjzF7nWMow55TqM1lymXBWBKBNYoVDBTAHGYRSUiUqopKkq6RGaVnWlnyHMmRQq1pyqNWOmODtg4KbrVIKBnq6FnKE33fqtSs9db1qobFc2h4KK1UeaZ3at38_Qq_7anWNsufWqk04MK_9F71dRCg6J0Xl0ho5ANP39gySf3zVxjO4NiD5B0-ay1S_AXm2Klx41fwA1zptq
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+precise+thiolate-protected+gold+nanoclusters%3A+current+advances+in+solar-powered+photoredox+catalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Liang%2C+Hao&rft.au=Chen%2C+Qing&rft.au=Mo%2C+Qiao-Ling&rft.au=Wu%2C+Yue&rft.date=2023-05-02&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=17&rft.spage=941&rft.epage=9426&rft_id=info:doi/10.1039%2Fd3ta01154b&rft.externalDocID=d3ta01154b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon