Assessing the performance of various infiltration models to improve water management practices

Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration models varies significantly depending on soil characteristics and field conditions. Accurate predictions depend on selecting appropriate model...

Full description

Saved in:
Bibliographic Details
Published inPaddy and water environment Vol. 23; no. 1; pp. 77 - 93
Main Authors Vishwakarma, Dinesh Kumar, Yadav, Devideen, Kumar, Rohitashw, Kumar, Ram, Bhat, Shakeel Ahmad, Mirzania, Ehsan, Kuriqi, Alban
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration models varies significantly depending on soil characteristics and field conditions. Accurate predictions depend on selecting appropriate models for specific sites because of soil spatial variability. This requires extensive testing and recording of infiltration rates at each location. This study assesses various infiltration rate measurement models to enhance water management efficiency. Infiltration rate measurements were conducted at three sites in Dehradun using a double-ring infiltrometer. Well-established models, such as Philips JR, Green, Ampt, Horton, Kostiakov, modified Kostiakov, and the Soil Conservation Service (SCS) model, were evaluated. Data from infiltration tests were used to calibrate these models, facilitating better irrigation system design and stormwater management. In assessing their effectiveness and efficiency, key evaluation criteria such as Nash–Sutcliffe efficiency (NSE), R -squared ( R 2 ), root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE) were employed. Our findings highlight the superiority of the Philips JR model, offering the highest overall accuracy with the highest average value R 2  = 0.9557 and NSE = 0.9553, lowest MAE = 0.6717 cm/h, MBE = − 0.0160 cm/h and RMSE = 1.0077 cm/h. These results underscore the model’s ability to synthesize infiltration data effectively, even in the absence of direct measurements. This insight positions the Philips JR model as a valuable tool for estimating infiltration rates in similar conditions.
AbstractList Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration models varies significantly depending on soil characteristics and field conditions. Accurate predictions depend on selecting appropriate models for specific sites because of soil spatial variability. This requires extensive testing and recording of infiltration rates at each location. This study assesses various infiltration rate measurement models to enhance water management efficiency. Infiltration rate measurements were conducted at three sites in Dehradun using a double-ring infiltrometer. Well-established models, such as Philips JR, Green, Ampt, Horton, Kostiakov, modified Kostiakov, and the Soil Conservation Service (SCS) model, were evaluated. Data from infiltration tests were used to calibrate these models, facilitating better irrigation system design and stormwater management. In assessing their effectiveness and efficiency, key evaluation criteria such as Nash–Sutcliffe efficiency (NSE), R-squared (R2), root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE) were employed. Our findings highlight the superiority of the Philips JR model, offering the highest overall accuracy with the highest average value R2 = 0.9557 and NSE = 0.9553, lowest MAE = 0.6717 cm/h, MBE = − 0.0160 cm/h and RMSE = 1.0077 cm/h. These results underscore the model’s ability to synthesize infiltration data effectively, even in the absence of direct measurements. This insight positions the Philips JR model as a valuable tool for estimating infiltration rates in similar conditions.
Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration models varies significantly depending on soil characteristics and field conditions. Accurate predictions depend on selecting appropriate models for specific sites because of soil spatial variability. This requires extensive testing and recording of infiltration rates at each location. This study assesses various infiltration rate measurement models to enhance water management efficiency. Infiltration rate measurements were conducted at three sites in Dehradun using a double-ring infiltrometer. Well-established models, such as Philips JR, Green, Ampt, Horton, Kostiakov, modified Kostiakov, and the Soil Conservation Service (SCS) model, were evaluated. Data from infiltration tests were used to calibrate these models, facilitating better irrigation system design and stormwater management. In assessing their effectiveness and efficiency, key evaluation criteria such as Nash–Sutcliffe efficiency (NSE), R -squared ( R 2 ), root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE) were employed. Our findings highlight the superiority of the Philips JR model, offering the highest overall accuracy with the highest average value R 2  = 0.9557 and NSE = 0.9553, lowest MAE = 0.6717 cm/h, MBE = − 0.0160 cm/h and RMSE = 1.0077 cm/h. These results underscore the model’s ability to synthesize infiltration data effectively, even in the absence of direct measurements. This insight positions the Philips JR model as a valuable tool for estimating infiltration rates in similar conditions.
Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration models varies significantly depending on soil characteristics and field conditions. Accurate predictions depend on selecting appropriate models for specific sites because of soil spatial variability. This requires extensive testing and recording of infiltration rates at each location. This study assesses various infiltration rate measurement models to enhance water management efficiency. Infiltration rate measurements were conducted at three sites in Dehradun using a double-ring infiltrometer. Well-established models, such as Philips JR, Green, Ampt, Horton, Kostiakov, modified Kostiakov, and the Soil Conservation Service (SCS) model, were evaluated. Data from infiltration tests were used to calibrate these models, facilitating better irrigation system design and stormwater management. In assessing their effectiveness and efficiency, key evaluation criteria such as Nash–Sutcliffe efficiency (NSE), R -squared ( R 2 ), root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE) were employed. Our findings highlight the superiority of the Philips JR model, offering the highest overall accuracy with the highest average value R 2 = 0.9557 and NSE = 0.9553, lowest MAE = 0.6717 cm/h, MBE = − 0.0160 cm/h and RMSE = 1.0077 cm/h. These results underscore the model’s ability to synthesize infiltration data effectively, even in the absence of direct measurements. This insight positions the Philips JR model as a valuable tool for estimating infiltration rates in similar conditions.
Author Vishwakarma, Dinesh Kumar
Bhat, Shakeel Ahmad
Kuriqi, Alban
Yadav, Devideen
Kumar, Rohitashw
Mirzania, Ehsan
Kumar, Ram
Author_xml – sequence: 1
  givenname: Dinesh Kumar
  orcidid: 0000-0002-2421-6995
  surname: Vishwakarma
  fullname: Vishwakarma, Dinesh Kumar
  email: dinesh.vishwakarma4820@gmail.com
  organization: Department of Irrigation and Drainage Engineering, College of Technology, G.B. Pant University of Agriculture and Technology
– sequence: 2
  givenname: Devideen
  surname: Yadav
  fullname: Yadav, Devideen
  organization: Division of Soil Science and Agronomy, ICAR–Indian Institute of Soil and Water Conservation
– sequence: 3
  givenname: Rohitashw
  orcidid: 0000-0002-8102-0366
  surname: Kumar
  fullname: Kumar, Rohitashw
  organization: College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir
– sequence: 4
  givenname: Ram
  surname: Kumar
  fullname: Kumar, Ram
  organization: Department of Soil and Water Engineering, College of Technology, G.B. Pant University of Agriculture and Technology
– sequence: 5
  givenname: Shakeel Ahmad
  orcidid: 0000-0002-0238-4509
  surname: Bhat
  fullname: Bhat, Shakeel Ahmad
  organization: College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir
– sequence: 6
  givenname: Ehsan
  surname: Mirzania
  fullname: Mirzania, Ehsan
  organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz
– sequence: 7
  givenname: Alban
  orcidid: 0000-0001-7464-8377
  surname: Kuriqi
  fullname: Kuriqi, Alban
  email: alban.kuriqi@tecnico.ulisboa.pt
  organization: CERIS, Instituto Superior Técnico, University of Lisbon, Civil Engineering Department, University for Business and Technology
BookMark eNp9kMtOwzAQRS1UJNrCD7CyxDowjlOnXlYVLwmJDWyxHGdcUjV2sN0i_h5DQOxYzWjm3nmcGZk475CQcwaXDKC-igw45wWUVQG5AIU8IlMmGCvKBVST37yScEJmMW4ByrribEpeVjFijJ3b0PSKdMBgfei1M0i9pQcdOr-PtHO226WgU-cd7X2Lu0iTp10_BH9A-q4TBppdeoM9ukSHoE3qDMZTcmz1LuLZT5yT55vrp_Vd8fB4e79ePRSGV3UqZIlCWN02AkqOIr9QMdswrQFMJTm0sLSQu60R0jaCM7ZsOK85XwBfGin4nFyMc_NBb3uMSW39Pri8UnEmJFsAE1VWlaPKBB9jQKuG0PU6fCgG6oujGjmqzFF9c1Qym_hoilnsNhj-Rv_j-gT8M3f3
Cites_doi 10.5897/AJAR2019.14547
10.1002/hyp.1257
10.2136/sssaj1941.036159950005000C0075x
10.1002/ird.2332
10.1016/j.jhydrol.2004.09.009
10.1155/2021/9945218
10.1007/s00271-012-0362-0
10.1016/j.still.2018.12.007
10.1007/s40808-017-0347-3
10.2136/vzj2009.0058
10.1007/s40808-017-0357-1
10.1017/S0021859600001441
10.1007/s11269-006-9140-1
10.5194/essd-10-1237-2018
10.1016/j.agwat.2021.107008
10.1061/(ASCE)0733-9437(1990)116:6(837)
10.1016/j.aej.2017.05.005
10.25165/j.ijabe.20191203.4015
10.1007/s11242-013-0214-2
10.1016/j.hydroa.2022.100140
10.1016/S0341-8162(98)00042-3
10.1016/j.catena.2012.06.006
10.1007/s13201-018-0708-8
10.1007/s00271-010-0248-y
10.1002/(SICI)1099-1085(19990815)13:11<1691::AID-HYP818>3.0.CO;2-W
10.1007/s11269-009-9408-3
10.1080/03650340.2013.823477
10.1002/ird.2530
10.5424/sjar/2010081-1160
10.1063/1.1745010
10.1016/B978-0-12-420022-7.00013-6
10.4314/njser.v7i1.28418
10.1016/j.jhydrol.2021.127122
10.1007/s12205-018-1347-1
10.2136/vzj2010.0069
10.1080/02626667.2019.1659965
10.4236/ojss.2020.102003
10.1016/j.watres.2024.121183
10.1016/j.jhydrol.2010.10.028
10.1002/vzj2.20210
10.1007/s11368-011-0356-1
10.1016/j.wsj.2017.03.001
10.2166/ws.2020.297
10.1061/(ASCE)IR.1943-4774.0000395
10.1016/j.sciaf.2022.e01318
10.1016/0022-1694(72)90063-7
10.1007/s11269-011-9868-0
10.1016/j.agwat.2021.107165
10.1111/wej.12435
10.1016/j.jhydrol.2023.129524
10.1080/09715010.2017.1381861
10.1016/j.agwat.2018.12.032
10.1097/00010694-195705000-00002
10.1097/01.ss.0000058890.60072.7c
10.1016/j.catena.2012.10.013
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. 2025
DBID C6C
AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H95
L.G
SOI
DOI 10.1007/s10333-024-01000-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1611-2504
EndPage 93
ExternalDocumentID 10_1007_s10333_024_01000_9
GrantInformation_xml – fundername: Universidade de Lisboa (UL)
GroupedDBID -56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L8X
LAS
LLZTM
M0K
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QH
7ST
7UA
ABRTQ
C1K
F1W
H95
L.G
SOI
ID FETCH-LOGICAL-c347t-92e66fadb6023e601041fb1aa00c4930d08f0db6dc69fb63118b337335038c963
IEDL.DBID C6C
ISSN 1611-2490
IngestDate Fri Jul 25 21:50:34 EDT 2025
Tue Jul 01 05:28:37 EDT 2025
Fri Feb 21 04:10:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Philips JR model
Horton’s model
Modified Kostiakov’s model
Infiltration rate
Kostiakov’s model
SCS model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-92e66fadb6023e601041fb1aa00c4930d08f0db6dc69fb63118b337335038c963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8102-0366
0000-0002-2421-6995
0000-0002-0238-4509
0000-0001-7464-8377
OpenAccessLink https://doi.org/10.1007/s10333-024-01000-9
PQID 3169150164
PQPubID 54526
PageCount 17
ParticipantIDs proquest_journals_3169150164
crossref_primary_10_1007_s10333_024_01000_9
springer_journals_10_1007_s10333_024_01000_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Dordrecht
PublicationTitle Paddy and water environment
PublicationTitleAbbrev Paddy Water Environ
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References RE Smith (1000_CR56) 1972; 17
ZM Yaseen (1000_CR64) 2021; 70
F Haghighi (1000_CR15) 2011
1000_CR17
NP Tecca (1000_CR57) 2022
A Khasraei (1000_CR28) 2021; 603
S Mirzaee (1000_CR37) 2014; 60
HU Farid (1000_CR10) 2019; 12
UK Awan (1000_CR5) 2013; 31
E Meredith (1000_CR35) 2019; 214
J Kang (1000_CR27) 2021; 255
B Singh (1000_CR55) 2018; 8
K Verbist (1000_CR62) 2010; 9
AS Vand (1000_CR61) 2018; 22
J Epting (1000_CR9) 2022; 17
MB Kirkham (1000_CR29) 2014
VP Singh (1000_CR53) 1990; 116
M Zakwan (1000_CR65) 2019; 33
F Haghighi (1000_CR14) 2010; 8
Y Li (1000_CR32) 2021; 258
J Neris (1000_CR39) 2012; 98
P Sihag (1000_CR50) 2017; 31
1000_CR43
A Angelaki (1000_CR3) 2021; 21
J-L Yang (1000_CR63) 2011; 11
AH Haghiabi (1000_CR16) 2018; 57
MK Shukla (1000_CR48) 2003; 168
RV Kale (1000_CR26) 2011; 25
P Sihag (1000_CR51) 2019; 64
J Huang (1000_CR20) 2013; 104
H-L Liu (1000_CR34) 2012; 138
M Kumar (1000_CR31) 2019; 68
B Singh (1000_CR54) 2017; 3
A-D Thomas (1000_CR58) 2020; 10
S Ghorbani Dashtaki (1000_CR12) 2009; 23
LA Richards (1000_CR47) 1931; 1
T Atta-Darkwa (1000_CR4) 2022; 17
AN Kostiakov (1000_CR30) 1932; 1
V Ogbe (1000_CR41) 2011; 7
JS Dagadu (1000_CR7) 2012; 3
WA Jury (1000_CR25) 2004
M Zakwan (1000_CR66) 2021; 2021
R Duan (1000_CR8) 2011; 29
Q-Z Huang (1000_CR21) 2023; 621
SK Mishra (1000_CR36) 1999; 13
P Sihag (1000_CR52) 2019; 25
A Angelaki (1000_CR2) 2013; 100
RE Horton (1000_CR18) 1941; 5
HE Igbadun (1000_CR22) 2007; 7
PK Parhi (1000_CR44) 2007; 21
L Netzer (1000_CR40) 2024; 252
JR Philip (1000_CR45) 1957; 83
ER Turner (1000_CR60) 2006
M Rahmati (1000_CR46) 2018; 10
1000_CR23
SK Mishra (1000_CR38) 2003; 17
N Chahinian (1000_CR6) 2005; 306
A-D Thomas (1000_CR59) 2020; 15
P Sihag (1000_CR49) 2017; 3
E Oku (1000_CR42) 2011; 45
SA Al-Azawi (1000_CR1) 1985; 24
D Fox (1000_CR11) 1998; 32
S-Y Hsu (1000_CR19) 2011; 10
H Liu (1000_CR33) 2011; 396
WH Green (1000_CR13) 1911; 4
MK Jha (1000_CR24) 2019; 187
References_xml – volume: 15
  start-page: 509
  year: 2020
  ident: 1000_CR59
  publication-title: Afr J Agric Res
  doi: 10.5897/AJAR2019.14547
– volume: 3
  start-page: 145
  year: 2012
  ident: 1000_CR7
  publication-title: Int J Adv Eng Technol
– volume: 17
  start-page: 2629
  year: 2003
  ident: 1000_CR38
  publication-title: Hydrol Process
  doi: 10.1002/hyp.1257
– ident: 1000_CR17
  doi: 10.2136/sssaj1941.036159950005000C0075x
– start-page: 457
  volume-title: Earth and environmental sciences
  year: 2011
  ident: 1000_CR15
– volume: 68
  start-page: 588
  year: 2019
  ident: 1000_CR31
  publication-title: Irrig Drain
  doi: 10.1002/ird.2332
– volume: 306
  start-page: 191
  year: 2005
  ident: 1000_CR6
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.09.009
– volume: 2021
  start-page: 9945218
  year: 2021
  ident: 1000_CR66
  publication-title: Complexity
  doi: 10.1155/2021/9945218
– volume: 31
  start-page: 793
  year: 2013
  ident: 1000_CR5
  publication-title: Irrig Sci
  doi: 10.1007/s00271-012-0362-0
– ident: 1000_CR43
– volume: 7
  start-page: 116
  year: 2011
  ident: 1000_CR41
  publication-title: Pat
– volume: 187
  start-page: 219
  year: 2019
  ident: 1000_CR24
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2018.12.007
– volume: 3
  start-page: 999
  year: 2017
  ident: 1000_CR54
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-017-0347-3
– volume: 1
  start-page: 7
  year: 1932
  ident: 1000_CR30
  publication-title: Transcontinental Sixth Third Int Congr Soil Sci
– volume: 9
  start-page: 462
  year: 2010
  ident: 1000_CR62
  publication-title: Vadose Zo J
  doi: 10.2136/vzj2009.0058
– volume: 3
  start-page: 1091
  year: 2017
  ident: 1000_CR49
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-017-0357-1
– volume: 4
  start-page: 1
  year: 1911
  ident: 1000_CR13
  publication-title: J Agric Sci
  doi: 10.1017/S0021859600001441
– volume: 21
  start-page: 1973
  year: 2007
  ident: 1000_CR44
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-9140-1
– volume: 10
  start-page: 1237
  year: 2018
  ident: 1000_CR46
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-10-1237-2018
– volume: 255
  year: 2021
  ident: 1000_CR27
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2021.107008
– volume: 116
  start-page: 837
  year: 1990
  ident: 1000_CR53
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)0733-9437(1990)116:6(837)
– volume: 57
  start-page: 1773
  year: 2018
  ident: 1000_CR16
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2017.05.005
– volume: 12
  start-page: 84
  year: 2019
  ident: 1000_CR10
  publication-title: Int J Agric Biol Eng
  doi: 10.25165/j.ijabe.20191203.4015
– volume: 100
  start-page: 247
  year: 2013
  ident: 1000_CR2
  publication-title: Transp Porous Media
  doi: 10.1007/s11242-013-0214-2
– volume: 17
  year: 2022
  ident: 1000_CR9
  publication-title: J Hydrol X
  doi: 10.1016/j.hydroa.2022.100140
– volume: 32
  start-page: 87
  year: 1998
  ident: 1000_CR11
  publication-title: CATENA
  doi: 10.1016/S0341-8162(98)00042-3
– volume: 98
  start-page: 55
  year: 2012
  ident: 1000_CR39
  publication-title: CATENA
  doi: 10.1016/j.catena.2012.06.006
– volume: 8
  start-page: 1
  year: 2018
  ident: 1000_CR55
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-018-0708-8
– volume: 29
  start-page: 379
  year: 2011
  ident: 1000_CR8
  publication-title: Irrig Sci
  doi: 10.1007/s00271-010-0248-y
– volume: 13
  start-page: 1691
  year: 1999
  ident: 1000_CR36
  publication-title: Hydrol Process
  doi: 10.1002/(SICI)1099-1085(19990815)13:11<1691::AID-HYP818>3.0.CO;2-W
– volume: 23
  start-page: 2777
  year: 2009
  ident: 1000_CR12
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9408-3
– volume: 60
  start-page: 681
  year: 2014
  ident: 1000_CR37
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2013.823477
– volume: 70
  start-page: 117
  year: 2021
  ident: 1000_CR64
  publication-title: Irrig Drain
  doi: 10.1002/ird.2530
– volume: 8
  start-page: 210
  year: 2010
  ident: 1000_CR14
  publication-title: Span J Agric Res
  doi: 10.5424/sjar/2010081-1160
– ident: 1000_CR23
– volume: 1
  start-page: 318
  year: 1931
  ident: 1000_CR47
  publication-title: Physics (College Park Md)
  doi: 10.1063/1.1745010
– start-page: 201
  volume-title: Principles of soil and plant relations
  year: 2014
  ident: 1000_CR29
  doi: 10.1016/B978-0-12-420022-7.00013-6
– volume: 7
  start-page: 53
  year: 2007
  ident: 1000_CR22
  publication-title: Niger J Soil Environ Res
  doi: 10.4314/njser.v7i1.28418
– volume: 603
  start-page: 127122
  year: 2021
  ident: 1000_CR28
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.127122
– volume: 22
  start-page: 4173
  year: 2018
  ident: 1000_CR61
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-018-1347-1
– volume: 10
  start-page: 642
  year: 2011
  ident: 1000_CR19
  publication-title: Vadose Zo J
  doi: 10.2136/vzj2010.0069
– volume: 64
  start-page: 1647
  year: 2019
  ident: 1000_CR51
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2019.1659965
– volume: 10
  start-page: 45
  year: 2020
  ident: 1000_CR58
  publication-title: Open J Soil Sci
  doi: 10.4236/ojss.2020.102003
– volume: 252
  year: 2024
  ident: 1000_CR40
  publication-title: Water Res
  doi: 10.1016/j.watres.2024.121183
– volume: 396
  start-page: 24
  year: 2011
  ident: 1000_CR33
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.10.028
– year: 2022
  ident: 1000_CR57
  publication-title: Vadose Zo J
  doi: 10.1002/vzj2.20210
– volume: 11
  start-page: 751
  year: 2011
  ident: 1000_CR63
  publication-title: J Soils Sedim
  doi: 10.1007/s11368-011-0356-1
– volume: 31
  start-page: 34
  year: 2017
  ident: 1000_CR50
  publication-title: Water Sci
  doi: 10.1016/j.wsj.2017.03.001
– volume: 21
  start-page: 606
  year: 2021
  ident: 1000_CR3
  publication-title: Water Supply
  doi: 10.2166/ws.2020.297
– volume-title: Comparison of infiltration equations and their field validation with rainfall simulation
  year: 2006
  ident: 1000_CR60
– volume: 138
  start-page: 266
  year: 2012
  ident: 1000_CR34
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0000395
– volume: 17
  year: 2022
  ident: 1000_CR4
  publication-title: Sci African
  doi: 10.1016/j.sciaf.2022.e01318
– volume: 17
  start-page: 1
  year: 1972
  ident: 1000_CR56
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(72)90063-7
– volume: 25
  start-page: 3505
  year: 2011
  ident: 1000_CR26
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-011-9868-0
– volume: 5
  start-page: 399
  year: 1941
  ident: 1000_CR18
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1941.036159950005000C0075x
– volume: 258
  year: 2021
  ident: 1000_CR32
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2021.107165
– volume: 33
  start-page: 620
  year: 2019
  ident: 1000_CR65
  publication-title: Water Environ J
  doi: 10.1111/wej.12435
– volume: 621
  year: 2023
  ident: 1000_CR21
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2023.129524
– volume: 24
  start-page: 77
  year: 1985
  ident: 1000_CR1
  publication-title: J Hydrol (New Zealand)
– volume: 25
  start-page: 132
  year: 2019
  ident: 1000_CR52
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2017.1381861
– volume-title: Soil physics
  year: 2004
  ident: 1000_CR25
– volume: 214
  start-page: 9
  year: 2019
  ident: 1000_CR35
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2018.12.032
– volume: 83
  start-page: 345
  year: 1957
  ident: 1000_CR45
  publication-title: Soil Sci
  doi: 10.1097/00010694-195705000-00002
– volume: 168
  start-page: 178
  year: 2003
  ident: 1000_CR48
  publication-title: Soil Sci
  doi: 10.1097/01.ss.0000058890.60072.7c
– volume: 104
  start-page: 93
  year: 2013
  ident: 1000_CR20
  publication-title: CATENA
  doi: 10.1016/j.catena.2012.10.013
– volume: 45
  start-page: 594
  year: 2011
  ident: 1000_CR42
  publication-title: Kasetsart J Nat Sci
SSID ssj0027431
Score 2.3705254
Snippet Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration...
Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 77
SubjectTerms Agriculture
Biomedical and Life Sciences
Ecotoxicology
Effectiveness
Efficiency
Geoecology/Natural Processes
Hydrogeology
Hydrology/Water Resources
Infiltration rate
Irrigation
Irrigation scheduling
Irrigation systems
Life Sciences
Performance assessment
Root-mean-square errors
Soil characteristics
Soil conservation
Soil Science & Conservation
Spatial variations
Stormwater
Stormwater management
Systems design
Water management
Title Assessing the performance of various infiltration models to improve water management practices
URI https://link.springer.com/article/10.1007/s10333-024-01000-9
https://www.proquest.com/docview/3169150164
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFUnlgg0h2nDj1GFWUCgQTlcpCVCc2qgRt1Qb4-9ylCYEKBpYsjj2cbd17vrt3AOc66DolI98TRlsiKMIzaaq9jGfajUkALKPi5Lt7NRgGN6NwVMrkUC3MWvyeStykpEgj5UpQFbTehGYoZERtGnqq941cFb0HEcAIDykFLwtkfl_jpxOqkeVaMLTwMf1d2CnBIYtXu7kHG3a6D9vx86IUyLAH8LSK0uJ0htCNzeu8fzZz7B2ZL1J5hsdm8lIK4rKi2c2S5TM2KV4QLPtAgLlgr1-ZL6yqlVoewrB_9dAbeGWPBC-VQZR72rdKuXFmFDpfW7Ar4YwYjzlPAy15xruO42iWKu2MksgnjJSRlCQDk-LtO4LGdDa1x8AQC1EKiZO6mwWChPBt5Ie4k2EqDHdRCy4qoyXzlRRGUosek4kTNHFSmDjRLWhXdk3Ka7FMJEnzhKTq1YLLytb18N-rnfzv91PY8qlPb_FU0oZGvnizZwgectOBZnz9eHvVKU4Pfod-_Ak8cLyL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTywQSQnzpfHClEVaDu1UiesOLFRJfqhJsDf5-wmpCAYmJN4ONvxe7577wCuuR_rkEWe40quDEFxHZmm3MloxnViDMAyI07uD8LuyH8cB-NSFJZX1e5VStL-qdfEboyZnKOpmjB6aL4JWwgGYrOWR157jWbZLoQIZVwHyQUtpTK_j_H9OKox5o-0qD1tOvuwV8JE0l7N6wFsqNkh7LZflqVVhjqC51W-Fj8nCOLIolYAkLkm78iBkdQTXECT19Ial9i2Nzkp5mRi7xIU-UCouSTTrxoYUqmm8mMYde6Hd12n7JbgpMyPCod7Kgx1kskQj2FleZarpZsklKY-ZzSjsab4NEtDrmXIkFlIxiLGjCFMivvwBBqz-UydAkFUZIpJNONx5rvGEl9FXoBzGqSupDpqwk0VNLFYmWKI2v7YhFhgiIUNseBNaFVxFeUGyQUzJj2B8fdqwm0V6_rx36Od_e_1K9juDvs90XsYPJ3Djme699oLlBY0iuWbukBIUchLu4I-AZ4MwSU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSAgGxKcoFPDABhFOnDj1WBWq8lUxUKkTVhzbqBKkVRvg73N2ElIQDMxOPJxt-T3fvXcInfKwbRiNA8-XXFuC4nsyTbmniOImsQZgyoqT7wesPwxvRtFoQcXvqt2rlGShabAuTVl-MVXmYkH4RqnNP9oKCquN5stoBZiKb-lXl3UXKJfrSAiwxveAaJBSNvP7HN-vphpv_kiRupunt4k2SsiIO8Uab6ElnW2j9c7zrLTN0Dvoqcjdwu8YAB2e1moAPDH4HfgwEHwMm2n8UtrkYtcCZ47zCR67dwWNPwB2zvDrVz0MrhRU81007F09dvte2TnBS2kY5x4PNGMmUZLBlawd5_KN9JOEkDTklCjSNgRGVcq4kYwCy5CUxpRac5gUzuQeamSTTO8jDAjJFpYYytsq9K09vo6DCNY3Sn1JTNxEZ1XQxLQwyBC1FbINsYAQCxdiwZuoVcVVlIdlLqg17Ims11cTnVexrof_nu3gf5-foNWHy564ux7cHqK1wDbydW8pLdTIZ2_6CNBFLo_dBvoEAirFSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+performance+of+various+infiltration+models+to+improve+water+management+practices&rft.jtitle=Paddy+and+water+environment&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1611-2490&rft.eissn=1611-2504&rft.volume=23&rft.issue=1&rft.spage=77&rft.epage=93&rft_id=info:doi/10.1007%2Fs10333-024-01000-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-2490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-2490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-2490&client=summon