Assessing the performance of various infiltration models to improve water management practices
Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration models varies significantly depending on soil characteristics and field conditions. Accurate predictions depend on selecting appropriate model...
Saved in:
Published in | Paddy and water environment Vol. 23; no. 1; pp. 77 - 93 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.01.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration models varies significantly depending on soil characteristics and field conditions. Accurate predictions depend on selecting appropriate models for specific sites because of soil spatial variability. This requires extensive testing and recording of infiltration rates at each location. This study assesses various infiltration rate measurement models to enhance water management efficiency. Infiltration rate measurements were conducted at three sites in Dehradun using a double-ring infiltrometer. Well-established models, such as Philips JR, Green, Ampt, Horton, Kostiakov, modified Kostiakov, and the Soil Conservation Service (SCS) model, were evaluated. Data from infiltration tests were used to calibrate these models, facilitating better irrigation system design and stormwater management. In assessing their effectiveness and efficiency, key evaluation criteria such as Nash–Sutcliffe efficiency (NSE),
R
-squared (
R
2
), root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE) were employed. Our findings highlight the superiority of the Philips JR model, offering the highest overall accuracy with the highest average value
R
2
= 0.9557 and NSE = 0.9553, lowest MAE = 0.6717 cm/h, MBE = − 0.0160 cm/h and RMSE = 1.0077 cm/h. These results underscore the model’s ability to synthesize infiltration data effectively, even in the absence of direct measurements. This insight positions the Philips JR model as a valuable tool for estimating infiltration rates in similar conditions. |
---|---|
AbstractList | Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration models varies significantly depending on soil characteristics and field conditions. Accurate predictions depend on selecting appropriate models for specific sites because of soil spatial variability. This requires extensive testing and recording of infiltration rates at each location. This study assesses various infiltration rate measurement models to enhance water management efficiency. Infiltration rate measurements were conducted at three sites in Dehradun using a double-ring infiltrometer. Well-established models, such as Philips JR, Green, Ampt, Horton, Kostiakov, modified Kostiakov, and the Soil Conservation Service (SCS) model, were evaluated. Data from infiltration tests were used to calibrate these models, facilitating better irrigation system design and stormwater management. In assessing their effectiveness and efficiency, key evaluation criteria such as Nash–Sutcliffe efficiency (NSE), R-squared (R2), root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE) were employed. Our findings highlight the superiority of the Philips JR model, offering the highest overall accuracy with the highest average value R2 = 0.9557 and NSE = 0.9553, lowest MAE = 0.6717 cm/h, MBE = − 0.0160 cm/h and RMSE = 1.0077 cm/h. These results underscore the model’s ability to synthesize infiltration data effectively, even in the absence of direct measurements. This insight positions the Philips JR model as a valuable tool for estimating infiltration rates in similar conditions. Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration models varies significantly depending on soil characteristics and field conditions. Accurate predictions depend on selecting appropriate models for specific sites because of soil spatial variability. This requires extensive testing and recording of infiltration rates at each location. This study assesses various infiltration rate measurement models to enhance water management efficiency. Infiltration rate measurements were conducted at three sites in Dehradun using a double-ring infiltrometer. Well-established models, such as Philips JR, Green, Ampt, Horton, Kostiakov, modified Kostiakov, and the Soil Conservation Service (SCS) model, were evaluated. Data from infiltration tests were used to calibrate these models, facilitating better irrigation system design and stormwater management. In assessing their effectiveness and efficiency, key evaluation criteria such as Nash–Sutcliffe efficiency (NSE), R -squared ( R 2 ), root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE) were employed. Our findings highlight the superiority of the Philips JR model, offering the highest overall accuracy with the highest average value R 2 = 0.9557 and NSE = 0.9553, lowest MAE = 0.6717 cm/h, MBE = − 0.0160 cm/h and RMSE = 1.0077 cm/h. These results underscore the model’s ability to synthesize infiltration data effectively, even in the absence of direct measurements. This insight positions the Philips JR model as a valuable tool for estimating infiltration rates in similar conditions. Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration models varies significantly depending on soil characteristics and field conditions. Accurate predictions depend on selecting appropriate models for specific sites because of soil spatial variability. This requires extensive testing and recording of infiltration rates at each location. This study assesses various infiltration rate measurement models to enhance water management efficiency. Infiltration rate measurements were conducted at three sites in Dehradun using a double-ring infiltrometer. Well-established models, such as Philips JR, Green, Ampt, Horton, Kostiakov, modified Kostiakov, and the Soil Conservation Service (SCS) model, were evaluated. Data from infiltration tests were used to calibrate these models, facilitating better irrigation system design and stormwater management. In assessing their effectiveness and efficiency, key evaluation criteria such as Nash–Sutcliffe efficiency (NSE), R -squared ( R 2 ), root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE) were employed. Our findings highlight the superiority of the Philips JR model, offering the highest overall accuracy with the highest average value R 2 = 0.9557 and NSE = 0.9553, lowest MAE = 0.6717 cm/h, MBE = − 0.0160 cm/h and RMSE = 1.0077 cm/h. These results underscore the model’s ability to synthesize infiltration data effectively, even in the absence of direct measurements. This insight positions the Philips JR model as a valuable tool for estimating infiltration rates in similar conditions. |
Author | Vishwakarma, Dinesh Kumar Bhat, Shakeel Ahmad Kuriqi, Alban Yadav, Devideen Kumar, Rohitashw Mirzania, Ehsan Kumar, Ram |
Author_xml | – sequence: 1 givenname: Dinesh Kumar orcidid: 0000-0002-2421-6995 surname: Vishwakarma fullname: Vishwakarma, Dinesh Kumar email: dinesh.vishwakarma4820@gmail.com organization: Department of Irrigation and Drainage Engineering, College of Technology, G.B. Pant University of Agriculture and Technology – sequence: 2 givenname: Devideen surname: Yadav fullname: Yadav, Devideen organization: Division of Soil Science and Agronomy, ICAR–Indian Institute of Soil and Water Conservation – sequence: 3 givenname: Rohitashw orcidid: 0000-0002-8102-0366 surname: Kumar fullname: Kumar, Rohitashw organization: College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir – sequence: 4 givenname: Ram surname: Kumar fullname: Kumar, Ram organization: Department of Soil and Water Engineering, College of Technology, G.B. Pant University of Agriculture and Technology – sequence: 5 givenname: Shakeel Ahmad orcidid: 0000-0002-0238-4509 surname: Bhat fullname: Bhat, Shakeel Ahmad organization: College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir – sequence: 6 givenname: Ehsan surname: Mirzania fullname: Mirzania, Ehsan organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz – sequence: 7 givenname: Alban orcidid: 0000-0001-7464-8377 surname: Kuriqi fullname: Kuriqi, Alban email: alban.kuriqi@tecnico.ulisboa.pt organization: CERIS, Instituto Superior Técnico, University of Lisbon, Civil Engineering Department, University for Business and Technology |
BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxDowjlOnXlYVLwmJDWyxHGdcUjV2sN0i_h5DQOxYzWjm3nmcGZk475CQcwaXDKC-igw45wWUVQG5AIU8IlMmGCvKBVST37yScEJmMW4ByrribEpeVjFijJ3b0PSKdMBgfei1M0i9pQcdOr-PtHO226WgU-cd7X2Lu0iTp10_BH9A-q4TBppdeoM9ukSHoE3qDMZTcmz1LuLZT5yT55vrp_Vd8fB4e79ePRSGV3UqZIlCWN02AkqOIr9QMdswrQFMJTm0sLSQu60R0jaCM7ZsOK85XwBfGin4nFyMc_NBb3uMSW39Pri8UnEmJFsAE1VWlaPKBB9jQKuG0PU6fCgG6oujGjmqzFF9c1Qym_hoilnsNhj-Rv_j-gT8M3f3 |
Cites_doi | 10.5897/AJAR2019.14547 10.1002/hyp.1257 10.2136/sssaj1941.036159950005000C0075x 10.1002/ird.2332 10.1016/j.jhydrol.2004.09.009 10.1155/2021/9945218 10.1007/s00271-012-0362-0 10.1016/j.still.2018.12.007 10.1007/s40808-017-0347-3 10.2136/vzj2009.0058 10.1007/s40808-017-0357-1 10.1017/S0021859600001441 10.1007/s11269-006-9140-1 10.5194/essd-10-1237-2018 10.1016/j.agwat.2021.107008 10.1061/(ASCE)0733-9437(1990)116:6(837) 10.1016/j.aej.2017.05.005 10.25165/j.ijabe.20191203.4015 10.1007/s11242-013-0214-2 10.1016/j.hydroa.2022.100140 10.1016/S0341-8162(98)00042-3 10.1016/j.catena.2012.06.006 10.1007/s13201-018-0708-8 10.1007/s00271-010-0248-y 10.1002/(SICI)1099-1085(19990815)13:11<1691::AID-HYP818>3.0.CO;2-W 10.1007/s11269-009-9408-3 10.1080/03650340.2013.823477 10.1002/ird.2530 10.5424/sjar/2010081-1160 10.1063/1.1745010 10.1016/B978-0-12-420022-7.00013-6 10.4314/njser.v7i1.28418 10.1016/j.jhydrol.2021.127122 10.1007/s12205-018-1347-1 10.2136/vzj2010.0069 10.1080/02626667.2019.1659965 10.4236/ojss.2020.102003 10.1016/j.watres.2024.121183 10.1016/j.jhydrol.2010.10.028 10.1002/vzj2.20210 10.1007/s11368-011-0356-1 10.1016/j.wsj.2017.03.001 10.2166/ws.2020.297 10.1061/(ASCE)IR.1943-4774.0000395 10.1016/j.sciaf.2022.e01318 10.1016/0022-1694(72)90063-7 10.1007/s11269-011-9868-0 10.1016/j.agwat.2021.107165 10.1111/wej.12435 10.1016/j.jhydrol.2023.129524 10.1080/09715010.2017.1381861 10.1016/j.agwat.2018.12.032 10.1097/00010694-195705000-00002 10.1097/01.ss.0000058890.60072.7c 10.1016/j.catena.2012.10.013 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. 2025 |
DBID | C6C AAYXX CITATION 7QH 7ST 7UA C1K F1W H95 L.G SOI |
DOI | 10.1007/s10333-024-01000-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1611-2504 |
EndPage | 93 |
ExternalDocumentID | 10_1007_s10333_024_01000_9 |
GrantInformation_xml | – fundername: Universidade de Lisboa (UL) |
GroupedDBID | -56 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L8X LAS LLZTM M0K M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QH 7ST 7UA ABRTQ C1K F1W H95 L.G SOI |
ID | FETCH-LOGICAL-c347t-92e66fadb6023e601041fb1aa00c4930d08f0db6dc69fb63118b337335038c963 |
IEDL.DBID | C6C |
ISSN | 1611-2490 |
IngestDate | Fri Jul 25 21:50:34 EDT 2025 Tue Jul 01 05:28:37 EDT 2025 Fri Feb 21 04:10:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Philips JR model Horton’s model Modified Kostiakov’s model Infiltration rate Kostiakov’s model SCS model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-92e66fadb6023e601041fb1aa00c4930d08f0db6dc69fb63118b337335038c963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8102-0366 0000-0002-2421-6995 0000-0002-0238-4509 0000-0001-7464-8377 |
OpenAccessLink | https://doi.org/10.1007/s10333-024-01000-9 |
PQID | 3169150164 |
PQPubID | 54526 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3169150164 crossref_primary_10_1007_s10333_024_01000_9 springer_journals_10_1007_s10333_024_01000_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Dordrecht |
PublicationTitle | Paddy and water environment |
PublicationTitleAbbrev | Paddy Water Environ |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
References | RE Smith (1000_CR56) 1972; 17 ZM Yaseen (1000_CR64) 2021; 70 F Haghighi (1000_CR15) 2011 1000_CR17 NP Tecca (1000_CR57) 2022 A Khasraei (1000_CR28) 2021; 603 S Mirzaee (1000_CR37) 2014; 60 HU Farid (1000_CR10) 2019; 12 UK Awan (1000_CR5) 2013; 31 E Meredith (1000_CR35) 2019; 214 J Kang (1000_CR27) 2021; 255 B Singh (1000_CR55) 2018; 8 K Verbist (1000_CR62) 2010; 9 AS Vand (1000_CR61) 2018; 22 J Epting (1000_CR9) 2022; 17 MB Kirkham (1000_CR29) 2014 VP Singh (1000_CR53) 1990; 116 M Zakwan (1000_CR65) 2019; 33 F Haghighi (1000_CR14) 2010; 8 Y Li (1000_CR32) 2021; 258 J Neris (1000_CR39) 2012; 98 P Sihag (1000_CR50) 2017; 31 1000_CR43 A Angelaki (1000_CR3) 2021; 21 J-L Yang (1000_CR63) 2011; 11 AH Haghiabi (1000_CR16) 2018; 57 MK Shukla (1000_CR48) 2003; 168 RV Kale (1000_CR26) 2011; 25 P Sihag (1000_CR51) 2019; 64 J Huang (1000_CR20) 2013; 104 H-L Liu (1000_CR34) 2012; 138 M Kumar (1000_CR31) 2019; 68 B Singh (1000_CR54) 2017; 3 A-D Thomas (1000_CR58) 2020; 10 S Ghorbani Dashtaki (1000_CR12) 2009; 23 LA Richards (1000_CR47) 1931; 1 T Atta-Darkwa (1000_CR4) 2022; 17 AN Kostiakov (1000_CR30) 1932; 1 V Ogbe (1000_CR41) 2011; 7 JS Dagadu (1000_CR7) 2012; 3 WA Jury (1000_CR25) 2004 M Zakwan (1000_CR66) 2021; 2021 R Duan (1000_CR8) 2011; 29 Q-Z Huang (1000_CR21) 2023; 621 SK Mishra (1000_CR36) 1999; 13 P Sihag (1000_CR52) 2019; 25 A Angelaki (1000_CR2) 2013; 100 RE Horton (1000_CR18) 1941; 5 HE Igbadun (1000_CR22) 2007; 7 PK Parhi (1000_CR44) 2007; 21 L Netzer (1000_CR40) 2024; 252 JR Philip (1000_CR45) 1957; 83 ER Turner (1000_CR60) 2006 M Rahmati (1000_CR46) 2018; 10 1000_CR23 SK Mishra (1000_CR38) 2003; 17 N Chahinian (1000_CR6) 2005; 306 A-D Thomas (1000_CR59) 2020; 15 P Sihag (1000_CR49) 2017; 3 E Oku (1000_CR42) 2011; 45 SA Al-Azawi (1000_CR1) 1985; 24 D Fox (1000_CR11) 1998; 32 S-Y Hsu (1000_CR19) 2011; 10 H Liu (1000_CR33) 2011; 396 WH Green (1000_CR13) 1911; 4 MK Jha (1000_CR24) 2019; 187 |
References_xml | – volume: 15 start-page: 509 year: 2020 ident: 1000_CR59 publication-title: Afr J Agric Res doi: 10.5897/AJAR2019.14547 – volume: 3 start-page: 145 year: 2012 ident: 1000_CR7 publication-title: Int J Adv Eng Technol – volume: 17 start-page: 2629 year: 2003 ident: 1000_CR38 publication-title: Hydrol Process doi: 10.1002/hyp.1257 – ident: 1000_CR17 doi: 10.2136/sssaj1941.036159950005000C0075x – start-page: 457 volume-title: Earth and environmental sciences year: 2011 ident: 1000_CR15 – volume: 68 start-page: 588 year: 2019 ident: 1000_CR31 publication-title: Irrig Drain doi: 10.1002/ird.2332 – volume: 306 start-page: 191 year: 2005 ident: 1000_CR6 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.09.009 – volume: 2021 start-page: 9945218 year: 2021 ident: 1000_CR66 publication-title: Complexity doi: 10.1155/2021/9945218 – volume: 31 start-page: 793 year: 2013 ident: 1000_CR5 publication-title: Irrig Sci doi: 10.1007/s00271-012-0362-0 – ident: 1000_CR43 – volume: 7 start-page: 116 year: 2011 ident: 1000_CR41 publication-title: Pat – volume: 187 start-page: 219 year: 2019 ident: 1000_CR24 publication-title: Soil Tillage Res doi: 10.1016/j.still.2018.12.007 – volume: 3 start-page: 999 year: 2017 ident: 1000_CR54 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-017-0347-3 – volume: 1 start-page: 7 year: 1932 ident: 1000_CR30 publication-title: Transcontinental Sixth Third Int Congr Soil Sci – volume: 9 start-page: 462 year: 2010 ident: 1000_CR62 publication-title: Vadose Zo J doi: 10.2136/vzj2009.0058 – volume: 3 start-page: 1091 year: 2017 ident: 1000_CR49 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-017-0357-1 – volume: 4 start-page: 1 year: 1911 ident: 1000_CR13 publication-title: J Agric Sci doi: 10.1017/S0021859600001441 – volume: 21 start-page: 1973 year: 2007 ident: 1000_CR44 publication-title: Water Resour Manag doi: 10.1007/s11269-006-9140-1 – volume: 10 start-page: 1237 year: 2018 ident: 1000_CR46 publication-title: Earth Syst Sci Data doi: 10.5194/essd-10-1237-2018 – volume: 255 year: 2021 ident: 1000_CR27 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2021.107008 – volume: 116 start-page: 837 year: 1990 ident: 1000_CR53 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)0733-9437(1990)116:6(837) – volume: 57 start-page: 1773 year: 2018 ident: 1000_CR16 publication-title: Alex Eng J doi: 10.1016/j.aej.2017.05.005 – volume: 12 start-page: 84 year: 2019 ident: 1000_CR10 publication-title: Int J Agric Biol Eng doi: 10.25165/j.ijabe.20191203.4015 – volume: 100 start-page: 247 year: 2013 ident: 1000_CR2 publication-title: Transp Porous Media doi: 10.1007/s11242-013-0214-2 – volume: 17 year: 2022 ident: 1000_CR9 publication-title: J Hydrol X doi: 10.1016/j.hydroa.2022.100140 – volume: 32 start-page: 87 year: 1998 ident: 1000_CR11 publication-title: CATENA doi: 10.1016/S0341-8162(98)00042-3 – volume: 98 start-page: 55 year: 2012 ident: 1000_CR39 publication-title: CATENA doi: 10.1016/j.catena.2012.06.006 – volume: 8 start-page: 1 year: 2018 ident: 1000_CR55 publication-title: Appl Water Sci doi: 10.1007/s13201-018-0708-8 – volume: 29 start-page: 379 year: 2011 ident: 1000_CR8 publication-title: Irrig Sci doi: 10.1007/s00271-010-0248-y – volume: 13 start-page: 1691 year: 1999 ident: 1000_CR36 publication-title: Hydrol Process doi: 10.1002/(SICI)1099-1085(19990815)13:11<1691::AID-HYP818>3.0.CO;2-W – volume: 23 start-page: 2777 year: 2009 ident: 1000_CR12 publication-title: Water Resour Manag doi: 10.1007/s11269-009-9408-3 – volume: 60 start-page: 681 year: 2014 ident: 1000_CR37 publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2013.823477 – volume: 70 start-page: 117 year: 2021 ident: 1000_CR64 publication-title: Irrig Drain doi: 10.1002/ird.2530 – volume: 8 start-page: 210 year: 2010 ident: 1000_CR14 publication-title: Span J Agric Res doi: 10.5424/sjar/2010081-1160 – ident: 1000_CR23 – volume: 1 start-page: 318 year: 1931 ident: 1000_CR47 publication-title: Physics (College Park Md) doi: 10.1063/1.1745010 – start-page: 201 volume-title: Principles of soil and plant relations year: 2014 ident: 1000_CR29 doi: 10.1016/B978-0-12-420022-7.00013-6 – volume: 7 start-page: 53 year: 2007 ident: 1000_CR22 publication-title: Niger J Soil Environ Res doi: 10.4314/njser.v7i1.28418 – volume: 603 start-page: 127122 year: 2021 ident: 1000_CR28 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.127122 – volume: 22 start-page: 4173 year: 2018 ident: 1000_CR61 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-018-1347-1 – volume: 10 start-page: 642 year: 2011 ident: 1000_CR19 publication-title: Vadose Zo J doi: 10.2136/vzj2010.0069 – volume: 64 start-page: 1647 year: 2019 ident: 1000_CR51 publication-title: Hydrol Sci J doi: 10.1080/02626667.2019.1659965 – volume: 10 start-page: 45 year: 2020 ident: 1000_CR58 publication-title: Open J Soil Sci doi: 10.4236/ojss.2020.102003 – volume: 252 year: 2024 ident: 1000_CR40 publication-title: Water Res doi: 10.1016/j.watres.2024.121183 – volume: 396 start-page: 24 year: 2011 ident: 1000_CR33 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.10.028 – year: 2022 ident: 1000_CR57 publication-title: Vadose Zo J doi: 10.1002/vzj2.20210 – volume: 11 start-page: 751 year: 2011 ident: 1000_CR63 publication-title: J Soils Sedim doi: 10.1007/s11368-011-0356-1 – volume: 31 start-page: 34 year: 2017 ident: 1000_CR50 publication-title: Water Sci doi: 10.1016/j.wsj.2017.03.001 – volume: 21 start-page: 606 year: 2021 ident: 1000_CR3 publication-title: Water Supply doi: 10.2166/ws.2020.297 – volume-title: Comparison of infiltration equations and their field validation with rainfall simulation year: 2006 ident: 1000_CR60 – volume: 138 start-page: 266 year: 2012 ident: 1000_CR34 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0000395 – volume: 17 year: 2022 ident: 1000_CR4 publication-title: Sci African doi: 10.1016/j.sciaf.2022.e01318 – volume: 17 start-page: 1 year: 1972 ident: 1000_CR56 publication-title: J Hydrol doi: 10.1016/0022-1694(72)90063-7 – volume: 25 start-page: 3505 year: 2011 ident: 1000_CR26 publication-title: Water Resour Manag doi: 10.1007/s11269-011-9868-0 – volume: 5 start-page: 399 year: 1941 ident: 1000_CR18 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1941.036159950005000C0075x – volume: 258 year: 2021 ident: 1000_CR32 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2021.107165 – volume: 33 start-page: 620 year: 2019 ident: 1000_CR65 publication-title: Water Environ J doi: 10.1111/wej.12435 – volume: 621 year: 2023 ident: 1000_CR21 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2023.129524 – volume: 24 start-page: 77 year: 1985 ident: 1000_CR1 publication-title: J Hydrol (New Zealand) – volume: 25 start-page: 132 year: 2019 ident: 1000_CR52 publication-title: ISH J Hydraul Eng doi: 10.1080/09715010.2017.1381861 – volume-title: Soil physics year: 2004 ident: 1000_CR25 – volume: 214 start-page: 9 year: 2019 ident: 1000_CR35 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2018.12.032 – volume: 83 start-page: 345 year: 1957 ident: 1000_CR45 publication-title: Soil Sci doi: 10.1097/00010694-195705000-00002 – volume: 168 start-page: 178 year: 2003 ident: 1000_CR48 publication-title: Soil Sci doi: 10.1097/01.ss.0000058890.60072.7c – volume: 104 start-page: 93 year: 2013 ident: 1000_CR20 publication-title: CATENA doi: 10.1016/j.catena.2012.10.013 – volume: 45 start-page: 594 year: 2011 ident: 1000_CR42 publication-title: Kasetsart J Nat Sci |
SSID | ssj0027431 |
Score | 2.3705254 |
Snippet | Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration... Infiltration plays a key role in stormwater management and irrigation scheduling. A review of previous studies reveals that the effectiveness of infiltration... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 77 |
SubjectTerms | Agriculture Biomedical and Life Sciences Ecotoxicology Effectiveness Efficiency Geoecology/Natural Processes Hydrogeology Hydrology/Water Resources Infiltration rate Irrigation Irrigation scheduling Irrigation systems Life Sciences Performance assessment Root-mean-square errors Soil characteristics Soil conservation Soil Science & Conservation Spatial variations Stormwater Stormwater management Systems design Water management |
Title | Assessing the performance of various infiltration models to improve water management practices |
URI | https://link.springer.com/article/10.1007/s10333-024-01000-9 https://www.proquest.com/docview/3169150164 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFUnlgg0h2nDj1GFWUCgQTlcpCVCc2qgRt1Qb4-9ylCYEKBpYsjj2cbd17vrt3AOc66DolI98TRlsiKMIzaaq9jGfajUkALKPi5Lt7NRgGN6NwVMrkUC3MWvyeStykpEgj5UpQFbTehGYoZERtGnqq941cFb0HEcAIDykFLwtkfl_jpxOqkeVaMLTwMf1d2CnBIYtXu7kHG3a6D9vx86IUyLAH8LSK0uJ0htCNzeu8fzZz7B2ZL1J5hsdm8lIK4rKi2c2S5TM2KV4QLPtAgLlgr1-ZL6yqlVoewrB_9dAbeGWPBC-VQZR72rdKuXFmFDpfW7Ar4YwYjzlPAy15xruO42iWKu2MksgnjJSRlCQDk-LtO4LGdDa1x8AQC1EKiZO6mwWChPBt5Ie4k2EqDHdRCy4qoyXzlRRGUosek4kTNHFSmDjRLWhXdk3Ka7FMJEnzhKTq1YLLytb18N-rnfzv91PY8qlPb_FU0oZGvnizZwgectOBZnz9eHvVKU4Pfod-_Ak8cLyL |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTywQSQnzpfHClEVaDu1UiesOLFRJfqhJsDf5-wmpCAYmJN4ONvxe7577wCuuR_rkEWe40quDEFxHZmm3MloxnViDMAyI07uD8LuyH8cB-NSFJZX1e5VStL-qdfEboyZnKOpmjB6aL4JWwgGYrOWR157jWbZLoQIZVwHyQUtpTK_j_H9OKox5o-0qD1tOvuwV8JE0l7N6wFsqNkh7LZflqVVhjqC51W-Fj8nCOLIolYAkLkm78iBkdQTXECT19Ial9i2Nzkp5mRi7xIU-UCouSTTrxoYUqmm8mMYde6Hd12n7JbgpMyPCod7Kgx1kskQj2FleZarpZsklKY-ZzSjsab4NEtDrmXIkFlIxiLGjCFMivvwBBqz-UydAkFUZIpJNONx5rvGEl9FXoBzGqSupDpqwk0VNLFYmWKI2v7YhFhgiIUNseBNaFVxFeUGyQUzJj2B8fdqwm0V6_rx36Od_e_1K9juDvs90XsYPJ3Djme699oLlBY0iuWbukBIUchLu4I-AZ4MwSU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSAgGxKcoFPDABhFOnDj1WBWq8lUxUKkTVhzbqBKkVRvg73N2ElIQDMxOPJxt-T3fvXcInfKwbRiNA8-XXFuC4nsyTbmniOImsQZgyoqT7wesPwxvRtFoQcXvqt2rlGShabAuTVl-MVXmYkH4RqnNP9oKCquN5stoBZiKb-lXl3UXKJfrSAiwxveAaJBSNvP7HN-vphpv_kiRupunt4k2SsiIO8Uab6ElnW2j9c7zrLTN0Dvoqcjdwu8YAB2e1moAPDH4HfgwEHwMm2n8UtrkYtcCZ47zCR67dwWNPwB2zvDrVz0MrhRU81007F09dvte2TnBS2kY5x4PNGMmUZLBlawd5_KN9JOEkDTklCjSNgRGVcq4kYwCy5CUxpRac5gUzuQeamSTTO8jDAjJFpYYytsq9K09vo6DCNY3Sn1JTNxEZ1XQxLQwyBC1FbINsYAQCxdiwZuoVcVVlIdlLqg17Ims11cTnVexrof_nu3gf5-foNWHy564ux7cHqK1wDbydW8pLdTIZ2_6CNBFLo_dBvoEAirFSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+performance+of+various+infiltration+models+to+improve+water+management+practices&rft.jtitle=Paddy+and+water+environment&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1611-2490&rft.eissn=1611-2504&rft.volume=23&rft.issue=1&rft.spage=77&rft.epage=93&rft_id=info:doi/10.1007%2Fs10333-024-01000-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-2490&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-2490&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-2490&client=summon |