Survival Analysis in Cognitively Normal Subjects and in Patients with Mild Cognitive Impairment Using a Proportional Hazards Model with Extreme Gradient Boosting Regression

Evaluating the risk of Alzheimer's disease (AD) in cognitively normal (CN) and patients with mild cognitive impairment (MCI) is extremely important. While MCI-to-AD progression risk has been studied extensively, few studies estimate CN-to-MCI conversion risk. The Cox proportional hazards (PH),...

Full description

Saved in:
Bibliographic Details
Published inJournal of Alzheimer's disease Vol. 85; no. 2; p. 837
Main Authors Khajehpiri, Boshra, Moghaddam, Hamid Abrishami, Forouzanfar, Mohamad, Lashgari, Reza, Ramos-Cejudo, Jaime, Osorio, Ricardo S, Ardekani, Babak A
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2022
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Evaluating the risk of Alzheimer's disease (AD) in cognitively normal (CN) and patients with mild cognitive impairment (MCI) is extremely important. While MCI-to-AD progression risk has been studied extensively, few studies estimate CN-to-MCI conversion risk. The Cox proportional hazards (PH), a widely used survival analysis model, assumes a linear predictor-risk relationship. Generalizing the PH model to more complex predictor-risk relationships may increase risk estimation accuracy. The aim of this study was to develop a PH model using an Xgboost regressor, based on demographic, genetic, neuropsychiatric, and neuroimaging predictors to estimate risk of AD in patients with MCI, and the risk of MCI in CN subjects. We replaced the Cox PH linear model with an Xgboost regressor to capture complex interactions between predictors, and non-linear predictor-risk associations. We endeavored to limit model inputs to noninvasive and more widely available predictors in order to facilitate future applicability in a wider setting. In MCI-to-AD (n = 882), the Xgboost model achieved a concordance index (C-index) of 84.5%. When the model was used for MCI risk prediction in CN (n = 100) individuals, the C-index was 73.3%. In both applications, the C-index was statistically significantly higher in the Xgboost in comparison to the Cox PH model. Using non-linear regressors such as Xgboost improves AD dementia risk assessment in CN and MCI. It is possible to achieve reasonable risk stratification using predictors that are relatively low-cost in terms of time, invasiveness, and availability. Future strategies for improving AD dementia risk estimation are discussed.
AbstractList Evaluating the risk of Alzheimer's disease (AD) in cognitively normal (CN) and patients with mild cognitive impairment (MCI) is extremely important. While MCI-to-AD progression risk has been studied extensively, few studies estimate CN-to-MCI conversion risk. The Cox proportional hazards (PH), a widely used survival analysis model, assumes a linear predictor-risk relationship. Generalizing the PH model to more complex predictor-risk relationships may increase risk estimation accuracy. The aim of this study was to develop a PH model using an Xgboost regressor, based on demographic, genetic, neuropsychiatric, and neuroimaging predictors to estimate risk of AD in patients with MCI, and the risk of MCI in CN subjects. We replaced the Cox PH linear model with an Xgboost regressor to capture complex interactions between predictors, and non-linear predictor-risk associations. We endeavored to limit model inputs to noninvasive and more widely available predictors in order to facilitate future applicability in a wider setting. In MCI-to-AD (n = 882), the Xgboost model achieved a concordance index (C-index) of 84.5%. When the model was used for MCI risk prediction in CN (n = 100) individuals, the C-index was 73.3%. In both applications, the C-index was statistically significantly higher in the Xgboost in comparison to the Cox PH model. Using non-linear regressors such as Xgboost improves AD dementia risk assessment in CN and MCI. It is possible to achieve reasonable risk stratification using predictors that are relatively low-cost in terms of time, invasiveness, and availability. Future strategies for improving AD dementia risk estimation are discussed.
Author Ardekani, Babak A
Moghaddam, Hamid Abrishami
Lashgari, Reza
Ramos-Cejudo, Jaime
Khajehpiri, Boshra
Forouzanfar, Mohamad
Osorio, Ricardo S
Author_xml – sequence: 1
  givenname: Boshra
  surname: Khajehpiri
  fullname: Khajehpiri, Boshra
  organization: Machine Vision and Medical Image Processing (MVMIP) Laboratory, Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Hamid Abrishami
  surname: Moghaddam
  fullname: Moghaddam, Hamid Abrishami
  organization: Machine Vision and Medical Image Processing (MVMIP) Laboratory, Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Mohamad
  surname: Forouzanfar
  fullname: Forouzanfar, Mohamad
  organization: Department of Systems Engineering, École deTechnologie Supérieure, Université du Québec, Montreal, Quebec, Canada
– sequence: 4
  givenname: Reza
  surname: Lashgari
  fullname: Lashgari, Reza
  organization: Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
– sequence: 5
  givenname: Jaime
  surname: Ramos-Cejudo
  fullname: Ramos-Cejudo, Jaime
  organization: Department of Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, USA
– sequence: 6
  givenname: Ricardo S
  surname: Osorio
  fullname: Osorio, Ricardo S
  organization: Department of Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, USA
– sequence: 7
  givenname: Babak A
  surname: Ardekani
  fullname: Ardekani, Babak A
  organization: The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34864679$$D View this record in MEDLINE/PubMed
BookMark eNpFkN1OAjEQRhujkR-98QFMX2C123Z3yyUiAkaUiFyTlrZYsttu2oLiM_mQLkHj1WTmm3MmmQ44tc4qAK5SdEMwIbeP_fsEpxnO8xPQTlmRJayHWAt0QtgghAjqFeegRSjLaV702uB7vvU7s-Ml7Fte7oMJ0Fg4cGtrotmpcg-fna-aeL4VG7WKAXIrDyszHo2yTf9h4jucmlL-U3BS1dz4qsnhIhi7hhzOvKudj8Y1Z-CYf3EvA5w6qcqjYfgZvaoUHHkuD2J451yIB_ZVrb0KoSEvwJnmZVCXv7ULFg_Dt8E4eXoZTQb9p2RFaBETRlmqkeJYC5qrlcgp0ZkUWFFdEKFVM0VZzhijUmdpgTXBVDAhRZFhlCmCu-D66K23olJyWXtTcb9f_r0N_wDGkHKN
CitedBy_id crossref_primary_10_1186_s13195_023_01268_9
crossref_primary_10_3389_fams_2023_1195810
crossref_primary_10_1109_ACCESS_2023_3344319
crossref_primary_10_12677_ACM_2023_13112547
crossref_primary_10_1016_j_isci_2023_107522
crossref_primary_10_1371_journal_pone_0314725
crossref_primary_10_1038_s41598_024_51402_2
ContentType Journal Article
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.3233/JAD-215266
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1875-8908
ExternalDocumentID 34864679
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: CIHR
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
0R~
0VX
29J
36B
4.4
53G
5GY
AAFNC
AAWTL
ABDBF
ABIVO
ABJNI
ABUBZ
ABUJY
ACGFS
ACPQW
ACPRK
ACUHS
ADZMO
AELRD
AENEX
AFRAH
AFRHK
AGIAB
AHDMH
AIRSE
AJNRN
ALMA_UNASSIGNED_HOLDINGS
CAG
CGR
COF
CUY
CVF
DU5
EAD
EAP
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
HZ~
IL9
IOS
MET
MIO
MV1
NGNOM
NPM
O9-
P2P
Q1R
S70
SV3
TUS
VUG
ID FETCH-LOGICAL-c347t-8481f0ea2fb46ecb643f5db2e4f73bfeb460568884df5172f324b8bdb75205e32
IngestDate Thu Apr 03 07:06:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords magnetic resonance imaging
Alzheimer’s disease
Xgboost
survival analysis
proportional hazards model
mild cognitive impairment
hippocampal atrophy
brain
machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-8481f0ea2fb46ecb643f5db2e4f73bfeb460568884df5172f324b8bdb75205e32
PMID 34864679
ParticipantIDs pubmed_primary_34864679
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of Alzheimer's disease
PublicationTitleAlternate J Alzheimers Dis
PublicationYear 2022
SSID ssj0003097
Score 2.3926294
Snippet Evaluating the risk of Alzheimer's disease (AD) in cognitively normal (CN) and patients with mild cognitive impairment (MCI) is extremely important. While...
SourceID pubmed
SourceType Index Database
StartPage 837
SubjectTerms Aged
Aged, 80 and over
Alzheimer Disease - diagnosis
Alzheimer Disease - epidemiology
Alzheimer Disease - genetics
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - epidemiology
Cognitive Dysfunction - genetics
Disease Progression
Female
Genetic Testing - methods
Humans
Magnetic Resonance Imaging
Male
Neuropsychological Tests
Prognosis
Proportional Hazards Models
Risk Assessment - methods
Survival Analysis
Title Survival Analysis in Cognitively Normal Subjects and in Patients with Mild Cognitive Impairment Using a Proportional Hazards Model with Extreme Gradient Boosting Regression
URI https://www.ncbi.nlm.nih.gov/pubmed/34864679
Volume 85
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFICtDiS0FwTifpMfeJsCrePcHgtsVIPyAJu0t8l27CZTm1ZtOo38Jv4Y_4Jz7HiJKiYuL1EUx1Hk89k-ts-FkNe4mz8SKfRvxUXAtYI-Z7IwMIlWo5wJkcbo4Dz9Ek9O-fFZdDYY_OxZLW1r-UY1v_Ur-R-pwjOQK3rJ_oNkrz8KD-Ae5AtXkDBc_0rG37bQ0S-xkX1oEevD1xoEzb_jqcwCw31s5YW12nChljAuf9l5tk3Led7VwnjBolxbGwFnTyDQmwDV9DYUsWjQUctmUWtN3A-vatxmPPi4tgZkNXpQbGpn2DdzhrbVTVrwvCl0aVO4JJvd46JPhbjQxap03vDvlptifT2LTJezAkZNx_NELMr8YIzeCwXcdlPrerltRGWcFfl0CYUi96WfxaaYCfftr7oR_Q0QxnobINoN2rDmCtJsmPZHdZcIqKWX9Ybo1AWZ2Z06QoZb20fH4w8Bpvp1qWB6DK0WFqKQpzHMLdmfS3fCePuiPbIHCxrM0IrbSq3KEA6zxMXOxd942_3EPrnjK-6se6z-c3KP3G1FRseOwvtkoKsH5IcnkHoCaVnRHoHUEUg9gRQIxFc8gRT5oUhgV4t2BFJLIBW0TyBtCaSWQPeFlkDqCaSeQNoR-JCcHh2evJ8Ebf6PQIU8qQPM9GCGWjAjeayVBOXZRLlkmpsklEZLPNOP0zTluYlAETewOJCpzGUSsWGkQ_aI3KqWlX5CqGZKMRh6DCzAeZRlIpS5iZVUuVLcjEZPyWPXuOcrF-Tl3Df7sxtLnpP9DscX5LaBUUW_BBW1lq-seH8BF8ud4g
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survival+Analysis+in+Cognitively+Normal+Subjects+and+in+Patients+with+Mild+Cognitive+Impairment+Using+a+Proportional+Hazards+Model+with+Extreme+Gradient+Boosting+Regression&rft.jtitle=Journal+of+Alzheimer%27s+disease&rft.au=Khajehpiri%2C+Boshra&rft.au=Moghaddam%2C+Hamid+Abrishami&rft.au=Forouzanfar%2C+Mohamad&rft.au=Lashgari%2C+Reza&rft.date=2022-01-01&rft.eissn=1875-8908&rft.volume=85&rft.issue=2&rft.spage=837&rft_id=info:doi/10.3233%2FJAD-215266&rft_id=info%3Apmid%2F34864679&rft_id=info%3Apmid%2F34864679&rft.externalDocID=34864679