Thermally condensing photons into a coherently split state of light

The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynami...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 366; no. 6467; pp. 894 - 897
Main Authors Kurtscheid, Christian, Dung, David, Busley, Erik, Vewinger, Frank, Rosch, Achim, Weitz, Martin
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 15.11.2019
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aay1334

Cover

Loading…
Abstract The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states.
AbstractList Prisms and dielectric beam splitters tend to be unitary and reversible optical elements, with the quantum properties of the photons largely irrelevant. Kurtscheid et al. introduce a method of irreversibly, but coherently, populating a split state with photons by thermalizing the photons into a low-energy ground state by repeated absorption-emission interaction with a fluorescent dye within a double-dimple optical cavity. Generation of such a coherent split state could be used as a precursor step to the quasi-continuous creation of many-body entangled states of light, which could be useful in applications in quantum communication, computing, and simulation. Science , this issue p. 894 Photons cooled into a split Bose-Einstein condensate could be used as a quantum source of light. The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states.
The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states.
The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states.The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states.
Irreversible splitting of lightPrisms and dielectric beam splitters tend to be unitary and reversible optical elements, with the quantum properties of the photons largely irrelevant. Kurtscheid et al. introduce a method of irreversibly, but coherently, populating a split state with photons by thermalizing the photons into a low-energy ground state by repeated absorption-emission interaction with a fluorescent dye within a double-dimple optical cavity. Generation of such a coherent split state could be used as a precursor step to the quasi-continuous creation of many-body entangled states of light, which could be useful in applications in quantum communication, computing, and simulation.Science, this issue p. 894The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states.
Author Vewinger, Frank
Busley, Erik
Weitz, Martin
Rosch, Achim
Dung, David
Kurtscheid, Christian
Author_xml – sequence: 1
  givenname: Christian
  surname: Kurtscheid
  fullname: Kurtscheid, Christian
– sequence: 2
  givenname: David
  surname: Dung
  fullname: Dung, David
– sequence: 3
  givenname: Erik
  surname: Busley
  fullname: Busley, Erik
– sequence: 4
  givenname: Frank
  surname: Vewinger
  fullname: Vewinger, Frank
– sequence: 5
  givenname: Achim
  surname: Rosch
  fullname: Rosch, Achim
– sequence: 6
  givenname: Martin
  surname: Weitz
  fullname: Weitz, Martin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31727840$$D View this record in MEDLINE/PubMed
BookMark eNp90T1PwzAQBmALgaAFZiZQJBaWFJ8dO86IKr6kSiwwR65zaV2ldrHdof8eoxYGBiYP97zn092YHDvvkJAroBMAJu-jsegMTrTeAefVERkBbUTZMMqPyYhSLktFa3FGxjGuKM21hp-SMw41q1VFR2T6vsSw1sOwK4x3Hbpo3aLYLH3yLhbWJV_oXMkIXcoobgabiph0wsL3xWAXy3RBTno9RLw8vOfk4-nxffpSzt6eX6cPs9Lwqk5lLRuoOwp9Z1DUVAht8gxSAIhKN7SiyiiQtFFa0kpxZLpTNSJoo6GT_Zyfk7t9303wn1uMqV3baHAYtEO_jS3jICD3lSLT2z905bfB5em-VSUUB8myujmo7XyNXbsJdq3Drv1ZTwb3e2CCjzFg_0uAtt8HaA8HaA8HyAnxJ2FsXpb1LgVth39y1_vcKiYffr9hUlWCsYZ_AUt4lXY
CitedBy_id crossref_primary_10_1209_0295_5075_130_54001
crossref_primary_10_1088_1367_2630_acc34c
crossref_primary_10_1002_adom_202202820
crossref_primary_10_1103_PhysRevA_104_063711
crossref_primary_10_1063_5_0041438
crossref_primary_10_1103_PhysRevA_105_033529
crossref_primary_10_1103_PhysRevLett_126_150602
crossref_primary_10_1103_PhysRevLett_132_173601
crossref_primary_10_1002_lpor_202300366
crossref_primary_10_1209_0295_5075_134_26001
crossref_primary_10_1103_PhysRevB_106_195403
crossref_primary_10_1103_PhysRevApplied_13_044031
crossref_primary_10_21468_SciPostPhys_9_4_057
crossref_primary_10_1038_s41567_024_02641_7
crossref_primary_10_1103_PhysRevA_105_043318
crossref_primary_10_1103_PhysRevA_106_063722
crossref_primary_10_1103_PhysRevResearch_6_023008
crossref_primary_10_1103_PhysRevResearch_3_023167
crossref_primary_10_1103_PhysRevResearch_6_013220
crossref_primary_10_1038_s41567_023_02281_3
crossref_primary_10_1103_PhysRevA_102_053517
crossref_primary_10_1126_science_aay1334
crossref_primary_10_1364_OE_422127
crossref_primary_10_1103_PhysRevLett_133_093602
crossref_primary_10_1038_s41566_024_01491_2
crossref_primary_10_1088_1367_2630_ac4ee0
Cites_doi 10.1088/1361-6633/aa5b0c
10.1038/nphys2609
10.1038/nphys1680
10.1103/PhysRevLett.111.100404
10.1038/nphoton.2011.354
10.1016/0003-4916(61)90115-4
10.1103/RevModPhys.80.517
10.1038/nmat4971
10.1038/nphys466
10.1103/PhysRevLett.118.107403
10.1007/BF02395928
10.1038/nphys462
10.1063/1.343793
10.1103/PhysRevA.98.013810
10.1103/PhysRevLett.106.230401
10.1103/PhysRevA.63.052302
10.1038/nature22362
10.1103/PhysRevLett.116.033604
10.1038/nature05623
10.1038/nphoton.2017.139
10.1103/PhysRevA.100.013804
10.1103/PhysRevA.44.7439
10.1103/RevModPhys.85.299
10.1103/PhysRevA.91.033813
10.1038/nature09567
10.1088/1464-4266/2/2/315
10.1140/epjst/e2008-00716-9
10.1103/PhysRevLett.110.186403
10.1126/science.aay1334
10.1103/PhysRevA.92.011602
10.1103/PhysRevA.76.031805
10.1007/978-1-4757-3061-6
10.1103/PhysRevB.87.235319
10.1103/PhysRevA.91.033609
10.1038/nature05131
10.1103/PhysRevX.6.031032
10.1088/1367-2630/aa8487
ContentType Journal Article
Copyright Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aay1334
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 897
ExternalDocumentID 31727840
10_1126_science_aay1334
26845229
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JENOY
JLS
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
GX1
NPM
OK1
UIG
YCJ
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c347t-76917d01fdce57055ac784651154a90408c816098a60483e2ad87ee1aca1d6fb3
ISSN 0036-8075
1095-9203
IngestDate Fri Sep 05 14:46:24 EDT 2025
Fri Jul 25 10:50:13 EDT 2025
Thu Apr 03 07:09:48 EDT 2025
Tue Jul 01 01:51:36 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Thu Jul 03 21:37:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6467
Language English
License Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-76917d01fdce57055ac784651154a90408c816098a60483e2ad87ee1aca1d6fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9932-7227
0000-0002-9171-285X
0000-0003-2050-5316
0000-0002-6586-5721
0000-0002-4236-318X
0000-0001-7818-2981
PMID 31727840
PQID 2314583162
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2315105565
proquest_journals_2314583162
pubmed_primary_31727840
crossref_primary_10_1126_science_aay1334
crossref_citationtrail_10_1126_science_aay1334
jstor_primary_26845229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191115
2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 20191115
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2019
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_2_2
  doi: 10.1088/1361-6633/aa5b0c
– ident: e_1_3_2_10_2
  doi: 10.1038/nphys2609
– ident: e_1_3_2_20_2
  doi: 10.1038/nphys1680
– ident: e_1_3_2_21_2
  doi: 10.1103/PhysRevLett.111.100404
– ident: e_1_3_2_7_2
  doi: 10.1038/nphoton.2011.354
– ident: e_1_3_2_38_2
  doi: 10.1016/0003-4916(61)90115-4
– ident: e_1_3_2_40_2
  doi: 10.1103/RevModPhys.80.517
– ident: e_1_3_2_15_2
  doi: 10.1038/nmat4971
– ident: e_1_3_2_25_2
  doi: 10.1038/nphys466
– ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevLett.118.107403
– ident: e_1_3_2_35_2
  doi: 10.1007/BF02395928
– ident: e_1_3_2_24_2
  doi: 10.1038/nphys462
– ident: e_1_3_2_32_2
  doi: 10.1063/1.343793
– ident: e_1_3_2_3_2
– ident: e_1_3_2_18_2
  doi: 10.1103/PhysRevA.98.013810
– ident: e_1_3_2_36_2
  doi: 10.1103/PhysRevLett.106.230401
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevA.63.052302
– ident: e_1_3_2_4_2
– ident: e_1_3_2_16_2
  doi: 10.1038/nature22362
– ident: e_1_3_2_28_2
  doi: 10.1103/PhysRevLett.116.033604
– ident: e_1_3_2_5_2
  doi: 10.1038/nature05623
– ident: e_1_3_2_13_2
  doi: 10.1038/nphoton.2017.139
– ident: e_1_3_2_29_2
  doi: 10.1103/PhysRevA.100.013804
– ident: e_1_3_2_34_2
  doi: 10.1103/PhysRevA.44.7439
– ident: e_1_3_2_6_2
  doi: 10.1103/RevModPhys.85.299
– ident: e_1_3_2_17_2
  doi: 10.1103/PhysRevA.91.033813
– ident: e_1_3_2_9_2
  doi: 10.1038/nature09567
– ident: e_1_3_2_31_2
  doi: 10.1088/1464-4266/2/2/315
– ident: e_1_3_2_39_2
  doi: 10.1140/epjst/e2008-00716-9
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevLett.110.186403
– ident: e_1_3_2_30_2
  doi: 10.1126/science.aay1334
– ident: e_1_3_2_22_2
  doi: 10.1103/PhysRevA.92.011602
– ident: e_1_3_2_26_2
  doi: 10.1103/PhysRevA.76.031805
– ident: e_1_3_2_33_2
  doi: 10.1007/978-1-4757-3061-6
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevB.87.235319
– ident: e_1_3_2_27_2
  doi: 10.1103/PhysRevA.91.033609
– ident: e_1_3_2_8_2
  doi: 10.1038/nature05131
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevX.6.031032
– ident: e_1_3_2_41_2
  doi: 10.1088/1367-2630/aa8487
SSID ssj0009593
Score 2.469802
Snippet The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum...
Prisms and dielectric beam splitters tend to be unitary and reversible optical elements, with the quantum properties of the photons largely irrelevant....
Irreversible splitting of lightPrisms and dielectric beam splitters tend to be unitary and reversible optical elements, with the quantum properties of the...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 894
SubjectTerms Beam splitters
Bifurcations
Coherence
Computer simulation
Control methods
Dimpling
Dyes
Entangled states
Fluorescent dyes
Fluorescent indicators
Ground state
Optical components
Optical properties
Photons
Prisms
Quantum computing
Quantum phenomena
Recombination
Room temperature
Thermalization (energy absorption)
Wave packets
Title Thermally condensing photons into a coherently split state of light
URI https://www.jstor.org/stable/26845229
https://www.ncbi.nlm.nih.gov/pubmed/31727840
https://www.proquest.com/docview/2314583162
https://www.proquest.com/docview/2315105565
Volume 366
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WLYIvYqvV1Coj-FCRLLlMbo_b1lIq-tRK38JkMqHisivdLLL9Of2lPWduGS8LtS9hSSZD2O_Mucx85xxC3sdNyiswtCHLsjJkTcxCHmXImQL72nS8ZBz3O758zU8v2Nlldjka3XqspVXfTMTNP_NKHoIq3ANcMUv2P5B1k8IN-A34whUQhut9MQa9OputkTzeIhUdU8uvFr2mh4NbyeHJFWb09TBoCQ5n_1GlEKGPOMO43HdO7ToHp9Md5HjwOUbiVPMGLI3AvObtKXxeXfcQNcvv7VC_wBPDY6NgPD495lPY7XNQzS596Jv8pfYdrY_9w9-liCtM19N5mlbzmsLH2u5oZRthn8gkSn1tnOomLEbscqabdRj1WuqGyNZSa2bv30bAa1spJ5yvIQ5ng72zZ_x_mEFHTlRhUZLXZoLaTPCIbCUQikRjsjU9PD482Vja2RSQ8lKz7Df85vto-uvmwEY5OOfPyFMTmdCpFrNtMpLzHfJY9ypd75BtA_OSHphS5R-ekyMngXSQQGokkKIEUk4HCaRKAqmSQLroqJLAF-Ti5NP50Wlo2nKEImVFHxY5hPhtFHetkBkWY-KiAC82w8JOvAKjUIoyzqOq5Dn2K5AJb8tCypgLHrd516S7ZDxfzOUrQllUSNFi0J0KVsAb2AdGZhUvZSO6tgnIxP5htTA167F1yqzeAFJADtwLP3W5ls1DdxUCbhzWPYJopArIvoWkNot9WUMYhAyDOE8C8s49BlWM52t8LhcrNSZT_WazgLzUULrJUwwUShbt3f8DX5Mnw0raJ-P-eiXfgAfcN2-NCN4Bf2m0lA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+condensing+photons+into+a+coherently+split+state+of+light&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Kurtscheid%2C+Christian&rft.au=Dung%2C+David&rft.au=Busley%2C+Erik&rft.au=Vewinger%2C+Frank&rft.date=2019-11-15&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=366&rft.issue=6467&rft.spage=894&rft.epage=897&rft_id=info:doi/10.1126%2Fscience.aay1334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aay1334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon