Thermally condensing photons into a coherently split state of light
The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynami...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 366; no. 6467; pp. 894 - 897 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
15.11.2019
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aay1334 |
Cover
Loading…
Abstract | The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states. |
---|---|
AbstractList | Prisms and dielectric beam splitters tend to be unitary and reversible optical elements, with the quantum properties of the photons largely irrelevant. Kurtscheid
et al.
introduce a method of irreversibly, but coherently, populating a split state with photons by thermalizing the photons into a low-energy ground state by repeated absorption-emission interaction with a fluorescent dye within a double-dimple optical cavity. Generation of such a coherent split state could be used as a precursor step to the quasi-continuous creation of many-body entangled states of light, which could be useful in applications in quantum communication, computing, and simulation.
Science
, this issue p.
894
Photons cooled into a split Bose-Einstein condensate could be used as a quantum source of light.
The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states. The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states. The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states.The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states. Irreversible splitting of lightPrisms and dielectric beam splitters tend to be unitary and reversible optical elements, with the quantum properties of the photons largely irrelevant. Kurtscheid et al. introduce a method of irreversibly, but coherently, populating a split state with photons by thermalizing the photons into a low-energy ground state by repeated absorption-emission interaction with a fluorescent dye within a double-dimple optical cavity. Generation of such a coherent split state could be used as a precursor step to the quasi-continuous creation of many-body entangled states of light, which could be useful in applications in quantum communication, computing, and simulation.Science, this issue p. 894The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum states can be created for electrons in solid-state materials through mere cooling, optical manipulation and control builds on nonthermodynamic methods. Using an optical dye microcavity, we show that photon wave packets can be split through thermalization within a potential with two minima subject to tunnel coupling. At room temperature, photons condense into a quantum-coherent bifurcated ground state. Fringe signals upon recombination show the relative coherence between the two wells, demonstrating a working interferometer with the nonunitary thermodynamic beam splitter. Our energetically driven optical-state preparation method provides a route for exploring correlated and entangled optical many-body states. |
Author | Vewinger, Frank Busley, Erik Weitz, Martin Rosch, Achim Dung, David Kurtscheid, Christian |
Author_xml | – sequence: 1 givenname: Christian surname: Kurtscheid fullname: Kurtscheid, Christian – sequence: 2 givenname: David surname: Dung fullname: Dung, David – sequence: 3 givenname: Erik surname: Busley fullname: Busley, Erik – sequence: 4 givenname: Frank surname: Vewinger fullname: Vewinger, Frank – sequence: 5 givenname: Achim surname: Rosch fullname: Rosch, Achim – sequence: 6 givenname: Martin surname: Weitz fullname: Weitz, Martin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31727840$$D View this record in MEDLINE/PubMed |
BookMark | eNp90T1PwzAQBmALgaAFZiZQJBaWFJ8dO86IKr6kSiwwR65zaV2ldrHdof8eoxYGBiYP97zn092YHDvvkJAroBMAJu-jsegMTrTeAefVERkBbUTZMMqPyYhSLktFa3FGxjGuKM21hp-SMw41q1VFR2T6vsSw1sOwK4x3Hbpo3aLYLH3yLhbWJV_oXMkIXcoobgabiph0wsL3xWAXy3RBTno9RLw8vOfk4-nxffpSzt6eX6cPs9Lwqk5lLRuoOwp9Z1DUVAht8gxSAIhKN7SiyiiQtFFa0kpxZLpTNSJoo6GT_Zyfk7t9303wn1uMqV3baHAYtEO_jS3jICD3lSLT2z905bfB5em-VSUUB8myujmo7XyNXbsJdq3Drv1ZTwb3e2CCjzFg_0uAtt8HaA8HaA8HyAnxJ2FsXpb1LgVth39y1_vcKiYffr9hUlWCsYZ_AUt4lXY |
CitedBy_id | crossref_primary_10_1209_0295_5075_130_54001 crossref_primary_10_1088_1367_2630_acc34c crossref_primary_10_1002_adom_202202820 crossref_primary_10_1103_PhysRevA_104_063711 crossref_primary_10_1063_5_0041438 crossref_primary_10_1103_PhysRevA_105_033529 crossref_primary_10_1103_PhysRevLett_126_150602 crossref_primary_10_1103_PhysRevLett_132_173601 crossref_primary_10_1002_lpor_202300366 crossref_primary_10_1209_0295_5075_134_26001 crossref_primary_10_1103_PhysRevB_106_195403 crossref_primary_10_1103_PhysRevApplied_13_044031 crossref_primary_10_21468_SciPostPhys_9_4_057 crossref_primary_10_1038_s41567_024_02641_7 crossref_primary_10_1103_PhysRevA_105_043318 crossref_primary_10_1103_PhysRevA_106_063722 crossref_primary_10_1103_PhysRevResearch_6_023008 crossref_primary_10_1103_PhysRevResearch_3_023167 crossref_primary_10_1103_PhysRevResearch_6_013220 crossref_primary_10_1038_s41567_023_02281_3 crossref_primary_10_1103_PhysRevA_102_053517 crossref_primary_10_1126_science_aay1334 crossref_primary_10_1364_OE_422127 crossref_primary_10_1103_PhysRevLett_133_093602 crossref_primary_10_1038_s41566_024_01491_2 crossref_primary_10_1088_1367_2630_ac4ee0 |
Cites_doi | 10.1088/1361-6633/aa5b0c 10.1038/nphys2609 10.1038/nphys1680 10.1103/PhysRevLett.111.100404 10.1038/nphoton.2011.354 10.1016/0003-4916(61)90115-4 10.1103/RevModPhys.80.517 10.1038/nmat4971 10.1038/nphys466 10.1103/PhysRevLett.118.107403 10.1007/BF02395928 10.1038/nphys462 10.1063/1.343793 10.1103/PhysRevA.98.013810 10.1103/PhysRevLett.106.230401 10.1103/PhysRevA.63.052302 10.1038/nature22362 10.1103/PhysRevLett.116.033604 10.1038/nature05623 10.1038/nphoton.2017.139 10.1103/PhysRevA.100.013804 10.1103/PhysRevA.44.7439 10.1103/RevModPhys.85.299 10.1103/PhysRevA.91.033813 10.1038/nature09567 10.1088/1464-4266/2/2/315 10.1140/epjst/e2008-00716-9 10.1103/PhysRevLett.110.186403 10.1126/science.aay1334 10.1103/PhysRevA.92.011602 10.1103/PhysRevA.76.031805 10.1007/978-1-4757-3061-6 10.1103/PhysRevB.87.235319 10.1103/PhysRevA.91.033609 10.1038/nature05131 10.1103/PhysRevX.6.031032 10.1088/1367-2630/aa8487 |
ContentType | Journal Article |
Copyright | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aay1334 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 897 |
ExternalDocumentID | 31727840 10_1126_science_aay1334 26845229 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JENOY JLS JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O GX1 NPM OK1 UIG YCJ ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c347t-76917d01fdce57055ac784651154a90408c816098a60483e2ad87ee1aca1d6fb3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Sep 05 14:46:24 EDT 2025 Fri Jul 25 10:50:13 EDT 2025 Thu Apr 03 07:09:48 EDT 2025 Tue Jul 01 01:51:36 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Thu Jul 03 21:37:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6467 |
Language | English |
License | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-76917d01fdce57055ac784651154a90408c816098a60483e2ad87ee1aca1d6fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9932-7227 0000-0002-9171-285X 0000-0003-2050-5316 0000-0002-6586-5721 0000-0002-4236-318X 0000-0001-7818-2981 |
PMID | 31727840 |
PQID | 2314583162 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2315105565 proquest_journals_2314583162 pubmed_primary_31727840 crossref_primary_10_1126_science_aay1334 crossref_citationtrail_10_1126_science_aay1334 jstor_primary_26845229 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191115 2019-11-15 |
PublicationDateYYYYMMDD | 2019-11-15 |
PublicationDate_xml | – month: 11 year: 2019 text: 20191115 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2019 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_2_2 doi: 10.1088/1361-6633/aa5b0c – ident: e_1_3_2_10_2 doi: 10.1038/nphys2609 – ident: e_1_3_2_20_2 doi: 10.1038/nphys1680 – ident: e_1_3_2_21_2 doi: 10.1103/PhysRevLett.111.100404 – ident: e_1_3_2_7_2 doi: 10.1038/nphoton.2011.354 – ident: e_1_3_2_38_2 doi: 10.1016/0003-4916(61)90115-4 – ident: e_1_3_2_40_2 doi: 10.1103/RevModPhys.80.517 – ident: e_1_3_2_15_2 doi: 10.1038/nmat4971 – ident: e_1_3_2_25_2 doi: 10.1038/nphys466 – ident: e_1_3_2_12_2 doi: 10.1103/PhysRevLett.118.107403 – ident: e_1_3_2_35_2 doi: 10.1007/BF02395928 – ident: e_1_3_2_24_2 doi: 10.1038/nphys462 – ident: e_1_3_2_32_2 doi: 10.1063/1.343793 – ident: e_1_3_2_3_2 – ident: e_1_3_2_18_2 doi: 10.1103/PhysRevA.98.013810 – ident: e_1_3_2_36_2 doi: 10.1103/PhysRevLett.106.230401 – ident: e_1_3_2_37_2 doi: 10.1103/PhysRevA.63.052302 – ident: e_1_3_2_4_2 – ident: e_1_3_2_16_2 doi: 10.1038/nature22362 – ident: e_1_3_2_28_2 doi: 10.1103/PhysRevLett.116.033604 – ident: e_1_3_2_5_2 doi: 10.1038/nature05623 – ident: e_1_3_2_13_2 doi: 10.1038/nphoton.2017.139 – ident: e_1_3_2_29_2 doi: 10.1103/PhysRevA.100.013804 – ident: e_1_3_2_34_2 doi: 10.1103/PhysRevA.44.7439 – ident: e_1_3_2_6_2 doi: 10.1103/RevModPhys.85.299 – ident: e_1_3_2_17_2 doi: 10.1103/PhysRevA.91.033813 – ident: e_1_3_2_9_2 doi: 10.1038/nature09567 – ident: e_1_3_2_31_2 doi: 10.1088/1464-4266/2/2/315 – ident: e_1_3_2_39_2 doi: 10.1140/epjst/e2008-00716-9 – ident: e_1_3_2_11_2 doi: 10.1103/PhysRevLett.110.186403 – ident: e_1_3_2_30_2 doi: 10.1126/science.aay1334 – ident: e_1_3_2_22_2 doi: 10.1103/PhysRevA.92.011602 – ident: e_1_3_2_26_2 doi: 10.1103/PhysRevA.76.031805 – ident: e_1_3_2_33_2 doi: 10.1007/978-1-4757-3061-6 – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevB.87.235319 – ident: e_1_3_2_27_2 doi: 10.1103/PhysRevA.91.033609 – ident: e_1_3_2_8_2 doi: 10.1038/nature05131 – ident: e_1_3_2_14_2 doi: 10.1103/PhysRevX.6.031032 – ident: e_1_3_2_41_2 doi: 10.1088/1367-2630/aa8487 |
SSID | ssj0009593 |
Score | 2.469802 |
Snippet | The quantum state of light plays a crucial role in a wide range of fields, from quantum information science to precision measurements. Whereas complex quantum... Prisms and dielectric beam splitters tend to be unitary and reversible optical elements, with the quantum properties of the photons largely irrelevant.... Irreversible splitting of lightPrisms and dielectric beam splitters tend to be unitary and reversible optical elements, with the quantum properties of the... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 894 |
SubjectTerms | Beam splitters Bifurcations Coherence Computer simulation Control methods Dimpling Dyes Entangled states Fluorescent dyes Fluorescent indicators Ground state Optical components Optical properties Photons Prisms Quantum computing Quantum phenomena Recombination Room temperature Thermalization (energy absorption) Wave packets |
Title | Thermally condensing photons into a coherently split state of light |
URI | https://www.jstor.org/stable/26845229 https://www.ncbi.nlm.nih.gov/pubmed/31727840 https://www.proquest.com/docview/2314583162 https://www.proquest.com/docview/2315105565 |
Volume | 366 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WLYIvYqvV1Coj-FCRLLlMbo_b1lIq-tRK38JkMqHisivdLLL9Of2lPWduGS8LtS9hSSZD2O_Mucx85xxC3sdNyiswtCHLsjJkTcxCHmXImQL72nS8ZBz3O758zU8v2Nlldjka3XqspVXfTMTNP_NKHoIq3ANcMUv2P5B1k8IN-A34whUQhut9MQa9OputkTzeIhUdU8uvFr2mh4NbyeHJFWb09TBoCQ5n_1GlEKGPOMO43HdO7ToHp9Md5HjwOUbiVPMGLI3AvObtKXxeXfcQNcvv7VC_wBPDY6NgPD495lPY7XNQzS596Jv8pfYdrY_9w9-liCtM19N5mlbzmsLH2u5oZRthn8gkSn1tnOomLEbscqabdRj1WuqGyNZSa2bv30bAa1spJ5yvIQ5ng72zZ_x_mEFHTlRhUZLXZoLaTPCIbCUQikRjsjU9PD482Vja2RSQ8lKz7Df85vto-uvmwEY5OOfPyFMTmdCpFrNtMpLzHfJY9ypd75BtA_OSHphS5R-ekyMngXSQQGokkKIEUk4HCaRKAqmSQLroqJLAF-Ti5NP50Wlo2nKEImVFHxY5hPhtFHetkBkWY-KiAC82w8JOvAKjUIoyzqOq5Dn2K5AJb8tCypgLHrd516S7ZDxfzOUrQllUSNFi0J0KVsAb2AdGZhUvZSO6tgnIxP5htTA167F1yqzeAFJADtwLP3W5ls1DdxUCbhzWPYJopArIvoWkNot9WUMYhAyDOE8C8s49BlWM52t8LhcrNSZT_WazgLzUULrJUwwUShbt3f8DX5Mnw0raJ-P-eiXfgAfcN2-NCN4Bf2m0lA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+condensing+photons+into+a+coherently+split+state+of+light&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Kurtscheid%2C+Christian&rft.au=Dung%2C+David&rft.au=Busley%2C+Erik&rft.au=Vewinger%2C+Frank&rft.date=2019-11-15&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=366&rft.issue=6467&rft.spage=894&rft.epage=897&rft_id=info:doi/10.1126%2Fscience.aay1334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aay1334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |