Recent advances in organic donor-acceptor cocrystals: design, synthetic approaches, and optical applications

Organic donor-acceptor (D-A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor-acceptor blending properties via non-covalent interactions, becoming good candidate materials for optoelectronic applications. However, the rational design and selection of don...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 25; no. 21; pp. 3126 - 3141
Main Authors Liu, Hui-Ying, Li, Ya-Cheng, Wang, Xue-Dong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 25.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic donor-acceptor (D-A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor-acceptor blending properties via non-covalent interactions, becoming good candidate materials for optoelectronic applications. However, the rational design and selection of donor/acceptor components in organic cocrystals with the desired morphology, size, and function remains a key synthetic objective. As the single components possess inherent individual properties, including optical, electronic, and crystalline lattice features, co-crystalline engineering is a powerful but challenging strategy for obtaining new materials with combined physical and chemical properties. In this review, we mainly focus on the organic donor acceptor cocrystal molecular design, synthetic approaches, and their photophysical and photochemical properties as well as optical function application devices. Finally, an outlook is provided for the future development of organic D-A cocrystals toward next-generation organic crystal materials. The recent progress in optical applications of organic donor-acceptor co-crystals is reviewed in terms of material design, synthetic approach and future perspectives.
AbstractList Organic donor–acceptor (D–A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor–acceptor blending properties via non-covalent interactions, becoming good candidate materials for optoelectronic applications. However, the rational design and selection of donor/acceptor components in organic cocrystals with the desired morphology, size, and function remains a key synthetic objective. As the single components possess inherent individual properties, including optical, electronic, and crystalline lattice features, co-crystalline engineering is a powerful but challenging strategy for obtaining new materials with combined physical and chemical properties. In this review, we mainly focus on the organic donor acceptor cocrystal molecular design, synthetic approaches, and their photophysical and photochemical properties as well as optical function application devices. Finally, an outlook is provided for the future development of organic D–A cocrystals toward next-generation organic crystal materials.
Organic donor–acceptor (D–A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor–acceptor blending properties via non-covalent interactions, becoming good candidate materials for optoelectronic applications. However, the rational design and selection of donor/acceptor components in organic cocrystals with the desired morphology, size, and function remains a key synthetic objective. As the single components possess inherent individual properties, including optical, electronic, and crystalline lattice features, co-crystalline engineering is a powerful but challenging strategy for obtaining new materials with combined physical and chemical properties. In this review, we mainly focus on the organic donor acceptor cocrystal molecular design, synthetic approaches, and their photophysical and photochemical properties as well as optical function application devices. Finally, an outlook is provided for the future development of organic D–A cocrystals toward next-generation organic crystal materials.
Organic donor-acceptor (D-A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor-acceptor blending properties via non-covalent interactions, becoming good candidate materials for optoelectronic applications. However, the rational design and selection of donor/acceptor components in organic cocrystals with the desired morphology, size, and function remains a key synthetic objective. As the single components possess inherent individual properties, including optical, electronic, and crystalline lattice features, co-crystalline engineering is a powerful but challenging strategy for obtaining new materials with combined physical and chemical properties. In this review, we mainly focus on the organic donor acceptor cocrystal molecular design, synthetic approaches, and their photophysical and photochemical properties as well as optical function application devices. Finally, an outlook is provided for the future development of organic D-A cocrystals toward next-generation organic crystal materials. The recent progress in optical applications of organic donor-acceptor co-crystals is reviewed in terms of material design, synthetic approach and future perspectives.
Author Liu, Hui-Ying
Li, Ya-Cheng
Wang, Xue-Dong
AuthorAffiliation School of Materials Design and Engineering
Institute of Functional Nano & Soft Materials (FUNSOM)
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
Beijing Institute of Fashion Technology
Soochow University
AuthorAffiliation_xml – sequence: 0
  name: Soochow University
– sequence: 0
  name: Institute of Functional Nano & Soft Materials (FUNSOM)
– sequence: 0
  name: Beijing Institute of Fashion Technology
– sequence: 0
  name: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
– sequence: 0
  name: School of Materials Design and Engineering
Author_xml – sequence: 1
  givenname: Hui-Ying
  surname: Liu
  fullname: Liu, Hui-Ying
– sequence: 2
  givenname: Ya-Cheng
  surname: Li
  fullname: Li, Ya-Cheng
– sequence: 3
  givenname: Xue-Dong
  surname: Wang
  fullname: Wang, Xue-Dong
BookMark eNptkU1LAzEQhoNUsK1evAsBb9LVpNnubr1JbVUoCKLnZTaZtFvWZE3SQv-9aSsq4mlehuedzx7pGGuQkHPOrjkT4xslJDLG00wfkW4MWVIwITq_9Anpeb_aMZyzLmleUKIJFNQGjERPa0OtW4CpJVXWWJeAlNgG66i00m19gMbfUoW-XpgB9VsTlhgiDG3rLMgl-gEFo6htYxaaXb6JItTW-FNyrKMdz75in7zNpq-Tx2T-_PA0uZsnUqR5SHIOmagwLYpxLkYaQWkYVjJl1WjMpeIVFqjVUGMxyivFc66VQCV0hcgQhBB9cnmoG0f6WKMP5cqunYkty2HBiyxP0zyN1NWBks5671CXravfwW1LzsrdNct7MZnurzmLMPsDyzrstwoO6uZ_y8XB4rz8Lv3zIPEJB5CFzQ
CitedBy_id crossref_primary_10_1007_s10847_024_01243_3
crossref_primary_10_1021_acs_inorgchem_4c02467
crossref_primary_10_3390_nano13172469
crossref_primary_10_1002_ange_202416181
crossref_primary_10_1016_j_molstruc_2024_140540
crossref_primary_10_1021_acs_jpcc_4c03366
crossref_primary_10_1021_acs_cgd_4c01312
crossref_primary_10_1038_s42004_024_01380_3
crossref_primary_10_1039_D4CE00338A
crossref_primary_10_1021_acs_jpcc_4c07712
crossref_primary_10_1039_D3MA00853C
crossref_primary_10_1002_anie_202416181
crossref_primary_10_1021_acs_cgd_4c01264
crossref_primary_10_1107_S2052520623008648
crossref_primary_10_4011_shikizai_97_304
crossref_primary_10_1002_adom_202402522
crossref_primary_10_1039_D3CE01208E
crossref_primary_10_1002_cjoc_202400687
crossref_primary_10_1039_D4CE01256A
crossref_primary_10_1039_D4SC03359K
crossref_primary_10_1002_cplu_202500028
crossref_primary_10_1002_smll_202307129
Cites_doi 10.1016/j.scib.2022.07.028
10.1038/nchem.2206
10.1039/D2SC03343G
10.1021/ja057939a
10.1021/ar5001555
10.1002/anie.202009714
10.1002/adma.201900110
10.1021/acs.jpcc.0c08726
10.1002/adma.201201493
10.1038/nphoton.2013.176
10.1039/D0CE01394C
10.1021/acs.accounts.6b00209
10.1002/anie.202014891
10.1021/acsphotonics.9b00606
10.1021/acs.cgd.0c01586
10.1002/adom.201600310
10.1021/jacs.5b05586
10.1002/adma.202102719
10.1002/anie.201702084
10.1002/anie.202117857
10.1016/j.orgel.2021.106363
10.1002/chem.201800197
10.1002/anie.201304615
10.1038/s41467-019-11731-7
10.1021/acsami.0c03686
10.1002/adma.201600280
10.1002/smll.201402330
10.1002/ajoc.202000024
10.1021/ja030506s
10.1021/jacs.2c08584
10.1039/D2NR00757F
10.1021/jacs.8b00772
10.1021/acs.cgd.9b01450
10.1021/cm5027249
10.1002/chem.201405456
10.1007/s41061-016-0081-8
10.1002/anie.201700447
10.1039/b207369m
10.1039/D0SC03301D
10.1002/smll.201604110
10.1002/aelm.201500423
10.31635/ccschem.020.202000171
10.1016/j.chempr.2019.08.019
10.1016/j.matt.2022.02.017
10.1039/D2CE00925K
10.1002/anie.201712949
10.1039/D1CE01117K
10.1002/anie.202010707
10.1021/ja312197b
10.1021/ja801164v
10.1002/anie.201501638
10.1021/ja310098k
10.1002/anie.201902090
10.1039/C4FD00133H
10.1039/c3cs60014a
10.1016/j.dyepig.2017.09.058
10.1002/adom.201500531
10.1021/acs.accounts.6b00538
10.1063/1.2173226
10.1039/c3cp53929f
10.1021/acs.cgd.0c01024
10.1021/ja8098596
10.1007/s40843-016-5049-y
10.1002/anie.201904427
10.1021/acs.cgd.6b01548
10.1016/0038-1098(73)90127-0
10.1021/acs.cgd.8b01786
10.1038/s41467-019-08712-1
10.1021/ja9084435
10.1021/jacs.6b02854
10.1021/cg501206f
10.1039/C4EE03297G
10.1021/ja961087k
10.1039/C5SC04954G
10.1021/acsmaterialslett.0c00125
10.1039/C4NR05915H
10.1021/ja105356w
10.1002/anie.201805071
10.1002/anie.202015326
10.1021/cg800764n
10.1002/adma.201705011
10.1039/C5RA06497J
10.1021/accountsmr.1c00045
10.1021/jacs.2c11425
10.1002/adma.201701346
10.1039/C7CS00490G
10.1063/1.1863434
10.1002/anie.202007655
10.1021/ja509442t
10.1021/acs.accounts.7b00124
10.1021/acs.chemmater.0c01184
10.1021/cg300704b
10.1021/acs.cgd.5b01776
10.1002/smll.202006574
10.1021/acs.cgd.5b01663
10.1016/j.jssc.2019.03.017
10.1002/adom.202002197
10.1038/s41467-021-22060-z
10.1002/adom.201701300
10.1007/s40843-015-0099-1
10.1039/C7TC02013A
10.1021/acsami.8b05804
10.1021/acsami.8b16294
10.1039/C8TC03886D
10.1002/anie.202209211
10.1021/jacs.7b13605
10.1002/anie.201106391
10.1039/C3MH00023K
10.1021/acs.chemmater.7b04170
10.1002/adma.201606503
10.1002/anie.202016786
10.1002/anie.202111856
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/d3ce00146f
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 3141
ExternalDocumentID 10_1039_D3CE00146F
d3ce00146f
GroupedDBID -JG
0-7
0R~
29F
5GY
6J9
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
E3Z
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
R56
7U5
8FD
L7M
ID FETCH-LOGICAL-c347t-71a63be4889735feadfa2bc40b591cd1be8efd2fe857bd171fd3ed3fbee0ea333
ISSN 1466-8033
IngestDate Mon Jun 30 06:04:57 EDT 2025
Tue Jul 01 02:07:37 EDT 2025
Thu Apr 24 23:03:36 EDT 2025
Tue Dec 17 20:58:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-71a63be4889735feadfa2bc40b591cd1be8efd2fe857bd171fd3ed3fbee0ea333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2231-3000
0000-0003-0935-0835
PQID 2818674474
PQPubID 2047491
PageCount 16
ParticipantIDs proquest_journals_2818674474
crossref_citationtrail_10_1039_D3CE00146F
crossref_primary_10_1039_D3CE00146F
rsc_primary_d3ce00146f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-25
PublicationDateYYYYMMDD 2023-05-25
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-25
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Fischer (D3CE00146F/cit81/1) 2016; 16
Yan (D3CE00146F/cit90/1) 2011; 50
Liu (D3CE00146F/cit91/1) 2020; 32
Dar (D3CE00146F/cit30/1) 2021; 23
Aitipamula (D3CE00146F/cit50/1) 2012; 12
Yu (D3CE00146F/cit19/1) 2021; 17
Chen (D3CE00146F/cit5/1) 2015; 8
Hasa (D3CE00146F/cit82/1) 2015; 54
Chu (D3CE00146F/cit107/1) 2018; 10
Yu (D3CE00146F/cit47/1) 2019; 6
Yang (D3CE00146F/cit94/1) 2013; 7
Zhang (D3CE00146F/cit9/1) 2017; 50
Bolla (D3CE00146F/cit56/1) 2016; 59
Cheung (D3CE00146F/cit77/1) 2003; 125
Pan (D3CE00146F/cit12/1) 1996; 118
Zhang (D3CE00146F/cit38/1) 2016; 2
Zhang (D3CE00146F/cit97/1) 2021; 60
Wang (D3CE00146F/cit4/1) 2018; 47
Wang (D3CE00146F/cit10/1) 2016; 374
Cinčić (D3CE00146F/cit33/1) 2008; 130
Liu (D3CE00146F/cit22/1) 2019; 274
Zhu (D3CE00146F/cit25/1) 2015; 137
Park (D3CE00146F/cit24/1) 2013; 135
Schlesinger (D3CE00146F/cit60/1) 2020; 11
Gierschner (D3CE00146F/cit2/1) 2016; 4
Zhuo (D3CE00146F/cit63/1) 2018; 6
Sun (D3CE00146F/cit80/1) 2018; 140
Ye (D3CE00146F/cit113/1) 2020; 22
Ma (D3CE00146F/cit7/1) 2022; 67
Yan (D3CE00146F/cit89/1) 2014; 1
Wang (D3CE00146F/cit26/1) 2021; 60
Singh (D3CE00146F/cit48/1) 2021; 9
Wang (D3CE00146F/cit52/1) 2020; 9
Luo (D3CE00146F/cit35/1) 2022; 100
Black (D3CE00146F/cit65/1) 2014; 174
Wu (D3CE00146F/cit6/1) 2021; 60
Shan (D3CE00146F/cit83/1) 2002
Wu (D3CE00146F/cit41/1) 2018; 6
Zhu (D3CE00146F/cit11/1) 2015; 58
Zhu (D3CE00146F/cit18/1) 2015; 137
Su (D3CE00146F/cit8/1) 2022; 5
Dereka (D3CE00146F/cit58/1) 2017; 50
Liu (D3CE00146F/cit42/1) 2018; 149
Zhang (D3CE00146F/cit51/1) 2016; 7
Ye (D3CE00146F/cit75/1) 2019; 10
Zhuo (D3CE00146F/cit68/1) 2019; 10
Braga (D3CE00146F/cit76/1) 2013; 42
Friščić (D3CE00146F/cit79/1) 2009; 9
Sun (D3CE00146F/cit29/1) 2015; 27
Wang (D3CE00146F/cit92/1) 2021; 21
Vijay (D3CE00146F/cit59/1) 2021; 21
Tayi (D3CE00146F/cit13/1) 2015; 7
Kitagawa (D3CE00146F/cit109/1) 2018; 140
Stojaković (D3CE00146F/cit66/1) 2013; 52
Mukherjee (D3CE00146F/cit61/1) 2014; 47
Goud (D3CE00146F/cit64/1) 2017; 17
Carstens (D3CE00146F/cit78/1) 2020; 20
Wang (D3CE00146F/cit46/1) 2023; 145
Sun (D3CE00146F/cit40/1) 2019; 58
Han (D3CE00146F/cit44/1) 2021; 60
Li (D3CE00146F/cit20/1) 2017; 5
Zhuo (D3CE00146F/cit85/1) 2021; 3
Koshima (D3CE00146F/cit108/1) 2009; 131
Yu (D3CE00146F/cit23/1) 2018; 57
Morimoto (D3CE00146F/cit111/1) 2010; 132
Park (D3CE00146F/cit37/1) 2017; 29
Gude (D3CE00146F/cit98/1) 2021; 125
Yan (D3CE00146F/cit14/1) 2015; 21
Pan (D3CE00146F/cit84/1) 2020; 2
Blackburn (D3CE00146F/cit69/1) 2014; 136
Lei (D3CE00146F/cit103/1) 2010; 132
Wiscons (D3CE00146F/cit36/1) 2018; 57
Hu (D3CE00146F/cit71/1) 2014; 14
Goswami (D3CE00146F/cit62/1) 2019; 19
Ye (D3CE00146F/cit74/1) 2018; 30
Goudappagouda (D3CE00146F/cit53/1) 2018; 24
Zhuo (D3CE00146F/cit105/1) 2021; 33
Zhang (D3CE00146F/cit34/1) 2013; 135
Zhang (D3CE00146F/cit15/1) 2017; 56
Takahashi (D3CE00146F/cit72/1) 2006; 88
Feng (D3CE00146F/cit43/1) 2021; 60
Zhu (D3CE00146F/cit45/1) 2016; 28
Zhang (D3CE00146F/cit16/1) 2021; 12
Sun (D3CE00146F/cit102/1) 2017; 56
De (D3CE00146F/cit110/1) 2020; 12
Imahori (D3CE00146F/cit57/1) 2021; 2
Li (D3CE00146F/cit67/1) 2020; 59
Salzillo (D3CE00146F/cit21/1) 2016; 16
Bolla (D3CE00146F/cit106/1) 2021; 60
Garain (D3CE00146F/cit49/1) 2022; 13
Su (D3CE00146F/cit54/1) 2015; 7
Sokolov (D3CE00146F/cit32/1) 2006; 128
Zhang (D3CE00146F/cit1/1) 2016; 49
Chen (D3CE00146F/cit55/1) 2015; 5
Takahashi (D3CE00146F/cit73/1) 2005; 86
Topić (D3CE00146F/cit27/1) 2016; 138
Sang (D3CE00146F/cit93/1) 2020; 32
Li (D3CE00146F/cit101/1) 2017; 13
Yan (D3CE00146F/cit88/1) 2013; 15
Zhu (D3CE00146F/cit70/1) 2015; 11
Su (D3CE00146F/cit17/1) 2022; 61
Coleman (D3CE00146F/cit31/1) 1973; 12
Han (D3CE00146F/cit96/1) 2019; 58
Liu (D3CE00146F/cit99/1) 2022; 14
Gao (D3CE00146F/cit28/1) 2022; 24
Lei (D3CE00146F/cit104/1) 2012; 24
Li (D3CE00146F/cit112/1) 2018; 10
Han (D3CE00146F/cit87/1) 2017; 29
Fan (D3CE00146F/cit86/1) 2016; 4
Shi (D3CE00146F/cit95/1) 2018; 30
Yu (D3CE00146F/cit3/1) 2019; 5
Williams (D3CE00146F/cit39/1) 2022; 144
Li (D3CE00146F/cit100/1) 2022; 61
References_xml – volume: 67
  start-page: 1632
  year: 2022
  ident: D3CE00146F/cit7/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2022.07.028
– volume: 7
  start-page: 281
  year: 2015
  ident: D3CE00146F/cit13/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2206
– volume: 13
  start-page: 10011
  year: 2022
  ident: D3CE00146F/cit49/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC03343G
– volume: 128
  start-page: 2806
  year: 2006
  ident: D3CE00146F/cit32/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057939a
– volume: 47
  start-page: 2514
  year: 2014
  ident: D3CE00146F/cit61/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5001555
– volume: 59
  start-page: 22623
  year: 2020
  ident: D3CE00146F/cit67/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009714
– volume: 32
  start-page: 1900110
  year: 2020
  ident: D3CE00146F/cit93/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900110
– volume: 125
  start-page: 120
  year: 2021
  ident: D3CE00146F/cit98/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c08726
– volume: 24
  start-page: 5345
  year: 2012
  ident: D3CE00146F/cit104/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201493
– volume: 7
  start-page: 634
  year: 2013
  ident: D3CE00146F/cit94/1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.176
– volume: 22
  start-page: 8045
  year: 2020
  ident: D3CE00146F/cit113/1
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01394C
– volume: 49
  start-page: 1691
  year: 2016
  ident: D3CE00146F/cit1/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00209
– volume: 60
  start-page: 4575
  year: 2021
  ident: D3CE00146F/cit97/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202014891
– volume: 6
  start-page: 1798
  year: 2019
  ident: D3CE00146F/cit47/1
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b00606
– volume: 21
  start-page: 2699
  year: 2021
  ident: D3CE00146F/cit92/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01586
– volume: 4
  start-page: 2139
  year: 2016
  ident: D3CE00146F/cit86/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600310
– volume: 137
  start-page: 11038
  year: 2015
  ident: D3CE00146F/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05586
– volume: 33
  start-page: 2102719
  year: 2021
  ident: D3CE00146F/cit105/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102719
– volume: 56
  start-page: 10352
  year: 2017
  ident: D3CE00146F/cit102/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702084
– volume: 61
  start-page: e202117857
  year: 2022
  ident: D3CE00146F/cit17/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202117857
– volume: 100
  start-page: 106363
  year: 2022
  ident: D3CE00146F/cit35/1
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2021.106363
– volume: 24
  start-page: 7695
  year: 2018
  ident: D3CE00146F/cit53/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201800197
– volume: 52
  start-page: 12127
  year: 2013
  ident: D3CE00146F/cit66/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201304615
– volume: 10
  start-page: 3839
  year: 2019
  ident: D3CE00146F/cit68/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11731-7
– volume: 12
  start-page: 27493
  year: 2020
  ident: D3CE00146F/cit110/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03686
– volume: 28
  start-page: 5954
  year: 2016
  ident: D3CE00146F/cit45/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600280
– volume: 11
  start-page: 2150
  year: 2015
  ident: D3CE00146F/cit70/1
  publication-title: Small
  doi: 10.1002/smll.201402330
– volume: 9
  start-page: 1252
  year: 2020
  ident: D3CE00146F/cit52/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202000024
– volume: 125
  start-page: 14658
  year: 2003
  ident: D3CE00146F/cit77/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja030506s
– volume: 144
  start-page: 18607
  year: 2022
  ident: D3CE00146F/cit39/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c08584
– volume: 14
  start-page: 6305
  year: 2022
  ident: D3CE00146F/cit99/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR00757F
– volume: 140
  start-page: 6186
  year: 2018
  ident: D3CE00146F/cit80/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00772
– volume: 20
  start-page: 1139
  year: 2020
  ident: D3CE00146F/cit78/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b01450
– volume: 27
  start-page: 1157
  year: 2015
  ident: D3CE00146F/cit29/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm5027249
– volume: 21
  start-page: 4880
  year: 2015
  ident: D3CE00146F/cit14/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201405456
– volume: 374
  start-page: 83
  year: 2016
  ident: D3CE00146F/cit10/1
  publication-title: Top. Curr. Chem.
  doi: 10.1007/s41061-016-0081-8
– volume: 56
  start-page: 3616
  year: 2017
  ident: D3CE00146F/cit15/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201700447
– start-page: 2372
  year: 2002
  ident: D3CE00146F/cit83/1
  publication-title: Chem. Commun.
  doi: 10.1039/b207369m
– volume: 11
  start-page: 9532
  year: 2020
  ident: D3CE00146F/cit60/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03301D
– volume: 13
  start-page: 1604110
  year: 2017
  ident: D3CE00146F/cit101/1
  publication-title: Small
  doi: 10.1002/smll.201604110
– volume: 2
  start-page: 1500423
  year: 2016
  ident: D3CE00146F/cit38/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201500423
– volume: 3
  start-page: 413
  year: 2021
  ident: D3CE00146F/cit85/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.020.202000171
– volume: 5
  start-page: 2814
  year: 2019
  ident: D3CE00146F/cit3/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.08.019
– volume: 5
  start-page: 1520
  year: 2022
  ident: D3CE00146F/cit8/1
  publication-title: Matter
  doi: 10.1016/j.matt.2022.02.017
– volume: 24
  start-page: 6429
  year: 2022
  ident: D3CE00146F/cit28/1
  publication-title: CrystEngComm
  doi: 10.1039/D2CE00925K
– volume: 57
  start-page: 3963
  year: 2018
  ident: D3CE00146F/cit23/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712949
– volume: 23
  start-page: 8007
  year: 2021
  ident: D3CE00146F/cit30/1
  publication-title: CrystEngComm
  doi: 10.1039/D1CE01117K
– volume: 60
  start-page: 3037
  year: 2021
  ident: D3CE00146F/cit44/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202010707
– volume: 135
  start-page: 4757
  year: 2013
  ident: D3CE00146F/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312197b
– volume: 130
  start-page: 7524
  year: 2008
  ident: D3CE00146F/cit33/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801164v
– volume: 54
  start-page: 7371
  year: 2015
  ident: D3CE00146F/cit82/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501638
– volume: 135
  start-page: 558
  year: 2013
  ident: D3CE00146F/cit34/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310098k
– volume: 58
  start-page: 7013
  year: 2019
  ident: D3CE00146F/cit96/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902090
– volume: 174
  start-page: 297
  year: 2014
  ident: D3CE00146F/cit65/1
  publication-title: Faraday Discuss.
  doi: 10.1039/C4FD00133H
– volume: 42
  start-page: 7638
  year: 2013
  ident: D3CE00146F/cit76/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60014a
– volume: 149
  start-page: 59
  year: 2018
  ident: D3CE00146F/cit42/1
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2017.09.058
– volume: 4
  start-page: 348
  year: 2016
  ident: D3CE00146F/cit2/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500531
– volume: 50
  start-page: 426
  year: 2017
  ident: D3CE00146F/cit58/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00538
– volume: 88
  start-page: 073504
  year: 2006
  ident: D3CE00146F/cit72/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2173226
– volume: 15
  start-page: 19845
  year: 2013
  ident: D3CE00146F/cit88/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53929f
– volume: 21
  start-page: 200
  year: 2021
  ident: D3CE00146F/cit59/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01024
– volume: 131
  start-page: 6890
  year: 2009
  ident: D3CE00146F/cit108/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8098596
– volume: 59
  start-page: 523
  year: 2016
  ident: D3CE00146F/cit56/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-016-5049-y
– volume: 58
  start-page: 11311
  year: 2019
  ident: D3CE00146F/cit40/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904427
– volume: 17
  start-page: 328
  year: 2017
  ident: D3CE00146F/cit64/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b01548
– volume: 12
  start-page: 1125
  year: 1973
  ident: D3CE00146F/cit31/1
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(73)90127-0
– volume: 19
  start-page: 2175
  year: 2019
  ident: D3CE00146F/cit62/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b01786
– volume: 10
  start-page: 761
  year: 2019
  ident: D3CE00146F/cit75/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08712-1
– volume: 132
  start-page: 1742
  year: 2010
  ident: D3CE00146F/cit103/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9084435
– volume: 138
  start-page: 6610
  year: 2016
  ident: D3CE00146F/cit27/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02854
– volume: 14
  start-page: 6376
  year: 2014
  ident: D3CE00146F/cit71/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg501206f
– volume: 8
  start-page: 401
  year: 2015
  ident: D3CE00146F/cit5/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03297G
– volume: 118
  start-page: 6315
  year: 1996
  ident: D3CE00146F/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja961087k
– volume: 7
  start-page: 3851
  year: 2016
  ident: D3CE00146F/cit51/1
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04954G
– volume: 2
  start-page: 658
  year: 2020
  ident: D3CE00146F/cit84/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.0c00125
– volume: 7
  start-page: 1944
  year: 2015
  ident: D3CE00146F/cit54/1
  publication-title: Nanoscale
  doi: 10.1039/C4NR05915H
– volume: 137
  start-page: 11038
  year: 2015
  ident: D3CE00146F/cit18/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05586
– volume: 132
  start-page: 14172
  year: 2010
  ident: D3CE00146F/cit111/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105356w
– volume: 57
  start-page: 9044
  year: 2018
  ident: D3CE00146F/cit36/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805071
– volume: 60
  start-page: 6344
  year: 2021
  ident: D3CE00146F/cit26/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202015326
– volume: 9
  start-page: 1621
  year: 2009
  ident: D3CE00146F/cit79/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg800764n
– volume: 30
  start-page: 1705011
  year: 2018
  ident: D3CE00146F/cit95/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705011
– volume: 5
  start-page: 47681
  year: 2015
  ident: D3CE00146F/cit55/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06497J
– volume: 2
  start-page: 501
  year: 2021
  ident: D3CE00146F/cit57/1
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00045
– volume: 145
  start-page: 1855
  issue: 3
  year: 2023
  ident: D3CE00146F/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11425
– volume: 29
  start-page: 1701346
  year: 2017
  ident: D3CE00146F/cit37/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701346
– volume: 47
  start-page: 422
  year: 2018
  ident: D3CE00146F/cit4/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00490G
– volume: 86
  start-page: 063504
  year: 2005
  ident: D3CE00146F/cit73/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1863434
– volume: 60
  start-page: 281
  year: 2021
  ident: D3CE00146F/cit106/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202007655
– volume: 136
  start-page: 17224
  year: 2014
  ident: D3CE00146F/cit69/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509442t
– volume: 50
  start-page: 1654
  year: 2017
  ident: D3CE00146F/cit9/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00124
– volume: 32
  start-page: 5162
  year: 2020
  ident: D3CE00146F/cit91/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01184
– volume: 12
  start-page: 4290
  year: 2012
  ident: D3CE00146F/cit50/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg300704b
– volume: 16
  start-page: 1701
  year: 2016
  ident: D3CE00146F/cit81/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b01776
– volume: 17
  start-page: 2006574
  year: 2021
  ident: D3CE00146F/cit19/1
  publication-title: Small
  doi: 10.1002/smll.202006574
– volume: 16
  start-page: 3028
  year: 2016
  ident: D3CE00146F/cit21/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b01663
– volume: 274
  start-page: 47
  year: 2019
  ident: D3CE00146F/cit22/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2019.03.017
– volume: 9
  start-page: 2002197
  year: 2021
  ident: D3CE00146F/cit48/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202002197
– volume: 12
  start-page: 1838
  year: 2021
  ident: D3CE00146F/cit16/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22060-z
– volume: 6
  start-page: 1701300
  year: 2018
  ident: D3CE00146F/cit41/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201701300
– volume: 58
  start-page: 854
  year: 2015
  ident: D3CE00146F/cit11/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-015-0099-1
– volume: 5
  start-page: 6661
  year: 2017
  ident: D3CE00146F/cit20/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02013A
– volume: 10
  start-page: 22703
  year: 2018
  ident: D3CE00146F/cit112/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05804
– volume: 10
  start-page: 42740
  year: 2018
  ident: D3CE00146F/cit107/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16294
– volume: 6
  start-page: 9594
  year: 2018
  ident: D3CE00146F/cit63/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC03886D
– volume: 61
  start-page: e202209211
  year: 2022
  ident: D3CE00146F/cit100/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202209211
– volume: 140
  start-page: 4208
  year: 2018
  ident: D3CE00146F/cit109/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13605
– volume: 50
  start-page: 12483
  year: 2011
  ident: D3CE00146F/cit90/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201106391
– volume: 1
  start-page: 46
  year: 2014
  ident: D3CE00146F/cit89/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C3MH00023K
– volume: 30
  start-page: 412
  year: 2018
  ident: D3CE00146F/cit74/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04170
– volume: 29
  start-page: 1606503
  year: 2017
  ident: D3CE00146F/cit87/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606503
– volume: 60
  start-page: 9114
  year: 2021
  ident: D3CE00146F/cit6/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016786
– volume: 60
  start-page: 27046
  year: 2021
  ident: D3CE00146F/cit43/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202111856
SSID ssj0014110
Score 2.5001237
SecondaryResourceType review_article
Snippet Organic donor-acceptor (D-A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor-acceptor blending properties via...
Organic donor–acceptor (D–A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor–acceptor blending properties via...
Organic donor–acceptor (D–A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor–acceptor blending properties via...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3126
SubjectTerms Chemical properties
Materials selection
Optical properties
Optoelectronics
Organic crystals
Title Recent advances in organic donor-acceptor cocrystals: design, synthetic approaches, and optical applications
URI https://www.proquest.com/docview/2818674474
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa22wscEK-KhYIswQW1LontvLhV260KAk5bsZyixLHLSlVSbTeHthf-A_-QX8L4lQS6h8IlikaxpWS-zIw9M58RepNmEMUryUjGyoqAhxKkgH-KFAFVKQ0FDbjud_78JT455R8X0WI0uhl2l6zLA3G9sa_kf7QKMtCr7pL9B812k4IA7kG_cAUNw_VOOoaYz5SI2zy-qWy1pzSJvaqpYSHuKhlYIXT1SrPaA_O3uoKA8NxUwlWmfEN_5curGiJBQ97qSMat-dDb6s2F3e8e5rqHMe1Uzzirz3SvSVffs2yNU2uX5Jt3jkZsTH5Bpt9lL_3q9qwXrSRHjZO7nQhq6v5s17IznjzW5MaW2OJAbpA5i9sPan2DtLOfLKTxwBez0LJi3bLzAdM0qUdsOtNrvPi492Y-g_-Xk-tKD03SnWV5P3YLbVNYY9Ax2j6czT986pJQPLRkFv4VPLsty971o_-MZ_pFytbKnyBjIpX5Q_TALTHwocXLIzSS9WN0f0A8-QTVFjnYIwcva-yQgw1yfv346TGDe8y8xxYx-7jDC-7xso8BLdihBQ_R8hSdHs_m0xPiTt4ggvFkTZKwiFkpwbhnCYsUWBtV0FLwoIyyUFRhKVOpKqpkGiVlFSahqpismCqlDGTBGNtB47qp5TOEeQYxaSSjUgSCJyrNCgggU5XBXSypUBP01n-_XDhaen06ynl-W1MT9Lp79sKSsWx8aterIXc_62VODXMj5wmfoB1QTTe-YkKacer5nWZ_ge712N9F4_WqlS8hLl2Xrxx-fgPqW43n
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+organic+donor%E2%80%93acceptor+cocrystals%3A+design%2C+synthetic+approaches%2C+and+optical+applications&rft.jtitle=CrystEngComm&rft.au=Liu%2C+Hui-Ying&rft.au=Li%2C+Ya-Cheng&rft.au=Wang%2C+Xue-Dong&rft.date=2023-05-25&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=25&rft.issue=21&rft.spage=3126&rft.epage=3141&rft_id=info:doi/10.1039%2FD3CE00146F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3CE00146F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon