Recent advances in organic donor-acceptor cocrystals: design, synthetic approaches, and optical applications
Organic donor-acceptor (D-A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor-acceptor blending properties via non-covalent interactions, becoming good candidate materials for optoelectronic applications. However, the rational design and selection of don...
Saved in:
Published in | CrystEngComm Vol. 25; no. 21; pp. 3126 - 3141 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
25.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic donor-acceptor (D-A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor-acceptor blending properties
via
non-covalent interactions, becoming good candidate materials for optoelectronic applications. However, the rational design and selection of donor/acceptor components in organic cocrystals with the desired morphology, size, and function remains a key synthetic objective. As the single components possess inherent individual properties, including optical, electronic, and crystalline lattice features, co-crystalline engineering is a powerful but challenging strategy for obtaining new materials with combined physical and chemical properties. In this review, we mainly focus on the organic donor acceptor cocrystal molecular design, synthetic approaches, and their photophysical and photochemical properties as well as optical function application devices. Finally, an outlook is provided for the future development of organic D-A cocrystals toward next-generation organic crystal materials.
The recent progress in optical applications of organic donor-acceptor co-crystals is reviewed in terms of material design, synthetic approach and future perspectives. |
---|---|
AbstractList | Organic donor–acceptor (D–A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor–acceptor blending properties
via
non-covalent interactions, becoming good candidate materials for optoelectronic applications. However, the rational design and selection of donor/acceptor components in organic cocrystals with the desired morphology, size, and function remains a key synthetic objective. As the single components possess inherent individual properties, including optical, electronic, and crystalline lattice features, co-crystalline engineering is a powerful but challenging strategy for obtaining new materials with combined physical and chemical properties. In this review, we mainly focus on the organic donor acceptor cocrystal molecular design, synthetic approaches, and their photophysical and photochemical properties as well as optical function application devices. Finally, an outlook is provided for the future development of organic D–A cocrystals toward next-generation organic crystal materials. Organic donor–acceptor (D–A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor–acceptor blending properties via non-covalent interactions, becoming good candidate materials for optoelectronic applications. However, the rational design and selection of donor/acceptor components in organic cocrystals with the desired morphology, size, and function remains a key synthetic objective. As the single components possess inherent individual properties, including optical, electronic, and crystalline lattice features, co-crystalline engineering is a powerful but challenging strategy for obtaining new materials with combined physical and chemical properties. In this review, we mainly focus on the organic donor acceptor cocrystal molecular design, synthetic approaches, and their photophysical and photochemical properties as well as optical function application devices. Finally, an outlook is provided for the future development of organic D–A cocrystals toward next-generation organic crystal materials. Organic donor-acceptor (D-A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor-acceptor blending properties via non-covalent interactions, becoming good candidate materials for optoelectronic applications. However, the rational design and selection of donor/acceptor components in organic cocrystals with the desired morphology, size, and function remains a key synthetic objective. As the single components possess inherent individual properties, including optical, electronic, and crystalline lattice features, co-crystalline engineering is a powerful but challenging strategy for obtaining new materials with combined physical and chemical properties. In this review, we mainly focus on the organic donor acceptor cocrystal molecular design, synthetic approaches, and their photophysical and photochemical properties as well as optical function application devices. Finally, an outlook is provided for the future development of organic D-A cocrystals toward next-generation organic crystal materials. The recent progress in optical applications of organic donor-acceptor co-crystals is reviewed in terms of material design, synthetic approach and future perspectives. |
Author | Liu, Hui-Ying Li, Ya-Cheng Wang, Xue-Dong |
AuthorAffiliation | School of Materials Design and Engineering Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Beijing Institute of Fashion Technology Soochow University |
AuthorAffiliation_xml | – sequence: 0 name: Soochow University – sequence: 0 name: Institute of Functional Nano & Soft Materials (FUNSOM) – sequence: 0 name: Beijing Institute of Fashion Technology – sequence: 0 name: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices – sequence: 0 name: School of Materials Design and Engineering |
Author_xml | – sequence: 1 givenname: Hui-Ying surname: Liu fullname: Liu, Hui-Ying – sequence: 2 givenname: Ya-Cheng surname: Li fullname: Li, Ya-Cheng – sequence: 3 givenname: Xue-Dong surname: Wang fullname: Wang, Xue-Dong |
BookMark | eNptkU1LAzEQhoNUsK1evAsBb9LVpNnubr1JbVUoCKLnZTaZtFvWZE3SQv-9aSsq4mlehuedzx7pGGuQkHPOrjkT4xslJDLG00wfkW4MWVIwITq_9Anpeb_aMZyzLmleUKIJFNQGjERPa0OtW4CpJVXWWJeAlNgG66i00m19gMbfUoW-XpgB9VsTlhgiDG3rLMgl-gEFo6htYxaaXb6JItTW-FNyrKMdz75in7zNpq-Tx2T-_PA0uZsnUqR5SHIOmagwLYpxLkYaQWkYVjJl1WjMpeIVFqjVUGMxyivFc66VQCV0hcgQhBB9cnmoG0f6WKMP5cqunYkty2HBiyxP0zyN1NWBks5671CXravfwW1LzsrdNct7MZnurzmLMPsDyzrstwoO6uZ_y8XB4rz8Lv3zIPEJB5CFzQ |
CitedBy_id | crossref_primary_10_1007_s10847_024_01243_3 crossref_primary_10_1021_acs_inorgchem_4c02467 crossref_primary_10_3390_nano13172469 crossref_primary_10_1002_ange_202416181 crossref_primary_10_1016_j_molstruc_2024_140540 crossref_primary_10_1021_acs_jpcc_4c03366 crossref_primary_10_1021_acs_cgd_4c01312 crossref_primary_10_1038_s42004_024_01380_3 crossref_primary_10_1039_D4CE00338A crossref_primary_10_1021_acs_jpcc_4c07712 crossref_primary_10_1039_D3MA00853C crossref_primary_10_1002_anie_202416181 crossref_primary_10_1021_acs_cgd_4c01264 crossref_primary_10_1107_S2052520623008648 crossref_primary_10_4011_shikizai_97_304 crossref_primary_10_1002_adom_202402522 crossref_primary_10_1039_D3CE01208E crossref_primary_10_1002_cjoc_202400687 crossref_primary_10_1039_D4CE01256A crossref_primary_10_1039_D4SC03359K crossref_primary_10_1002_cplu_202500028 crossref_primary_10_1002_smll_202307129 |
Cites_doi | 10.1016/j.scib.2022.07.028 10.1038/nchem.2206 10.1039/D2SC03343G 10.1021/ja057939a 10.1021/ar5001555 10.1002/anie.202009714 10.1002/adma.201900110 10.1021/acs.jpcc.0c08726 10.1002/adma.201201493 10.1038/nphoton.2013.176 10.1039/D0CE01394C 10.1021/acs.accounts.6b00209 10.1002/anie.202014891 10.1021/acsphotonics.9b00606 10.1021/acs.cgd.0c01586 10.1002/adom.201600310 10.1021/jacs.5b05586 10.1002/adma.202102719 10.1002/anie.201702084 10.1002/anie.202117857 10.1016/j.orgel.2021.106363 10.1002/chem.201800197 10.1002/anie.201304615 10.1038/s41467-019-11731-7 10.1021/acsami.0c03686 10.1002/adma.201600280 10.1002/smll.201402330 10.1002/ajoc.202000024 10.1021/ja030506s 10.1021/jacs.2c08584 10.1039/D2NR00757F 10.1021/jacs.8b00772 10.1021/acs.cgd.9b01450 10.1021/cm5027249 10.1002/chem.201405456 10.1007/s41061-016-0081-8 10.1002/anie.201700447 10.1039/b207369m 10.1039/D0SC03301D 10.1002/smll.201604110 10.1002/aelm.201500423 10.31635/ccschem.020.202000171 10.1016/j.chempr.2019.08.019 10.1016/j.matt.2022.02.017 10.1039/D2CE00925K 10.1002/anie.201712949 10.1039/D1CE01117K 10.1002/anie.202010707 10.1021/ja312197b 10.1021/ja801164v 10.1002/anie.201501638 10.1021/ja310098k 10.1002/anie.201902090 10.1039/C4FD00133H 10.1039/c3cs60014a 10.1016/j.dyepig.2017.09.058 10.1002/adom.201500531 10.1021/acs.accounts.6b00538 10.1063/1.2173226 10.1039/c3cp53929f 10.1021/acs.cgd.0c01024 10.1021/ja8098596 10.1007/s40843-016-5049-y 10.1002/anie.201904427 10.1021/acs.cgd.6b01548 10.1016/0038-1098(73)90127-0 10.1021/acs.cgd.8b01786 10.1038/s41467-019-08712-1 10.1021/ja9084435 10.1021/jacs.6b02854 10.1021/cg501206f 10.1039/C4EE03297G 10.1021/ja961087k 10.1039/C5SC04954G 10.1021/acsmaterialslett.0c00125 10.1039/C4NR05915H 10.1021/ja105356w 10.1002/anie.201805071 10.1002/anie.202015326 10.1021/cg800764n 10.1002/adma.201705011 10.1039/C5RA06497J 10.1021/accountsmr.1c00045 10.1021/jacs.2c11425 10.1002/adma.201701346 10.1039/C7CS00490G 10.1063/1.1863434 10.1002/anie.202007655 10.1021/ja509442t 10.1021/acs.accounts.7b00124 10.1021/acs.chemmater.0c01184 10.1021/cg300704b 10.1021/acs.cgd.5b01776 10.1002/smll.202006574 10.1021/acs.cgd.5b01663 10.1016/j.jssc.2019.03.017 10.1002/adom.202002197 10.1038/s41467-021-22060-z 10.1002/adom.201701300 10.1007/s40843-015-0099-1 10.1039/C7TC02013A 10.1021/acsami.8b05804 10.1021/acsami.8b16294 10.1039/C8TC03886D 10.1002/anie.202209211 10.1021/jacs.7b13605 10.1002/anie.201106391 10.1039/C3MH00023K 10.1021/acs.chemmater.7b04170 10.1002/adma.201606503 10.1002/anie.202016786 10.1002/anie.202111856 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/d3ce00146f |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 3141 |
ExternalDocumentID | 10_1039_D3CE00146F d3ce00146f |
GroupedDBID | -JG 0-7 0R~ 29F 5GY 6J9 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 E3Z EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF CITATION R56 7U5 8FD L7M |
ID | FETCH-LOGICAL-c347t-71a63be4889735feadfa2bc40b591cd1be8efd2fe857bd171fd3ed3fbee0ea333 |
ISSN | 1466-8033 |
IngestDate | Mon Jun 30 06:04:57 EDT 2025 Tue Jul 01 02:07:37 EDT 2025 Thu Apr 24 23:03:36 EDT 2025 Tue Dec 17 20:58:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-71a63be4889735feadfa2bc40b591cd1be8efd2fe857bd171fd3ed3fbee0ea333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2231-3000 0000-0003-0935-0835 |
PQID | 2818674474 |
PQPubID | 2047491 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2818674474 crossref_citationtrail_10_1039_D3CE00146F crossref_primary_10_1039_D3CE00146F rsc_primary_d3ce00146f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-25 |
PublicationDateYYYYMMDD | 2023-05-25 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Fischer (D3CE00146F/cit81/1) 2016; 16 Yan (D3CE00146F/cit90/1) 2011; 50 Liu (D3CE00146F/cit91/1) 2020; 32 Dar (D3CE00146F/cit30/1) 2021; 23 Aitipamula (D3CE00146F/cit50/1) 2012; 12 Yu (D3CE00146F/cit19/1) 2021; 17 Chen (D3CE00146F/cit5/1) 2015; 8 Hasa (D3CE00146F/cit82/1) 2015; 54 Chu (D3CE00146F/cit107/1) 2018; 10 Yu (D3CE00146F/cit47/1) 2019; 6 Yang (D3CE00146F/cit94/1) 2013; 7 Zhang (D3CE00146F/cit9/1) 2017; 50 Bolla (D3CE00146F/cit56/1) 2016; 59 Cheung (D3CE00146F/cit77/1) 2003; 125 Pan (D3CE00146F/cit12/1) 1996; 118 Zhang (D3CE00146F/cit38/1) 2016; 2 Zhang (D3CE00146F/cit97/1) 2021; 60 Wang (D3CE00146F/cit4/1) 2018; 47 Wang (D3CE00146F/cit10/1) 2016; 374 Cinčić (D3CE00146F/cit33/1) 2008; 130 Liu (D3CE00146F/cit22/1) 2019; 274 Zhu (D3CE00146F/cit25/1) 2015; 137 Park (D3CE00146F/cit24/1) 2013; 135 Schlesinger (D3CE00146F/cit60/1) 2020; 11 Gierschner (D3CE00146F/cit2/1) 2016; 4 Zhuo (D3CE00146F/cit63/1) 2018; 6 Sun (D3CE00146F/cit80/1) 2018; 140 Ye (D3CE00146F/cit113/1) 2020; 22 Ma (D3CE00146F/cit7/1) 2022; 67 Yan (D3CE00146F/cit89/1) 2014; 1 Wang (D3CE00146F/cit26/1) 2021; 60 Singh (D3CE00146F/cit48/1) 2021; 9 Wang (D3CE00146F/cit52/1) 2020; 9 Luo (D3CE00146F/cit35/1) 2022; 100 Black (D3CE00146F/cit65/1) 2014; 174 Wu (D3CE00146F/cit6/1) 2021; 60 Shan (D3CE00146F/cit83/1) 2002 Wu (D3CE00146F/cit41/1) 2018; 6 Zhu (D3CE00146F/cit11/1) 2015; 58 Zhu (D3CE00146F/cit18/1) 2015; 137 Su (D3CE00146F/cit8/1) 2022; 5 Dereka (D3CE00146F/cit58/1) 2017; 50 Liu (D3CE00146F/cit42/1) 2018; 149 Zhang (D3CE00146F/cit51/1) 2016; 7 Ye (D3CE00146F/cit75/1) 2019; 10 Zhuo (D3CE00146F/cit68/1) 2019; 10 Braga (D3CE00146F/cit76/1) 2013; 42 Friščić (D3CE00146F/cit79/1) 2009; 9 Sun (D3CE00146F/cit29/1) 2015; 27 Wang (D3CE00146F/cit92/1) 2021; 21 Vijay (D3CE00146F/cit59/1) 2021; 21 Tayi (D3CE00146F/cit13/1) 2015; 7 Kitagawa (D3CE00146F/cit109/1) 2018; 140 Stojaković (D3CE00146F/cit66/1) 2013; 52 Mukherjee (D3CE00146F/cit61/1) 2014; 47 Goud (D3CE00146F/cit64/1) 2017; 17 Carstens (D3CE00146F/cit78/1) 2020; 20 Wang (D3CE00146F/cit46/1) 2023; 145 Sun (D3CE00146F/cit40/1) 2019; 58 Han (D3CE00146F/cit44/1) 2021; 60 Li (D3CE00146F/cit20/1) 2017; 5 Zhuo (D3CE00146F/cit85/1) 2021; 3 Koshima (D3CE00146F/cit108/1) 2009; 131 Yu (D3CE00146F/cit23/1) 2018; 57 Morimoto (D3CE00146F/cit111/1) 2010; 132 Park (D3CE00146F/cit37/1) 2017; 29 Gude (D3CE00146F/cit98/1) 2021; 125 Yan (D3CE00146F/cit14/1) 2015; 21 Pan (D3CE00146F/cit84/1) 2020; 2 Blackburn (D3CE00146F/cit69/1) 2014; 136 Lei (D3CE00146F/cit103/1) 2010; 132 Wiscons (D3CE00146F/cit36/1) 2018; 57 Hu (D3CE00146F/cit71/1) 2014; 14 Goswami (D3CE00146F/cit62/1) 2019; 19 Ye (D3CE00146F/cit74/1) 2018; 30 Goudappagouda (D3CE00146F/cit53/1) 2018; 24 Zhuo (D3CE00146F/cit105/1) 2021; 33 Zhang (D3CE00146F/cit34/1) 2013; 135 Zhang (D3CE00146F/cit15/1) 2017; 56 Takahashi (D3CE00146F/cit72/1) 2006; 88 Feng (D3CE00146F/cit43/1) 2021; 60 Zhu (D3CE00146F/cit45/1) 2016; 28 Zhang (D3CE00146F/cit16/1) 2021; 12 Sun (D3CE00146F/cit102/1) 2017; 56 De (D3CE00146F/cit110/1) 2020; 12 Imahori (D3CE00146F/cit57/1) 2021; 2 Li (D3CE00146F/cit67/1) 2020; 59 Salzillo (D3CE00146F/cit21/1) 2016; 16 Bolla (D3CE00146F/cit106/1) 2021; 60 Garain (D3CE00146F/cit49/1) 2022; 13 Su (D3CE00146F/cit54/1) 2015; 7 Sokolov (D3CE00146F/cit32/1) 2006; 128 Zhang (D3CE00146F/cit1/1) 2016; 49 Chen (D3CE00146F/cit55/1) 2015; 5 Takahashi (D3CE00146F/cit73/1) 2005; 86 Topić (D3CE00146F/cit27/1) 2016; 138 Sang (D3CE00146F/cit93/1) 2020; 32 Li (D3CE00146F/cit101/1) 2017; 13 Yan (D3CE00146F/cit88/1) 2013; 15 Zhu (D3CE00146F/cit70/1) 2015; 11 Su (D3CE00146F/cit17/1) 2022; 61 Coleman (D3CE00146F/cit31/1) 1973; 12 Han (D3CE00146F/cit96/1) 2019; 58 Liu (D3CE00146F/cit99/1) 2022; 14 Gao (D3CE00146F/cit28/1) 2022; 24 Lei (D3CE00146F/cit104/1) 2012; 24 Li (D3CE00146F/cit112/1) 2018; 10 Han (D3CE00146F/cit87/1) 2017; 29 Fan (D3CE00146F/cit86/1) 2016; 4 Shi (D3CE00146F/cit95/1) 2018; 30 Yu (D3CE00146F/cit3/1) 2019; 5 Williams (D3CE00146F/cit39/1) 2022; 144 Li (D3CE00146F/cit100/1) 2022; 61 |
References_xml | – volume: 67 start-page: 1632 year: 2022 ident: D3CE00146F/cit7/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.07.028 – volume: 7 start-page: 281 year: 2015 ident: D3CE00146F/cit13/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2206 – volume: 13 start-page: 10011 year: 2022 ident: D3CE00146F/cit49/1 publication-title: Chem. Sci. doi: 10.1039/D2SC03343G – volume: 128 start-page: 2806 year: 2006 ident: D3CE00146F/cit32/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057939a – volume: 47 start-page: 2514 year: 2014 ident: D3CE00146F/cit61/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar5001555 – volume: 59 start-page: 22623 year: 2020 ident: D3CE00146F/cit67/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009714 – volume: 32 start-page: 1900110 year: 2020 ident: D3CE00146F/cit93/1 publication-title: Adv. Mater. doi: 10.1002/adma.201900110 – volume: 125 start-page: 120 year: 2021 ident: D3CE00146F/cit98/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c08726 – volume: 24 start-page: 5345 year: 2012 ident: D3CE00146F/cit104/1 publication-title: Adv. Mater. doi: 10.1002/adma.201201493 – volume: 7 start-page: 634 year: 2013 ident: D3CE00146F/cit94/1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.176 – volume: 22 start-page: 8045 year: 2020 ident: D3CE00146F/cit113/1 publication-title: CrystEngComm doi: 10.1039/D0CE01394C – volume: 49 start-page: 1691 year: 2016 ident: D3CE00146F/cit1/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00209 – volume: 60 start-page: 4575 year: 2021 ident: D3CE00146F/cit97/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202014891 – volume: 6 start-page: 1798 year: 2019 ident: D3CE00146F/cit47/1 publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b00606 – volume: 21 start-page: 2699 year: 2021 ident: D3CE00146F/cit92/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01586 – volume: 4 start-page: 2139 year: 2016 ident: D3CE00146F/cit86/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600310 – volume: 137 start-page: 11038 year: 2015 ident: D3CE00146F/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05586 – volume: 33 start-page: 2102719 year: 2021 ident: D3CE00146F/cit105/1 publication-title: Adv. Mater. doi: 10.1002/adma.202102719 – volume: 56 start-page: 10352 year: 2017 ident: D3CE00146F/cit102/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702084 – volume: 61 start-page: e202117857 year: 2022 ident: D3CE00146F/cit17/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202117857 – volume: 100 start-page: 106363 year: 2022 ident: D3CE00146F/cit35/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2021.106363 – volume: 24 start-page: 7695 year: 2018 ident: D3CE00146F/cit53/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201800197 – volume: 52 start-page: 12127 year: 2013 ident: D3CE00146F/cit66/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201304615 – volume: 10 start-page: 3839 year: 2019 ident: D3CE00146F/cit68/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11731-7 – volume: 12 start-page: 27493 year: 2020 ident: D3CE00146F/cit110/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03686 – volume: 28 start-page: 5954 year: 2016 ident: D3CE00146F/cit45/1 publication-title: Adv. Mater. doi: 10.1002/adma.201600280 – volume: 11 start-page: 2150 year: 2015 ident: D3CE00146F/cit70/1 publication-title: Small doi: 10.1002/smll.201402330 – volume: 9 start-page: 1252 year: 2020 ident: D3CE00146F/cit52/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202000024 – volume: 125 start-page: 14658 year: 2003 ident: D3CE00146F/cit77/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja030506s – volume: 144 start-page: 18607 year: 2022 ident: D3CE00146F/cit39/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c08584 – volume: 14 start-page: 6305 year: 2022 ident: D3CE00146F/cit99/1 publication-title: Nanoscale doi: 10.1039/D2NR00757F – volume: 140 start-page: 6186 year: 2018 ident: D3CE00146F/cit80/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00772 – volume: 20 start-page: 1139 year: 2020 ident: D3CE00146F/cit78/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b01450 – volume: 27 start-page: 1157 year: 2015 ident: D3CE00146F/cit29/1 publication-title: Chem. Mater. doi: 10.1021/cm5027249 – volume: 21 start-page: 4880 year: 2015 ident: D3CE00146F/cit14/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201405456 – volume: 374 start-page: 83 year: 2016 ident: D3CE00146F/cit10/1 publication-title: Top. Curr. Chem. doi: 10.1007/s41061-016-0081-8 – volume: 56 start-page: 3616 year: 2017 ident: D3CE00146F/cit15/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201700447 – start-page: 2372 year: 2002 ident: D3CE00146F/cit83/1 publication-title: Chem. Commun. doi: 10.1039/b207369m – volume: 11 start-page: 9532 year: 2020 ident: D3CE00146F/cit60/1 publication-title: Chem. Sci. doi: 10.1039/D0SC03301D – volume: 13 start-page: 1604110 year: 2017 ident: D3CE00146F/cit101/1 publication-title: Small doi: 10.1002/smll.201604110 – volume: 2 start-page: 1500423 year: 2016 ident: D3CE00146F/cit38/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201500423 – volume: 3 start-page: 413 year: 2021 ident: D3CE00146F/cit85/1 publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000171 – volume: 5 start-page: 2814 year: 2019 ident: D3CE00146F/cit3/1 publication-title: Chem doi: 10.1016/j.chempr.2019.08.019 – volume: 5 start-page: 1520 year: 2022 ident: D3CE00146F/cit8/1 publication-title: Matter doi: 10.1016/j.matt.2022.02.017 – volume: 24 start-page: 6429 year: 2022 ident: D3CE00146F/cit28/1 publication-title: CrystEngComm doi: 10.1039/D2CE00925K – volume: 57 start-page: 3963 year: 2018 ident: D3CE00146F/cit23/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712949 – volume: 23 start-page: 8007 year: 2021 ident: D3CE00146F/cit30/1 publication-title: CrystEngComm doi: 10.1039/D1CE01117K – volume: 60 start-page: 3037 year: 2021 ident: D3CE00146F/cit44/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202010707 – volume: 135 start-page: 4757 year: 2013 ident: D3CE00146F/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312197b – volume: 130 start-page: 7524 year: 2008 ident: D3CE00146F/cit33/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801164v – volume: 54 start-page: 7371 year: 2015 ident: D3CE00146F/cit82/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501638 – volume: 135 start-page: 558 year: 2013 ident: D3CE00146F/cit34/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310098k – volume: 58 start-page: 7013 year: 2019 ident: D3CE00146F/cit96/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902090 – volume: 174 start-page: 297 year: 2014 ident: D3CE00146F/cit65/1 publication-title: Faraday Discuss. doi: 10.1039/C4FD00133H – volume: 42 start-page: 7638 year: 2013 ident: D3CE00146F/cit76/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60014a – volume: 149 start-page: 59 year: 2018 ident: D3CE00146F/cit42/1 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2017.09.058 – volume: 4 start-page: 348 year: 2016 ident: D3CE00146F/cit2/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500531 – volume: 50 start-page: 426 year: 2017 ident: D3CE00146F/cit58/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00538 – volume: 88 start-page: 073504 year: 2006 ident: D3CE00146F/cit72/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2173226 – volume: 15 start-page: 19845 year: 2013 ident: D3CE00146F/cit88/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53929f – volume: 21 start-page: 200 year: 2021 ident: D3CE00146F/cit59/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01024 – volume: 131 start-page: 6890 year: 2009 ident: D3CE00146F/cit108/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8098596 – volume: 59 start-page: 523 year: 2016 ident: D3CE00146F/cit56/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-016-5049-y – volume: 58 start-page: 11311 year: 2019 ident: D3CE00146F/cit40/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904427 – volume: 17 start-page: 328 year: 2017 ident: D3CE00146F/cit64/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b01548 – volume: 12 start-page: 1125 year: 1973 ident: D3CE00146F/cit31/1 publication-title: Solid State Commun. doi: 10.1016/0038-1098(73)90127-0 – volume: 19 start-page: 2175 year: 2019 ident: D3CE00146F/cit62/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b01786 – volume: 10 start-page: 761 year: 2019 ident: D3CE00146F/cit75/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08712-1 – volume: 132 start-page: 1742 year: 2010 ident: D3CE00146F/cit103/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9084435 – volume: 138 start-page: 6610 year: 2016 ident: D3CE00146F/cit27/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02854 – volume: 14 start-page: 6376 year: 2014 ident: D3CE00146F/cit71/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg501206f – volume: 8 start-page: 401 year: 2015 ident: D3CE00146F/cit5/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03297G – volume: 118 start-page: 6315 year: 1996 ident: D3CE00146F/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja961087k – volume: 7 start-page: 3851 year: 2016 ident: D3CE00146F/cit51/1 publication-title: Chem. Sci. doi: 10.1039/C5SC04954G – volume: 2 start-page: 658 year: 2020 ident: D3CE00146F/cit84/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.0c00125 – volume: 7 start-page: 1944 year: 2015 ident: D3CE00146F/cit54/1 publication-title: Nanoscale doi: 10.1039/C4NR05915H – volume: 137 start-page: 11038 year: 2015 ident: D3CE00146F/cit18/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05586 – volume: 132 start-page: 14172 year: 2010 ident: D3CE00146F/cit111/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105356w – volume: 57 start-page: 9044 year: 2018 ident: D3CE00146F/cit36/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805071 – volume: 60 start-page: 6344 year: 2021 ident: D3CE00146F/cit26/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202015326 – volume: 9 start-page: 1621 year: 2009 ident: D3CE00146F/cit79/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg800764n – volume: 30 start-page: 1705011 year: 2018 ident: D3CE00146F/cit95/1 publication-title: Adv. Mater. doi: 10.1002/adma.201705011 – volume: 5 start-page: 47681 year: 2015 ident: D3CE00146F/cit55/1 publication-title: RSC Adv. doi: 10.1039/C5RA06497J – volume: 2 start-page: 501 year: 2021 ident: D3CE00146F/cit57/1 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00045 – volume: 145 start-page: 1855 issue: 3 year: 2023 ident: D3CE00146F/cit46/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11425 – volume: 29 start-page: 1701346 year: 2017 ident: D3CE00146F/cit37/1 publication-title: Adv. Mater. doi: 10.1002/adma.201701346 – volume: 47 start-page: 422 year: 2018 ident: D3CE00146F/cit4/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00490G – volume: 86 start-page: 063504 year: 2005 ident: D3CE00146F/cit73/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1863434 – volume: 60 start-page: 281 year: 2021 ident: D3CE00146F/cit106/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007655 – volume: 136 start-page: 17224 year: 2014 ident: D3CE00146F/cit69/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509442t – volume: 50 start-page: 1654 year: 2017 ident: D3CE00146F/cit9/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00124 – volume: 32 start-page: 5162 year: 2020 ident: D3CE00146F/cit91/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01184 – volume: 12 start-page: 4290 year: 2012 ident: D3CE00146F/cit50/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg300704b – volume: 16 start-page: 1701 year: 2016 ident: D3CE00146F/cit81/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01776 – volume: 17 start-page: 2006574 year: 2021 ident: D3CE00146F/cit19/1 publication-title: Small doi: 10.1002/smll.202006574 – volume: 16 start-page: 3028 year: 2016 ident: D3CE00146F/cit21/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01663 – volume: 274 start-page: 47 year: 2019 ident: D3CE00146F/cit22/1 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.03.017 – volume: 9 start-page: 2002197 year: 2021 ident: D3CE00146F/cit48/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202002197 – volume: 12 start-page: 1838 year: 2021 ident: D3CE00146F/cit16/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22060-z – volume: 6 start-page: 1701300 year: 2018 ident: D3CE00146F/cit41/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201701300 – volume: 58 start-page: 854 year: 2015 ident: D3CE00146F/cit11/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-015-0099-1 – volume: 5 start-page: 6661 year: 2017 ident: D3CE00146F/cit20/1 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02013A – volume: 10 start-page: 22703 year: 2018 ident: D3CE00146F/cit112/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05804 – volume: 10 start-page: 42740 year: 2018 ident: D3CE00146F/cit107/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16294 – volume: 6 start-page: 9594 year: 2018 ident: D3CE00146F/cit63/1 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC03886D – volume: 61 start-page: e202209211 year: 2022 ident: D3CE00146F/cit100/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202209211 – volume: 140 start-page: 4208 year: 2018 ident: D3CE00146F/cit109/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13605 – volume: 50 start-page: 12483 year: 2011 ident: D3CE00146F/cit90/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201106391 – volume: 1 start-page: 46 year: 2014 ident: D3CE00146F/cit89/1 publication-title: Mater. Horiz. doi: 10.1039/C3MH00023K – volume: 30 start-page: 412 year: 2018 ident: D3CE00146F/cit74/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04170 – volume: 29 start-page: 1606503 year: 2017 ident: D3CE00146F/cit87/1 publication-title: Adv. Mater. doi: 10.1002/adma.201606503 – volume: 60 start-page: 9114 year: 2021 ident: D3CE00146F/cit6/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016786 – volume: 60 start-page: 27046 year: 2021 ident: D3CE00146F/cit43/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202111856 |
SSID | ssj0014110 |
Score | 2.5001237 |
SecondaryResourceType | review_article |
Snippet | Organic donor-acceptor (D-A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor-acceptor blending properties
via... Organic donor–acceptor (D–A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor–acceptor blending properties via... Organic donor–acceptor (D–A) cocrystals have recently attracted widespread attention owing to the synergetic electron donor–acceptor blending properties via... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3126 |
SubjectTerms | Chemical properties Materials selection Optical properties Optoelectronics Organic crystals |
Title | Recent advances in organic donor-acceptor cocrystals: design, synthetic approaches, and optical applications |
URI | https://www.proquest.com/docview/2818674474 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa22wscEK-KhYIswQW1LontvLhV260KAk5bsZyixLHLSlVSbTeHthf-A_-QX8L4lQS6h8IlikaxpWS-zIw9M58RepNmEMUryUjGyoqAhxKkgH-KFAFVKQ0FDbjud_78JT455R8X0WI0uhl2l6zLA3G9sa_kf7QKMtCr7pL9B812k4IA7kG_cAUNw_VOOoaYz5SI2zy-qWy1pzSJvaqpYSHuKhlYIXT1SrPaA_O3uoKA8NxUwlWmfEN_5curGiJBQ97qSMat-dDb6s2F3e8e5rqHMe1Uzzirz3SvSVffs2yNU2uX5Jt3jkZsTH5Bpt9lL_3q9qwXrSRHjZO7nQhq6v5s17IznjzW5MaW2OJAbpA5i9sPan2DtLOfLKTxwBez0LJi3bLzAdM0qUdsOtNrvPi492Y-g_-Xk-tKD03SnWV5P3YLbVNYY9Ax2j6czT986pJQPLRkFv4VPLsty971o_-MZ_pFytbKnyBjIpX5Q_TALTHwocXLIzSS9WN0f0A8-QTVFjnYIwcva-yQgw1yfv346TGDe8y8xxYx-7jDC-7xso8BLdihBQ_R8hSdHs_m0xPiTt4ggvFkTZKwiFkpwbhnCYsUWBtV0FLwoIyyUFRhKVOpKqpkGiVlFSahqpismCqlDGTBGNtB47qp5TOEeQYxaSSjUgSCJyrNCgggU5XBXSypUBP01n-_XDhaen06ynl-W1MT9Lp79sKSsWx8aterIXc_62VODXMj5wmfoB1QTTe-YkKacer5nWZ_ge712N9F4_WqlS8hLl2Xrxx-fgPqW43n |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+organic+donor%E2%80%93acceptor+cocrystals%3A+design%2C+synthetic+approaches%2C+and+optical+applications&rft.jtitle=CrystEngComm&rft.au=Liu%2C+Hui-Ying&rft.au=Li%2C+Ya-Cheng&rft.au=Wang%2C+Xue-Dong&rft.date=2023-05-25&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=25&rft.issue=21&rft.spage=3126&rft.epage=3141&rft_id=info:doi/10.1039%2FD3CE00146F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3CE00146F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |