Ordinal Pattern: A New Descriptor for Brain Connectivity Networks

Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 37; no. 7; pp. 1711 - 1722
Main Authors Zhang, Daoqiang, Huang, Jiashuang, Jie, Biao, Du, Junqiang, Tu, Liyang, Liu, Mingxia
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2018.2798500

Cover

Abstract Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivity networks. However, most of them are designed for unweighted networks, regardless of the valuable weight information of edges, or do not take advantage of the ordinal relationship of weighted edges (even though they are designed for weighted networks). In this paper, we propose a new network descriptor ( i.e. , ordinal pattern that contains a sequence of weighted edges) for brain connectivity network analysis. Compared with previous network properties, the proposed ordinal patterns cannot only take advantage of the weight information of edges but also explicitly model the ordinal relationship of weighted edges in brain connectivity networks. We further develop an ordinal pattern-based learning framework for brain disease diagnosis using resting-state fMRI data. Specifically, we first construct a set of brain functional connectivity networks, where each network is corresponding to a particular subject. We then develop an algorithm to identify ordinal patterns that frequently appear in brain connectivity networks of patients and normal controls. We further perform discriminative ordinal pattern selection and extract feature representations for subjects based on the selected ordinal patterns, followed by a learning model for automated brain disease diagnosis. Experimental results on both Alzheimer's Disease Neuroimaging Initiative and attention deficit hyperactivity disorder-200 data sets demonstrate that our method outperforms the several state-of-the-art approaches in the tasks of disease classification and clinical score regression.
AbstractList Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivity networks. However, most of them are designed for unweighted networks, regardless of the valuable weight information of edges, or do not take advantage of the ordinal relationship of weighted edges (even though they are designed for weighted networks). In this paper, we propose a new network descriptor (i.e., ordinal pattern that contains a sequence of weighted edges) for brain connectivity network analysis. Compared with previous network properties, the proposed ordinal patterns cannot only take advantage of the weight information of edges but also explicitly model the ordinal relationship of weighted edges in brain connectivity networks. We further develop an ordinal pattern-based learning framework for brain disease diagnosis using resting-state fMRI data. Specifically, we first construct a set of brain functional connectivity networks, where each network is corresponding to a particular subject. We then develop an algorithm to identify ordinal patterns that frequently appear in brain connectivity networks of patients and normal controls. We further perform discriminative ordinal pattern selection and extract feature representations for subjects based on the selected ordinal patterns, followed by a learning model for automated brain disease diagnosis. Experimental results on both Alzheimer's Disease Neuroimaging Initiative and attention deficit hyperactivity disorder-200 data sets demonstrate that our method outperforms the several state-of-the-art approaches in the tasks of disease classification and clinical score regression.Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivity networks. However, most of them are designed for unweighted networks, regardless of the valuable weight information of edges, or do not take advantage of the ordinal relationship of weighted edges (even though they are designed for weighted networks). In this paper, we propose a new network descriptor (i.e., ordinal pattern that contains a sequence of weighted edges) for brain connectivity network analysis. Compared with previous network properties, the proposed ordinal patterns cannot only take advantage of the weight information of edges but also explicitly model the ordinal relationship of weighted edges in brain connectivity networks. We further develop an ordinal pattern-based learning framework for brain disease diagnosis using resting-state fMRI data. Specifically, we first construct a set of brain functional connectivity networks, where each network is corresponding to a particular subject. We then develop an algorithm to identify ordinal patterns that frequently appear in brain connectivity networks of patients and normal controls. We further perform discriminative ordinal pattern selection and extract feature representations for subjects based on the selected ordinal patterns, followed by a learning model for automated brain disease diagnosis. Experimental results on both Alzheimer's Disease Neuroimaging Initiative and attention deficit hyperactivity disorder-200 data sets demonstrate that our method outperforms the several state-of-the-art approaches in the tasks of disease classification and clinical score regression.
Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivity networks. However, most of them are designed for unweighted networks, regardless of the valuable weight information of edges, or do not take advantage of the ordinal relationship of weighted edges (even though they are designed for weighted networks). In this paper, we propose a new network descriptor (i.e., ordinal pattern that contains a sequence of weighted edges) for brain connectivity network analysis. Compared with previous network properties, the proposed ordinal patterns cannot only take advantage of the weight information of edges but also explicitly model the ordinal relationship of weighted edges in brain connectivity networks. We further develop an ordinal pattern-based learning framework for brain disease diagnosis using resting-state fMRI data. Specifically, we first construct a set of brain functional connectivity networks, where each network is corresponding to a particular subject. We then develop an algorithm to identify ordinal patterns that frequently appear in brain connectivity networks of patients and normal controls. We further perform discriminative ordinal pattern selection and extract feature representations for subjects based on the selected ordinal patterns, followed by a learning model for automated brain disease diagnosis. Experimental results on both Alzheimer's Disease Neuroimaging Initiative and attention deficit hyperactivity disorder-200 data sets demonstrate that our method outperforms the several state-of-the-art approaches in the tasks of disease classification and clinical score regression.
Author Liu, Mingxia
Zhang, Daoqiang
Tu, Liyang
Huang, Jiashuang
Du, Junqiang
Jie, Biao
Author_xml – sequence: 1
  givenname: Daoqiang
  surname: Zhang
  fullname: Zhang, Daoqiang
  email: dqzhang@nuaa.edu.cn
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Jiashuang
  orcidid: 0000-0002-6204-9569
  surname: Huang
  fullname: Huang, Jiashuang
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Biao
  orcidid: 0000-0002-3722-4935
  surname: Jie
  fullname: Jie, Biao
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 4
  givenname: Junqiang
  surname: Du
  fullname: Du, Junqiang
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 5
  givenname: Liyang
  surname: Tu
  fullname: Tu, Liyang
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 6
  givenname: Mingxia
  orcidid: 0000-0002-0598-5692
  surname: Liu
  fullname: Liu, Mingxia
  email: mingxialiu@nuaa.edu.cn
  organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29969421$$D View this record in MEDLINE/PubMed
BookMark eNp90U1rVDEUBuAgFTut7gVBLrjp5o4n3zfuxrFqoVoXFdyFTOZcSL2TTJOMpf_elJm66MJFOJvnPZDznpCjmCIS8prCnFIw76-_XcwZ0GHOtBkkwDMyo1IOPZPi1xGZAdNDD6DYMTkp5QaACgnmBTlmxigjGJ2RxVVeh-im7oerFXP80C2673jXfcLic9jWlLuxvY_ZhdgtU4zoa_gT6n1T9S7l3-UleT66qeCrwzwlPz-fXy-_9pdXXy6Wi8vec6Frr0Eh1YyCVG7tmcHBu9EIakY9OsCVHwdJHQem1MpoYdaUrbzgUoxyEF5xfkrO9nu3Od3usFS7CcXjNLmIaVcsAyWYpMBoo--e0Ju0y-2XTVEtJAcO0NTbg9qtNri22xw2Lt_bx-M0oPbA51RKxtH6UF0NKdZ2jslSsA8t2NaCfWjBHlpoQXgSfNz9n8ibfSQg4j8-MGW4FvwvY-aPHg
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_imed_2021_06_002
crossref_primary_10_1109_TMI_2023_3342047
crossref_primary_10_3389_fninf_2021_802305
crossref_primary_10_1002_brb3_1499
crossref_primary_10_1109_JBHI_2019_2962519
crossref_primary_10_1109_JBHI_2021_3107305
crossref_primary_10_1016_j_bspc_2024_107226
crossref_primary_10_3389_fnins_2020_00779
crossref_primary_10_1016_j_media_2020_101709
crossref_primary_10_3389_fnins_2022_889105
crossref_primary_10_1016_j_compbiomed_2020_104096
crossref_primary_10_1016_j_media_2022_102591
crossref_primary_10_1109_ACCESS_2019_2903332
crossref_primary_10_1007_s11042_024_19401_7
crossref_primary_10_1109_TMI_2024_3421360
crossref_primary_10_1109_TMI_2019_2933160
crossref_primary_10_1016_j_media_2020_101755
crossref_primary_10_1007_s11548_022_02780_3
crossref_primary_10_1016_j_neuroimage_2023_119997
crossref_primary_10_1109_TNSRE_2023_3309847
crossref_primary_10_3389_fnins_2024_1303741
crossref_primary_10_1007_s10489_022_03891_9
crossref_primary_10_3390_brainsci12101413
crossref_primary_10_1088_1741_2552_acb088
crossref_primary_10_1016_j_artmed_2019_03_004
crossref_primary_10_1002_hbm_26469
crossref_primary_10_1007_s12021_019_09423_0
crossref_primary_10_1109_TNSRE_2022_3166560
crossref_primary_10_1016_j_patcog_2023_109716
Cites_doi 10.1002/jmri.21049
10.1109/TBME.2013.2284195
10.1016/j.neuroimage.2010.10.026
10.1016/j.mri.2012.01.003
10.1002/hbm.21058
10.1016/j.neurobiolaging.2013.10.081
10.1117/12.911598
10.1016/j.bbr.2010.09.010
10.1016/j.biopsych.2014.08.018
10.1093/brain/awq075
10.1016/j.pscychresns.2012.03.002
10.1016/j.braindev.2007.10.005
10.1073/pnas.1315529111
10.1089/brain.2013.0214
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2016.01.056
10.2174/1874440001206010001
10.1006/nimg.2001.0978
10.1016/j.ejrad.2013.04.009
10.1152/jn.1989.61.5.900
10.1016/S1361-8415(98)80022-4
10.1371/journal.pone.0013788
10.1016/j.media.2017.10.005
10.1109/TMI.2016.2515021
10.1371/journal.pcbi.1000100
10.3389/fncir.2014.00064
10.1137/0201010
10.1109/JBHI.2017.2704614
10.1016/j.neuroimage.2011.11.055
10.3389/fnhum.2013.00456
10.1152/jn.00783.2009
10.1016/j.neuroimage.2010.01.019
10.1016/j.neuroimage.2015.02.037
10.1002/hbm.22353
10.1016/j.neuron.2015.05.035
10.1016/j.neuroimage.2011.08.085
10.1145/1376616.1376662
10.1176/appi.ajp.159.5.738
10.1016/j.neuroimage.2013.04.063
10.1016/j.media.2016.11.002
10.1016/j.neuroimage.2016.07.006
10.1016/j.neuroimage.2016.10.045
10.1002/hbm.20530
10.1371/journal.pone.0079476
10.1145/2396761.2396791
10.1038/jcbfm.1993.4
10.1007/978-3-319-46720-7_1
10.1136/jnnp.73.6.657
10.1016/j.media.2016.03.003
10.2307/2531595
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2018.2798500
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1722
ExternalDocumentID 29969421
10_1109_TMI_2018_2798500
8269374
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61703301; 61573023; 61422204; 61473149
  funderid: 10.13039/501100001809
– fundername: Shandong Province
  grantid: J17KA086
  funderid: 10.13039/501100003091
– fundername: NUAA Fundamental Research Funds
  grantid: NE2013105
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-706e1721056adc29e8caf9419f7fa0ebcf851a30266b9749d12bc4354f584c633
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Sep 05 12:01:32 EDT 2025
Mon Jun 30 05:19:29 EDT 2025
Wed Feb 19 02:36:45 EST 2025
Tue Jul 01 03:16:00 EDT 2025
Thu Apr 24 23:11:40 EDT 2025
Wed Aug 27 02:49:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-706e1721056adc29e8caf9419f7fa0ebcf851a30266b9749d12bc4354f584c633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0598-5692
0000-0002-6204-9569
0000-0002-3722-4935
PMID 29969421
PQID 2174530300
PQPubID 85460
PageCount 12
ParticipantIDs proquest_journals_2174530300
crossref_citationtrail_10_1109_TMI_2018_2798500
proquest_miscellaneous_2064251021
crossref_primary_10_1109_TMI_2018_2798500
ieee_primary_8269374
pubmed_primary_29969421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref53
ref52
ref11
ref54
ref10
ref16
ref19
ref18
ref51
ref50
durante (ref21) 2015
ref46
ref45
ref48
ref47
ref42
ref44
ref49
anderson (ref43) 1984
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
yan (ref41) 2002
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
fornito (ref15) 2016
ref24
ref23
ref26
ref25
ref20
ref22
goñi (ref17) 2014; 111
ref28
ref27
ref29
References_xml – ident: ref37
  doi: 10.1002/jmri.21049
– ident: ref29
  doi: 10.1109/TBME.2013.2284195
– ident: ref11
  doi: 10.1016/j.neuroimage.2010.10.026
– ident: ref50
  doi: 10.1016/j.mri.2012.01.003
– ident: ref35
  doi: 10.1002/hbm.21058
– ident: ref34
  doi: 10.1016/j.neurobiolaging.2013.10.081
– ident: ref22
  doi: 10.1117/12.911598
– ident: ref52
  doi: 10.1016/j.bbr.2010.09.010
– ident: ref6
  doi: 10.1016/j.biopsych.2014.08.018
– ident: ref23
  doi: 10.1093/brain/awq075
– ident: ref53
  doi: 10.1016/j.pscychresns.2012.03.002
– ident: ref46
  doi: 10.1016/j.braindev.2007.10.005
– volume: 111
  start-page: 833
  year: 2014
  ident: ref17
  article-title: Resting-brain functional connectivity predicted by analytic measures of network communication
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.1315529111
– ident: ref13
  doi: 10.1089/brain.2013.0214
– ident: ref10
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: ref7
  doi: 10.1016/j.neuroimage.2016.01.056
– ident: ref25
  doi: 10.2174/1874440001206010001
– ident: ref39
  doi: 10.1006/nimg.2001.0978
– year: 2015
  ident: ref21
  publication-title: Unifying inference on brain network variations in neurological diseases The Alzheimer's case
– ident: ref27
  doi: 10.1016/j.ejrad.2013.04.009
– ident: ref2
  doi: 10.1152/jn.1989.61.5.900
– ident: ref40
  doi: 10.1016/S1361-8415(98)80022-4
– ident: ref31
  doi: 10.1371/journal.pone.0013788
– ident: ref8
  doi: 10.1016/j.media.2017.10.005
– ident: ref9
  doi: 10.1109/TMI.2016.2515021
– ident: ref49
  doi: 10.1371/journal.pcbi.1000100
– ident: ref28
  doi: 10.3389/fncir.2014.00064
– ident: ref42
  doi: 10.1137/0201010
– ident: ref5
  doi: 10.1109/JBHI.2017.2704614
– year: 1984
  ident: ref43
  publication-title: Multivariate Statistical Analysis
– ident: ref32
  doi: 10.1016/j.neuroimage.2011.11.055
– ident: ref33
  doi: 10.3389/fnhum.2013.00456
– ident: ref38
  doi: 10.1152/jn.00783.2009
– ident: ref3
  doi: 10.1016/j.neuroimage.2010.01.019
– ident: ref26
  doi: 10.1016/j.neuroimage.2015.02.037
– ident: ref12
  doi: 10.1002/hbm.22353
– ident: ref16
  doi: 10.1016/j.neuron.2015.05.035
– ident: ref4
  doi: 10.1016/j.neuroimage.2011.08.085
– start-page: 721
  year: 2002
  ident: ref41
  article-title: gSpan: Graph-based substructure pattern mining
  publication-title: Proc IEEE Int Conf Data Mining
– ident: ref44
  doi: 10.1145/1376616.1376662
– ident: ref47
  doi: 10.1176/appi.ajp.159.5.738
– ident: ref51
  doi: 10.1016/j.neuroimage.2013.04.063
– ident: ref20
  doi: 10.1016/j.media.2016.11.002
– ident: ref30
  doi: 10.1016/j.neuroimage.2016.07.006
– ident: ref24
  doi: 10.1016/j.neuroimage.2016.10.045
– ident: ref36
  doi: 10.1002/hbm.20530
– ident: ref19
  doi: 10.1371/journal.pone.0079476
– ident: ref54
  doi: 10.1145/2396761.2396791
– ident: ref1
  doi: 10.1038/jcbfm.1993.4
– ident: ref18
  doi: 10.1007/978-3-319-46720-7_1
– ident: ref48
  doi: 10.1136/jnnp.73.6.657
– ident: ref14
  doi: 10.1016/j.media.2016.03.003
– year: 2016
  ident: ref15
  publication-title: Fundamentals of brain network analysis
– ident: ref45
  doi: 10.2307/2531595
SSID ssj0014509
Score 2.4230351
Snippet Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1711
SubjectTerms Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Attention Deficit Disorder with Hyperactivity - diagnostic imaging
Attention deficit hyperactivity disorder
Brain
Brain - diagnostic imaging
Brain - physiology
brain disease diagnosis
Brain diseases
Brain mapping
Brain Mapping - methods
Brain modeling
classification
Connectivity network
Diagnosis
Diseases
Feature extraction
Functional magnetic resonance imaging
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical diagnosis
Medical imaging
Nerve Net - diagnostic imaging
Nerve Net - physiology
Network analysis
network descriptor
Networks
Neural networks
Neurodegenerative diseases
Neuroimaging
Neurology
NMR
Nuclear magnetic resonance
regression
Regression analysis
State of the art
Structure-function relationships
Weight
Title Ordinal Pattern: A New Descriptor for Brain Connectivity Networks
URI https://ieeexplore.ieee.org/document/8269374
https://www.ncbi.nlm.nih.gov/pubmed/29969421
https://www.proquest.com/docview/2174530300
https://www.proquest.com/docview/2064251021
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGDggOPMZrvFQkLkh0y9L0EW4DMQ2kAYdN4lalaXoBdWjrLvx67LSrJgSIW6U6bZo48efa-QxwqdAq9rROXZ5mmSsUS91IsdANDBpPw1gqLV3T6CkYTsTjq__agOv6LIwxxiafmQ5d2lh-OtUL-lXWRSiM1lSswRqqWXlWq44YCL9M5-DEGMsCvgxJMtkdjx4ohyvq8FBGPp1lWzFBtqbK7_DSmpnBNoyWHSyzS946iyLp6M9v3I3__YId2KrwptMvFWQXGiZvweYKC2EL1kdVfH0P-s-oLyT_Ymk38xun7-A26KB3aneX6cxBkOvcUl0Jx-bI6LL6BErZdPL5PkwG9-O7oVsVWXC1J8LCDVlgyA1EIKRSzaWJtMqk6MkszBQzic4QkykPXbUgQd9Dpj2eaMRYIkPoogPPO4BmPs3NETiKmL4D3zMKUVjimygSHpcoI0wquPLa0F2Oe6wrBnIqhPEeW0-EyRhnKqaZiquZasNV3eKjZN_4Q3aPxruWq4a6DafLqY2r5TmPyQ_z0XhTq4v6Ni4sipao3EwXKEOumU-Vz9twWKpE_Wy04YEUvHf88ztPYIN6Vmb1nkKzmC3MGWKXIjm3SvsFGXLnhg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSCwH9qWsQeKCRFrXcRZzKwhUlgCHVuotchznAkpRaS98PTNOGiEEiFukjBPHY3veZMZvAE4VWsW21pnLszx3hWKZGykWuoFB42kYy6Sla4ofg25f3A38wQyc12dhjDE2-cw06dLG8rOhntCvshZCYbSmYhbm0e4LvzytVccMhF8mdHDijGUBnwYlmWz14lvK4oqaPJSRT6fZvhghW1Xld4BpDc3NKsTTLpb5JS_NyTht6o9v7I3__YY1WKkQp9Mpp8g6zJhiA5a_8BBuwEJcRdg3ofOEM4bkny3xZnHhdBzcCB30T-3-Mhw5CHOdS6os4dgsGV3Wn0Apm1D-vgX9m-veVdetyiy42hPh2A1ZYMgRRCikMs2libTKpWjLPMwVM6nOEZUpD521IEXvQ2ZtnmpEWSJH8KIDz9uGuWJYmF1wFHF9B75nFOKw1DdRJDwuUUaYTHDlNaA1HfdEVxzkVArjNbG-CJMJaiohTSWVphpwVrd4K_k3_pDdpPGu5aqhbsDBVLVJtUDfE_LEfDTf1Oqkvo1Li-IlqjDDCcqQc-ZT7fMG7JRTon42WvFACt7e-_mdx7DY7cUPycPt4_0-LFEvyxzfA5gbjybmEJHMOD2yE_gTYiLq0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordinal+Pattern%3A+A+New+Descriptor+for+Brain+Connectivity+Networks&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhang%2C+Daoqiang&rft.au=Huang%2C+Jiashuang&rft.au=Jie%2C+Biao&rft.au=Du%2C+Junqiang&rft.date=2018-07-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=37&rft.issue=7&rft.spage=1711&rft.epage=1722&rft_id=info:doi/10.1109%2FTMI.2018.2798500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2018_2798500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon