Ordinal Pattern: A New Descriptor for Brain Connectivity Networks
Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivit...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 37; no. 7; pp. 1711 - 1722 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2018.2798500 |
Cover
Abstract | Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivity networks. However, most of them are designed for unweighted networks, regardless of the valuable weight information of edges, or do not take advantage of the ordinal relationship of weighted edges (even though they are designed for weighted networks). In this paper, we propose a new network descriptor ( i.e. , ordinal pattern that contains a sequence of weighted edges) for brain connectivity network analysis. Compared with previous network properties, the proposed ordinal patterns cannot only take advantage of the weight information of edges but also explicitly model the ordinal relationship of weighted edges in brain connectivity networks. We further develop an ordinal pattern-based learning framework for brain disease diagnosis using resting-state fMRI data. Specifically, we first construct a set of brain functional connectivity networks, where each network is corresponding to a particular subject. We then develop an algorithm to identify ordinal patterns that frequently appear in brain connectivity networks of patients and normal controls. We further perform discriminative ordinal pattern selection and extract feature representations for subjects based on the selected ordinal patterns, followed by a learning model for automated brain disease diagnosis. Experimental results on both Alzheimer's Disease Neuroimaging Initiative and attention deficit hyperactivity disorder-200 data sets demonstrate that our method outperforms the several state-of-the-art approaches in the tasks of disease classification and clinical score regression. |
---|---|
AbstractList | Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivity networks. However, most of them are designed for unweighted networks, regardless of the valuable weight information of edges, or do not take advantage of the ordinal relationship of weighted edges (even though they are designed for weighted networks). In this paper, we propose a new network descriptor (i.e., ordinal pattern that contains a sequence of weighted edges) for brain connectivity network analysis. Compared with previous network properties, the proposed ordinal patterns cannot only take advantage of the weight information of edges but also explicitly model the ordinal relationship of weighted edges in brain connectivity networks. We further develop an ordinal pattern-based learning framework for brain disease diagnosis using resting-state fMRI data. Specifically, we first construct a set of brain functional connectivity networks, where each network is corresponding to a particular subject. We then develop an algorithm to identify ordinal patterns that frequently appear in brain connectivity networks of patients and normal controls. We further perform discriminative ordinal pattern selection and extract feature representations for subjects based on the selected ordinal patterns, followed by a learning model for automated brain disease diagnosis. Experimental results on both Alzheimer's Disease Neuroimaging Initiative and attention deficit hyperactivity disorder-200 data sets demonstrate that our method outperforms the several state-of-the-art approaches in the tasks of disease classification and clinical score regression.Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivity networks. However, most of them are designed for unweighted networks, regardless of the valuable weight information of edges, or do not take advantage of the ordinal relationship of weighted edges (even though they are designed for weighted networks). In this paper, we propose a new network descriptor (i.e., ordinal pattern that contains a sequence of weighted edges) for brain connectivity network analysis. Compared with previous network properties, the proposed ordinal patterns cannot only take advantage of the weight information of edges but also explicitly model the ordinal relationship of weighted edges in brain connectivity networks. We further develop an ordinal pattern-based learning framework for brain disease diagnosis using resting-state fMRI data. Specifically, we first construct a set of brain functional connectivity networks, where each network is corresponding to a particular subject. We then develop an algorithm to identify ordinal patterns that frequently appear in brain connectivity networks of patients and normal controls. We further perform discriminative ordinal pattern selection and extract feature representations for subjects based on the selected ordinal patterns, followed by a learning model for automated brain disease diagnosis. Experimental results on both Alzheimer's Disease Neuroimaging Initiative and attention deficit hyperactivity disorder-200 data sets demonstrate that our method outperforms the several state-of-the-art approaches in the tasks of disease classification and clinical score regression. Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivity networks. However, most of them are designed for unweighted networks, regardless of the valuable weight information of edges, or do not take advantage of the ordinal relationship of weighted edges (even though they are designed for weighted networks). In this paper, we propose a new network descriptor (i.e., ordinal pattern that contains a sequence of weighted edges) for brain connectivity network analysis. Compared with previous network properties, the proposed ordinal patterns cannot only take advantage of the weight information of edges but also explicitly model the ordinal relationship of weighted edges in brain connectivity networks. We further develop an ordinal pattern-based learning framework for brain disease diagnosis using resting-state fMRI data. Specifically, we first construct a set of brain functional connectivity networks, where each network is corresponding to a particular subject. We then develop an algorithm to identify ordinal patterns that frequently appear in brain connectivity networks of patients and normal controls. We further perform discriminative ordinal pattern selection and extract feature representations for subjects based on the selected ordinal patterns, followed by a learning model for automated brain disease diagnosis. Experimental results on both Alzheimer's Disease Neuroimaging Initiative and attention deficit hyperactivity disorder-200 data sets demonstrate that our method outperforms the several state-of-the-art approaches in the tasks of disease classification and clinical score regression. |
Author | Liu, Mingxia Zhang, Daoqiang Tu, Liyang Huang, Jiashuang Du, Junqiang Jie, Biao |
Author_xml | – sequence: 1 givenname: Daoqiang surname: Zhang fullname: Zhang, Daoqiang email: dqzhang@nuaa.edu.cn organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Jiashuang orcidid: 0000-0002-6204-9569 surname: Huang fullname: Huang, Jiashuang organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Biao orcidid: 0000-0002-3722-4935 surname: Jie fullname: Jie, Biao organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 4 givenname: Junqiang surname: Du fullname: Du, Junqiang organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 5 givenname: Liyang surname: Tu fullname: Tu, Liyang organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 6 givenname: Mingxia orcidid: 0000-0002-0598-5692 surname: Liu fullname: Liu, Mingxia email: mingxialiu@nuaa.edu.cn organization: Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29969421$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1rVDEUBuAgFTut7gVBLrjp5o4n3zfuxrFqoVoXFdyFTOZcSL2TTJOMpf_elJm66MJFOJvnPZDznpCjmCIS8prCnFIw76-_XcwZ0GHOtBkkwDMyo1IOPZPi1xGZAdNDD6DYMTkp5QaACgnmBTlmxigjGJ2RxVVeh-im7oerFXP80C2673jXfcLic9jWlLuxvY_ZhdgtU4zoa_gT6n1T9S7l3-UleT66qeCrwzwlPz-fXy-_9pdXXy6Wi8vec6Frr0Eh1YyCVG7tmcHBu9EIakY9OsCVHwdJHQem1MpoYdaUrbzgUoxyEF5xfkrO9nu3Od3usFS7CcXjNLmIaVcsAyWYpMBoo--e0Ju0y-2XTVEtJAcO0NTbg9qtNri22xw2Lt_bx-M0oPbA51RKxtH6UF0NKdZ2jslSsA8t2NaCfWjBHlpoQXgSfNz9n8ibfSQg4j8-MGW4FvwvY-aPHg |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_imed_2021_06_002 crossref_primary_10_1109_TMI_2023_3342047 crossref_primary_10_3389_fninf_2021_802305 crossref_primary_10_1002_brb3_1499 crossref_primary_10_1109_JBHI_2019_2962519 crossref_primary_10_1109_JBHI_2021_3107305 crossref_primary_10_1016_j_bspc_2024_107226 crossref_primary_10_3389_fnins_2020_00779 crossref_primary_10_1016_j_media_2020_101709 crossref_primary_10_3389_fnins_2022_889105 crossref_primary_10_1016_j_compbiomed_2020_104096 crossref_primary_10_1016_j_media_2022_102591 crossref_primary_10_1109_ACCESS_2019_2903332 crossref_primary_10_1007_s11042_024_19401_7 crossref_primary_10_1109_TMI_2024_3421360 crossref_primary_10_1109_TMI_2019_2933160 crossref_primary_10_1016_j_media_2020_101755 crossref_primary_10_1007_s11548_022_02780_3 crossref_primary_10_1016_j_neuroimage_2023_119997 crossref_primary_10_1109_TNSRE_2023_3309847 crossref_primary_10_3389_fnins_2024_1303741 crossref_primary_10_1007_s10489_022_03891_9 crossref_primary_10_3390_brainsci12101413 crossref_primary_10_1088_1741_2552_acb088 crossref_primary_10_1016_j_artmed_2019_03_004 crossref_primary_10_1002_hbm_26469 crossref_primary_10_1007_s12021_019_09423_0 crossref_primary_10_1109_TNSRE_2022_3166560 crossref_primary_10_1016_j_patcog_2023_109716 |
Cites_doi | 10.1002/jmri.21049 10.1109/TBME.2013.2284195 10.1016/j.neuroimage.2010.10.026 10.1016/j.mri.2012.01.003 10.1002/hbm.21058 10.1016/j.neurobiolaging.2013.10.081 10.1117/12.911598 10.1016/j.bbr.2010.09.010 10.1016/j.biopsych.2014.08.018 10.1093/brain/awq075 10.1016/j.pscychresns.2012.03.002 10.1016/j.braindev.2007.10.005 10.1073/pnas.1315529111 10.1089/brain.2013.0214 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2016.01.056 10.2174/1874440001206010001 10.1006/nimg.2001.0978 10.1016/j.ejrad.2013.04.009 10.1152/jn.1989.61.5.900 10.1016/S1361-8415(98)80022-4 10.1371/journal.pone.0013788 10.1016/j.media.2017.10.005 10.1109/TMI.2016.2515021 10.1371/journal.pcbi.1000100 10.3389/fncir.2014.00064 10.1137/0201010 10.1109/JBHI.2017.2704614 10.1016/j.neuroimage.2011.11.055 10.3389/fnhum.2013.00456 10.1152/jn.00783.2009 10.1016/j.neuroimage.2010.01.019 10.1016/j.neuroimage.2015.02.037 10.1002/hbm.22353 10.1016/j.neuron.2015.05.035 10.1016/j.neuroimage.2011.08.085 10.1145/1376616.1376662 10.1176/appi.ajp.159.5.738 10.1016/j.neuroimage.2013.04.063 10.1016/j.media.2016.11.002 10.1016/j.neuroimage.2016.07.006 10.1016/j.neuroimage.2016.10.045 10.1002/hbm.20530 10.1371/journal.pone.0079476 10.1145/2396761.2396791 10.1038/jcbfm.1993.4 10.1007/978-3-319-46720-7_1 10.1136/jnnp.73.6.657 10.1016/j.media.2016.03.003 10.2307/2531595 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2018.2798500 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 1722 |
ExternalDocumentID | 29969421 10_1109_TMI_2018_2798500 8269374 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61703301; 61573023; 61422204; 61473149 funderid: 10.13039/501100001809 – fundername: Shandong Province grantid: J17KA086 funderid: 10.13039/501100003091 – fundername: NUAA Fundamental Research Funds grantid: NE2013105 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c347t-706e1721056adc29e8caf9419f7fa0ebcf851a30266b9749d12bc4354f584c633 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Fri Sep 05 12:01:32 EDT 2025 Mon Jun 30 05:19:29 EDT 2025 Wed Feb 19 02:36:45 EST 2025 Tue Jul 01 03:16:00 EDT 2025 Thu Apr 24 23:11:40 EDT 2025 Wed Aug 27 02:49:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-706e1721056adc29e8caf9419f7fa0ebcf851a30266b9749d12bc4354f584c633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0598-5692 0000-0002-6204-9569 0000-0002-3722-4935 |
PMID | 29969421 |
PQID | 2174530300 |
PQPubID | 85460 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2174530300 crossref_citationtrail_10_1109_TMI_2018_2798500 proquest_miscellaneous_2064251021 crossref_primary_10_1109_TMI_2018_2798500 ieee_primary_8269374 pubmed_primary_29969421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref53 ref52 ref11 ref54 ref10 ref16 ref19 ref18 ref51 ref50 durante (ref21) 2015 ref46 ref45 ref48 ref47 ref42 ref44 ref49 anderson (ref43) 1984 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 yan (ref41) 2002 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 fornito (ref15) 2016 ref24 ref23 ref26 ref25 ref20 ref22 goñi (ref17) 2014; 111 ref28 ref27 ref29 |
References_xml | – ident: ref37 doi: 10.1002/jmri.21049 – ident: ref29 doi: 10.1109/TBME.2013.2284195 – ident: ref11 doi: 10.1016/j.neuroimage.2010.10.026 – ident: ref50 doi: 10.1016/j.mri.2012.01.003 – ident: ref35 doi: 10.1002/hbm.21058 – ident: ref34 doi: 10.1016/j.neurobiolaging.2013.10.081 – ident: ref22 doi: 10.1117/12.911598 – ident: ref52 doi: 10.1016/j.bbr.2010.09.010 – ident: ref6 doi: 10.1016/j.biopsych.2014.08.018 – ident: ref23 doi: 10.1093/brain/awq075 – ident: ref53 doi: 10.1016/j.pscychresns.2012.03.002 – ident: ref46 doi: 10.1016/j.braindev.2007.10.005 – volume: 111 start-page: 833 year: 2014 ident: ref17 article-title: Resting-brain functional connectivity predicted by analytic measures of network communication publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.1315529111 – ident: ref13 doi: 10.1089/brain.2013.0214 – ident: ref10 doi: 10.1016/j.neuroimage.2009.10.003 – ident: ref7 doi: 10.1016/j.neuroimage.2016.01.056 – ident: ref25 doi: 10.2174/1874440001206010001 – ident: ref39 doi: 10.1006/nimg.2001.0978 – year: 2015 ident: ref21 publication-title: Unifying inference on brain network variations in neurological diseases The Alzheimer's case – ident: ref27 doi: 10.1016/j.ejrad.2013.04.009 – ident: ref2 doi: 10.1152/jn.1989.61.5.900 – ident: ref40 doi: 10.1016/S1361-8415(98)80022-4 – ident: ref31 doi: 10.1371/journal.pone.0013788 – ident: ref8 doi: 10.1016/j.media.2017.10.005 – ident: ref9 doi: 10.1109/TMI.2016.2515021 – ident: ref49 doi: 10.1371/journal.pcbi.1000100 – ident: ref28 doi: 10.3389/fncir.2014.00064 – ident: ref42 doi: 10.1137/0201010 – ident: ref5 doi: 10.1109/JBHI.2017.2704614 – year: 1984 ident: ref43 publication-title: Multivariate Statistical Analysis – ident: ref32 doi: 10.1016/j.neuroimage.2011.11.055 – ident: ref33 doi: 10.3389/fnhum.2013.00456 – ident: ref38 doi: 10.1152/jn.00783.2009 – ident: ref3 doi: 10.1016/j.neuroimage.2010.01.019 – ident: ref26 doi: 10.1016/j.neuroimage.2015.02.037 – ident: ref12 doi: 10.1002/hbm.22353 – ident: ref16 doi: 10.1016/j.neuron.2015.05.035 – ident: ref4 doi: 10.1016/j.neuroimage.2011.08.085 – start-page: 721 year: 2002 ident: ref41 article-title: gSpan: Graph-based substructure pattern mining publication-title: Proc IEEE Int Conf Data Mining – ident: ref44 doi: 10.1145/1376616.1376662 – ident: ref47 doi: 10.1176/appi.ajp.159.5.738 – ident: ref51 doi: 10.1016/j.neuroimage.2013.04.063 – ident: ref20 doi: 10.1016/j.media.2016.11.002 – ident: ref30 doi: 10.1016/j.neuroimage.2016.07.006 – ident: ref24 doi: 10.1016/j.neuroimage.2016.10.045 – ident: ref36 doi: 10.1002/hbm.20530 – ident: ref19 doi: 10.1371/journal.pone.0079476 – ident: ref54 doi: 10.1145/2396761.2396791 – ident: ref1 doi: 10.1038/jcbfm.1993.4 – ident: ref18 doi: 10.1007/978-3-319-46720-7_1 – ident: ref48 doi: 10.1136/jnnp.73.6.657 – ident: ref14 doi: 10.1016/j.media.2016.03.003 – year: 2016 ident: ref15 publication-title: Fundamentals of brain network analysis – ident: ref45 doi: 10.2307/2531595 |
SSID | ssj0014509 |
Score | 2.4230351 |
Snippet | Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1711 |
SubjectTerms | Algorithms Alzheimer Disease - diagnostic imaging Alzheimer's disease Attention Deficit Disorder with Hyperactivity - diagnostic imaging Attention deficit hyperactivity disorder Brain Brain - diagnostic imaging Brain - physiology brain disease diagnosis Brain diseases Brain mapping Brain Mapping - methods Brain modeling classification Connectivity network Diagnosis Diseases Feature extraction Functional magnetic resonance imaging Humans Image Interpretation, Computer-Assisted - methods Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical diagnosis Medical imaging Nerve Net - diagnostic imaging Nerve Net - physiology Network analysis network descriptor Networks Neural networks Neurodegenerative diseases Neuroimaging Neurology NMR Nuclear magnetic resonance regression Regression analysis State of the art Structure-function relationships Weight |
Title | Ordinal Pattern: A New Descriptor for Brain Connectivity Networks |
URI | https://ieeexplore.ieee.org/document/8269374 https://www.ncbi.nlm.nih.gov/pubmed/29969421 https://www.proquest.com/docview/2174530300 https://www.proquest.com/docview/2064251021 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGDggOPMZrvFQkLkh0y9L0EW4DMQ2kAYdN4lalaXoBdWjrLvx67LSrJgSIW6U6bZo48efa-QxwqdAq9rROXZ5mmSsUS91IsdANDBpPw1gqLV3T6CkYTsTjq__agOv6LIwxxiafmQ5d2lh-OtUL-lXWRSiM1lSswRqqWXlWq44YCL9M5-DEGMsCvgxJMtkdjx4ohyvq8FBGPp1lWzFBtqbK7_DSmpnBNoyWHSyzS946iyLp6M9v3I3__YId2KrwptMvFWQXGiZvweYKC2EL1kdVfH0P-s-oLyT_Ymk38xun7-A26KB3aneX6cxBkOvcUl0Jx-bI6LL6BErZdPL5PkwG9-O7oVsVWXC1J8LCDVlgyA1EIKRSzaWJtMqk6MkszBQzic4QkykPXbUgQd9Dpj2eaMRYIkPoogPPO4BmPs3NETiKmL4D3zMKUVjimygSHpcoI0wquPLa0F2Oe6wrBnIqhPEeW0-EyRhnKqaZiquZasNV3eKjZN_4Q3aPxruWq4a6DafLqY2r5TmPyQ_z0XhTq4v6Ni4sipao3EwXKEOumU-Vz9twWKpE_Wy04YEUvHf88ztPYIN6Vmb1nkKzmC3MGWKXIjm3SvsFGXLnhg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSCwH9qWsQeKCRFrXcRZzKwhUlgCHVuotchznAkpRaS98PTNOGiEEiFukjBPHY3veZMZvAE4VWsW21pnLszx3hWKZGykWuoFB42kYy6Sla4ofg25f3A38wQyc12dhjDE2-cw06dLG8rOhntCvshZCYbSmYhbm0e4LvzytVccMhF8mdHDijGUBnwYlmWz14lvK4oqaPJSRT6fZvhghW1Xld4BpDc3NKsTTLpb5JS_NyTht6o9v7I3__YY1WKkQp9Mpp8g6zJhiA5a_8BBuwEJcRdg3ofOEM4bkny3xZnHhdBzcCB30T-3-Mhw5CHOdS6os4dgsGV3Wn0Apm1D-vgX9m-veVdetyiy42hPh2A1ZYMgRRCikMs2libTKpWjLPMwVM6nOEZUpD521IEXvQ2ZtnmpEWSJH8KIDz9uGuWJYmF1wFHF9B75nFOKw1DdRJDwuUUaYTHDlNaA1HfdEVxzkVArjNbG-CJMJaiohTSWVphpwVrd4K_k3_pDdpPGu5aqhbsDBVLVJtUDfE_LEfDTf1Oqkvo1Li-IlqjDDCcqQc-ZT7fMG7JRTon42WvFACt7e-_mdx7DY7cUPycPt4_0-LFEvyxzfA5gbjybmEJHMOD2yE_gTYiLq0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordinal+Pattern%3A+A+New+Descriptor+for+Brain+Connectivity+Networks&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhang%2C+Daoqiang&rft.au=Huang%2C+Jiashuang&rft.au=Jie%2C+Biao&rft.au=Du%2C+Junqiang&rft.date=2018-07-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=37&rft.issue=7&rft.spage=1711&rft.epage=1722&rft_id=info:doi/10.1109%2FTMI.2018.2798500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2018_2798500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |