Federated Learning of Generative Image Priors for MRI Reconstruction

Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has recently been introduced to address privacy concerns by enabling distributed training without transfer of imaging d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 42; no. 7; pp. 1996 - 2009
Main Authors Elmas, Gokberk, Dar, Salman U. H., Korkmaz, Yilmaz, Ceyani, Emir, Susam, Burak, Ozbey, Muzaffer, Avestimehr, Salman, Cukur, Tolga
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2022.3220757

Cover

Loading…
Abstract Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has recently been introduced to address privacy concerns by enabling distributed training without transfer of imaging data. Existing FL methods employ conditional reconstruction models to map from undersampled to fully-sampled acquisitions via explicit knowledge of the accelerated imaging operator. Since conditional models generalize poorly across different acceleration rates or sampling densities, imaging operators must be fixed between training and testing, and they are typically matched across sites. To improve patient privacy, performance and flexibility in multi-site collaborations, here we introduce Federated learning of Generative IMage Priors (FedGIMP) for MRI reconstruction. FedGIMP leverages a two-stage approach: cross-site learning of a generative MRI prior, and prior adaptation following injection of the imaging operator. The global MRI prior is learned via an unconditional adversarial model that synthesizes high-quality MR images based on latent variables. A novel mapper subnetwork produces site-specific latents to maintain specificity in the prior. During inference, the prior is first combined with subject-specific imaging operators to enable reconstruction, and it is then adapted to individual cross-sections by minimizing a data-consistency loss. Comprehensive experiments on multi-institutional datasets clearly demonstrate enhanced performance of FedGIMP against both centralized and FL methods based on conditional models.
AbstractList Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has recently been introduced to address privacy concerns by enabling distributed training without transfer of imaging data. Existing FL methods employ conditional reconstruction models to map from undersampled to fully-sampled acquisitions via explicit knowledge of the accelerated imaging operator. Since conditional models generalize poorly across different acceleration rates or sampling densities, imaging operators must be fixed between training and testing, and they are typically matched across sites. To improve patient privacy, performance and flexibility in multi-site collaborations, here we introduce Federated learning of Generative IMage Priors (FedGIMP) for MRI reconstruction. FedGIMP leverages a two-stage approach: cross-site learning of a generative MRI prior, and prior adaptation following injection of the imaging operator. The global MRI prior is learned via an unconditional adversarial model that synthesizes high-quality MR images based on latent variables. A novel mapper subnetwork produces site-specific latents to maintain specificity in the prior. During inference, the prior is first combined with subject-specific imaging operators to enable reconstruction, and it is then adapted to individual cross-sections by minimizing a data-consistency loss. Comprehensive experiments on multi-institutional datasets clearly demonstrate enhanced performance of FedGIMP against both centralized and FL methods based on conditional models.
Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has recently been introduced to address privacy concerns by enabling distributed training without transfer of imaging data. Existing FL methods employ conditional reconstruction models to map from undersampled to fully-sampled acquisitions via explicit knowledge of the accelerated imaging operator. Since conditional models generalize poorly across different acceleration rates or sampling densities, imaging operators must be fixed between training and testing, and they are typically matched across sites. To improve patient privacy, performance and flexibility in multi-site collaborations, here we introduce Federated learning of Generative IMage Priors (FedGIMP) for MRI reconstruction. FedGIMP leverages a two-stage approach: cross-site learning of a generative MRI prior, and prior adaptation following injection of the imaging operator. The global MRI prior is learned via an unconditional adversarial model that synthesizes high-quality MR images based on latent variables. A novel mapper subnetwork produces site-specific latents to maintain specificity in the prior. During inference, the prior is first combined with subject-specific imaging operators to enable reconstruction, and it is then adapted to individual cross-sections by minimizing a data-consistency loss. Comprehensive experiments on multi-institutional datasets clearly demonstrate enhanced performance of FedGIMP against both centralized and FL methods based on conditional models.Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has recently been introduced to address privacy concerns by enabling distributed training without transfer of imaging data. Existing FL methods employ conditional reconstruction models to map from undersampled to fully-sampled acquisitions via explicit knowledge of the accelerated imaging operator. Since conditional models generalize poorly across different acceleration rates or sampling densities, imaging operators must be fixed between training and testing, and they are typically matched across sites. To improve patient privacy, performance and flexibility in multi-site collaborations, here we introduce Federated learning of Generative IMage Priors (FedGIMP) for MRI reconstruction. FedGIMP leverages a two-stage approach: cross-site learning of a generative MRI prior, and prior adaptation following injection of the imaging operator. The global MRI prior is learned via an unconditional adversarial model that synthesizes high-quality MR images based on latent variables. A novel mapper subnetwork produces site-specific latents to maintain specificity in the prior. During inference, the prior is first combined with subject-specific imaging operators to enable reconstruction, and it is then adapted to individual cross-sections by minimizing a data-consistency loss. Comprehensive experiments on multi-institutional datasets clearly demonstrate enhanced performance of FedGIMP against both centralized and FL methods based on conditional models.
Author Elmas, Gokberk
Cukur, Tolga
Korkmaz, Yilmaz
Dar, Salman U. H.
Susam, Burak
Ceyani, Emir
Ozbey, Muzaffer
Avestimehr, Salman
Author_xml – sequence: 1
  givenname: Gokberk
  orcidid: 0000-0003-0124-6048
  surname: Elmas
  fullname: Elmas, Gokberk
  email: gokberk@ee.bilkent.edu.tr
  organization: Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
– sequence: 2
  givenname: Salman U. H.
  surname: Dar
  fullname: Dar, Salman U. H.
  email: salman@ee.bilkent.edu.tr
  organization: Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 3
  givenname: Yilmaz
  orcidid: 0000-0002-8670-3414
  surname: Korkmaz
  fullname: Korkmaz, Yilmaz
  email: korkmaz@ee.bilkent.edu.tr
  organization: Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
– sequence: 4
  givenname: Emir
  orcidid: 0000-0002-4107-1337
  surname: Ceyani
  fullname: Ceyani, Emir
  email: ceyani@usc.edu
  organization: Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 5
  givenname: Burak
  orcidid: 0000-0002-9770-4180
  surname: Susam
  fullname: Susam, Burak
  email: burak.susam@ug.bilkent.edu.tr
  organization: Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
– sequence: 6
  givenname: Muzaffer
  orcidid: 0000-0002-6262-8915
  surname: Ozbey
  fullname: Ozbey, Muzaffer
  email: muzaffer@ee.bilkent.edu.tr
  organization: Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
– sequence: 7
  givenname: Salman
  surname: Avestimehr
  fullname: Avestimehr, Salman
  email: avestime@usc.edu
  organization: Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 8
  givenname: Tolga
  orcidid: 0000-0002-2296-851X
  surname: Cukur
  fullname: Cukur, Tolga
  email: cukur@ee.bilkent.edu.tr
  organization: Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36350868$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rGzEQxUVJaZy090KhLPTSyzqjr9XusaRNanBICQnkJrTSKCjYUirtBvrfV8ZODzn0NDD83mPmvRNyFFNEQj5SWFIKw9nt1WrJgLElZwyUVG_IgkrZt0yK-yOyAKb6FqBjx-SklEcAKiQM78gx77iEvusX5PsFOsxmQtes0eQY4kOTfHOJcbcNz9istuYBm185pFwan3JzdbNqbtCmWKY82ymk-J689WZT8MNhnpK7ix-35z_b9fXl6vzburVcqKmV3jrLOUoFZhRusExxJ9g48o65cQTvRwCjejpIUN443ltXUSWHjlrhO35Kvu59n3L6PWOZ9DYUi5uNiZjmoquf6GjNQlT0yyv0Mc051us06zmt31OQlfp8oOZxi04_5bA1-Y9-yacC3R6wOZWS0WsbJrP7ecombDQFvStC1yL0rgh9KKIK4ZXwxfs_kk97SUDEf_gwCM4Gzv8CTsmQ-Q
CODEN ITMID4
CitedBy_id crossref_primary_10_1038_s41746_023_00941_5
crossref_primary_10_1109_TIM_2023_3331413
crossref_primary_10_1007_s10334_023_01128_5
crossref_primary_10_1109_TMI_2023_3300725
crossref_primary_10_1109_JBHI_2024_3365784
crossref_primary_10_1088_1361_6560_acfadf
crossref_primary_10_1016_j_bspc_2024_107360
crossref_primary_10_1109_TMI_2023_3314430
crossref_primary_10_3390_diagnostics13091532
crossref_primary_10_1002_cpe_8379
crossref_primary_10_1016_j_cmpb_2023_107845
crossref_primary_10_1109_ACCESS_2023_3310400
crossref_primary_10_1002_mrm_29750
crossref_primary_10_1259_bjr_20220890
crossref_primary_10_1109_TMI_2024_3432388
crossref_primary_10_1109_JBHI_2022_3185956
crossref_primary_10_1016_j_compbiomed_2024_108905
crossref_primary_10_1016_j_media_2024_103121
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1109_TCYB_2024_3403927
crossref_primary_10_1016_j_media_2023_102993
crossref_primary_10_1109_TCI_2025_3525960
crossref_primary_10_1109_TMI_2022_3199155
crossref_primary_10_1002_mef2_38
crossref_primary_10_3390_bioengineering10091012
crossref_primary_10_1016_j_patcog_2024_110424
crossref_primary_10_3390_appliedmath4030059
crossref_primary_10_1109_TMI_2023_3235757
crossref_primary_10_1002_mrm_30114
crossref_primary_10_1002_nbm_5179
crossref_primary_10_1109_JBHI_2023_3316468
crossref_primary_10_3390_bioengineering10030364
crossref_primary_10_1016_j_compbiomed_2023_107610
crossref_primary_10_1109_JIOT_2023_3325822
crossref_primary_10_1109_TMI_2023_3323540
crossref_primary_10_3390_diagnostics13193140
crossref_primary_10_1109_JBHI_2024_3415000
Cites_doi 10.1038/s41746-020-00323-1
10.1002/mrm.27420
10.1109/JSTSP.2020.3001737
10.1109/TMI.2018.2865356
10.1016/j.mri.2019.05.041
10.1002/mrm.21391
10.1109/ISBI.2016.7493320
10.1016/j.neuroimage.2018.08.073
10.1002/mrm.27106
10.1109/TMI.2018.2858752
10.1109/CVPR46437.2021.00245
10.1007/978-3-319-59050-9_51
10.1109/TMI.2020.3022968
10.1016/j.media.2020.101765
10.1109/MSP.2020.2975749
10.1109/TMI.2012.2188039
10.1007/978-3-030-11723-8_9
10.1002/mrm.24751
10.1109/CVPR42600.2020.01387
10.1002/mrm.25717
10.1109/TCI.2020.3018562
10.1038/s42256-020-0186-1
10.1126/sciadv.abb7973
10.1109/CVPR.2019.00453
10.1145/3372297.3417238
10.1002/mrm.27706
10.1002/mrm.26977
10.1002/mrm.28219
10.1109/TMI.2018.2887072
10.1002/mrm.25421
10.1109/TMI.2018.2820120
10.1007/978-3-030-60548-3_18
10.1109/TMI.2014.2377694
10.1117/12.2527753
10.1002/mrm.28659
10.1002/mrm.28378
10.1109/TMI.2020.3046460
10.1109/ICCV48922.2021.00663
10.1038/nature25988
10.1002/mrm.27355
10.1148/ryai.2020190007
10.1002/mrm.27201
10.1109/TNNLS.2021.3090303
10.1002/mp.12600
10.1002/mrm.24267
10.1007/s10796-021-10144-6
10.1109/CVPR46437.2021.00107
10.1109/TMI.2022.3147426
10.1109/TBME.2018.2883958
10.1109/JBHI.2020.3040015
10.1109/MSP.2019.2950557
10.1109/ICCV.2017.167
10.1007/978-3-030-87231-1_2
10.1002/nbm.4131
10.1109/CVPR52688.2022.00985
10.1109/TPAMI.2018.2883941
10.1002/mrm.28148
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2022.3220757
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2009
ExternalDocumentID 36350868
10_1109_TMI_2022_3220757
9943293
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Turkish Academy of Sciences (TUBA) GEBIP 2015 Fellowship
– fundername: Science Academy BAGEP 2017 Fellowship
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-5fcdc33e570ab4d9c273d42bb362dbb0ffb00a7819507fad38cd70a75961c4f63
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Jul 11 15:45:35 EDT 2025
Sun Jun 29 16:13:08 EDT 2025
Mon Jul 21 05:27:37 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Jul 01 03:16:06 EDT 2025
Wed Aug 27 02:25:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-5fcdc33e570ab4d9c273d42bb362dbb0ffb00a7819507fad38cd70a75961c4f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6262-8915
0000-0002-4107-1337
0000-0003-0124-6048
0000-0002-9770-4180
0000-0002-8670-3414
0000-0002-2296-851X
PMID 36350868
PQID 2831508105
PQPubID 85460
PageCount 14
ParticipantIDs proquest_journals_2831508105
crossref_primary_10_1109_TMI_2022_3220757
pubmed_primary_36350868
crossref_citationtrail_10_1109_TMI_2022_3220757
ieee_primary_9943293
proquest_miscellaneous_2734613224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
kumar aggarwal (ref59) 2021
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
park (ref53) 2021
pu liang (ref62) 2020
ref50
li (ref51) 2021
ref47
ref42
ref41
ref43
zhu (ref37) 2018; 555
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
feng (ref36) 2021
ref35
ref34
huang (ref44) 2019
ref31
ref33
zhang (ref71) 2021
li (ref23) 2019
ref32
ref2
ref1
ref39
ref38
wang (ref30) 2021
ref72
ref68
ref24
ref67
ref26
hu (ref46) 2021
wang (ref48) 2022
ref69
ref25
ref64
ref20
tamir (ref45) 2019
ref63
ref66
ref22
ref65
ref21
ref28
ref27
rasouli (ref61) 2020
ref60
ziller (ref70) 2021
mcmahan (ref29) 2017
References_xml – ident: ref25
  doi: 10.1038/s41746-020-00323-1
– ident: ref9
  doi: 10.1002/mrm.27420
– ident: ref18
  doi: 10.1109/JSTSP.2020.3001737
– ident: ref13
  doi: 10.1109/TMI.2018.2865356
– ident: ref50
  doi: 10.1016/j.mri.2019.05.041
– ident: ref1
  doi: 10.1002/mrm.21391
– ident: ref3
  doi: 10.1109/ISBI.2016.7493320
– ident: ref49
  doi: 10.1016/j.neuroimage.2018.08.073
– ident: ref7
  doi: 10.1002/mrm.27106
– ident: ref16
  doi: 10.1109/TMI.2018.2858752
– ident: ref35
  doi: 10.1109/CVPR46437.2021.00245
– year: 2020
  ident: ref62
  article-title: Think locally, act globally: Federated learning with local and global representations
  publication-title: arXiv 2001 01523
– ident: ref12
  doi: 10.1007/978-3-319-59050-9_51
– year: 2021
  ident: ref36
  article-title: Specificity-preserving federated learning for MR image reconstruction
  publication-title: arXiv 2112 05752
– ident: ref42
  doi: 10.1109/TMI.2020.3022968
– ident: ref27
  doi: 10.1016/j.media.2020.101765
– ident: ref31
  doi: 10.1109/MSP.2020.2975749
– ident: ref66
  doi: 10.1109/TMI.2012.2188039
– ident: ref24
  doi: 10.1007/978-3-030-11723-8_9
– ident: ref58
  doi: 10.1002/mrm.24751
– year: 2021
  ident: ref70
  article-title: Complex-valued deep learning with differential privacy
  publication-title: arXiv 2110 03478
– start-page: 4668
  year: 2019
  ident: ref44
  article-title: Deep MRI reconstruction without ground truth for training
  publication-title: Proc 27th Annu Meeting (ISMRM)
– year: 2021
  ident: ref30
  article-title: A field guide to federated optimization
  publication-title: arXiv 2107 06917
– ident: ref39
  doi: 10.1109/CVPR42600.2020.01387
– ident: ref60
  doi: 10.1002/mrm.25717
– year: 2021
  ident: ref59
  article-title: Model adaptation for image reconstruction using generalized stein's unbiased risk estimator
  publication-title: arXiv 2102 00047
– start-page: 1
  year: 2021
  ident: ref53
  article-title: Federated split task-agnostic vision transformer for COVID-19 CXR diagnosis
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2022
  ident: ref48
  article-title: PARCEL: Physics-based unsupervised contrastive representation learning for parallel MR imaging
  publication-title: arXiv 2202 01494
– start-page: 133
  year: 2019
  ident: ref23
  article-title: Privacy-preserving federated brain tumour segmentation
  publication-title: Proc Int Workshop Mach Learn Med Imag
– ident: ref41
  doi: 10.1109/TCI.2020.3018562
– ident: ref22
  doi: 10.1038/s42256-020-0186-1
– start-page: 382
  year: 2021
  ident: ref46
  publication-title: Self-Supervised Learning for MRI Reconstruction With a Parallel Network Training Framework
– ident: ref68
  doi: 10.1126/sciadv.abb7973
– ident: ref56
  doi: 10.1109/CVPR.2019.00453
– ident: ref65
  doi: 10.1145/3372297.3417238
– ident: ref38
  doi: 10.1002/mrm.27706
– ident: ref4
  doi: 10.1002/mrm.26977
– start-page: 1273
  year: 2017
  ident: ref29
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– year: 2021
  ident: ref51
  article-title: FedBN: Federated learning on non-IID features via local batch normalization
  publication-title: arXiv 2102 07623
– ident: ref17
  doi: 10.1002/mrm.28219
– ident: ref54
  doi: 10.1109/TMI.2018.2887072
– start-page: 660
  year: 2019
  ident: ref45
  article-title: Unsupervised deep basis pursuit: Learning reconstruction without ground-truth data
  publication-title: Proc Int Soc Magn Reson Med
– ident: ref2
  doi: 10.1002/mrm.25421
– ident: ref14
  doi: 10.1109/TMI.2018.2820120
– year: 2021
  ident: ref71
  article-title: Personalized federated learning with first order model optimization
  publication-title: arXiv 2012 08565
– ident: ref26
  doi: 10.1007/978-3-030-60548-3_18
– ident: ref63
  doi: 10.1109/TMI.2014.2377694
– ident: ref32
  doi: 10.1117/12.2527753
– ident: ref47
  doi: 10.1002/mrm.28659
– ident: ref43
  doi: 10.1002/mrm.28378
– ident: ref40
  doi: 10.1109/TMI.2020.3046460
– ident: ref67
  doi: 10.1109/ICCV48922.2021.00663
– volume: 555
  start-page: 487
  year: 2018
  ident: ref37
  article-title: Image reconstruction by domain transform manifold learning
  publication-title: Nature
  doi: 10.1038/nature25988
– year: 2020
  ident: ref61
  article-title: FedGAN: Federated generative adversarial networks for distributed data
  publication-title: arXiv 2006 07228
– ident: ref34
  doi: 10.1002/mrm.27355
– ident: ref33
  doi: 10.1148/ryai.2020190007
– ident: ref15
  doi: 10.1002/mrm.27201
– ident: ref19
  doi: 10.1109/TNNLS.2021.3090303
– ident: ref5
  doi: 10.1002/mp.12600
– ident: ref64
  doi: 10.1002/mrm.24267
– ident: ref69
  doi: 10.1007/s10796-021-10144-6
– ident: ref28
  doi: 10.1109/CVPR46437.2021.00107
– ident: ref55
  doi: 10.1109/TMI.2022.3147426
– ident: ref10
  doi: 10.1109/TBME.2018.2883958
– ident: ref52
  doi: 10.1109/JBHI.2020.3040015
– ident: ref21
  doi: 10.1109/MSP.2019.2950557
– ident: ref57
  doi: 10.1109/ICCV.2017.167
– ident: ref20
  doi: 10.1007/978-3-030-87231-1_2
– ident: ref11
  doi: 10.1002/nbm.4131
– ident: ref72
  doi: 10.1109/CVPR52688.2022.00985
– ident: ref8
  doi: 10.1109/TPAMI.2018.2883941
– ident: ref6
  doi: 10.1002/mrm.28148
SSID ssj0014509
Score 2.6277435
Snippet Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1996
SubjectTerms accelerated
Adaptation models
Biological system modeling
collaborative
Data models
Deep Learning
distributed
Explicit knowledge
Federated learning
generative
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Knowledge acquisition
Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
MRI
Operators
Performance enhancement
prior
Privacy
reconstruction
Training
Title Federated Learning of Generative Image Priors for MRI Reconstruction
URI https://ieeexplore.ieee.org/document/9943293
https://www.ncbi.nlm.nih.gov/pubmed/36350868
https://www.proquest.com/docview/2831508105
https://www.proquest.com/docview/2734613224
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSsRAEC10DqIHt3GJGy14EcxMJt1JJ0dRB0eIiCjMLaQ3EXUis1z8equzuaDiLZDK1lWVetXV_QrgiIuieTF3DQupy6jsubFvlKsNU1wLJmQxD5lch5f37GoYDOfgpNkLo7UuFp_pjj0savkqlzM7VdaNY0YxPM3DPCZu5V6tpmLAgnI5h28ZY73Qr0uSXty9SwaYCPp-B40XI6Ttu0cxziKYj75Eo6K9yu9Is4g4_RVI6nctF5o8dWZT0ZFv32gc__sxq7BcQU9yWtrKGszp0TosfSIkXIeFpCq1t-G8b2kmEIkqUnGwPpDckJKm2v4jyeAF_0XkZvyYjycEsS9JbgfEprMfpLQbcN-_uDu7dKuWC66kjE_dwEglKdUB9zLBVCwR3SjmC4FxTgnhGYNumnFbfPO4yRSNpEJRHsRhTzIT0k1ojfKR3gaCnh5kAvUhTMQUlSgRcx0JKahGlBg50K2HPpUVH7lti_GcFnmJF6eot9TqLa305sBxc8VrycXxh2zbDnkjV422A3u1dtPKWScpIizLio9I04HD5jS6ma2dZCOdz1CGUxbazJ05sFVaRXPv2ph2fn7mLizaHvXlGt89aKEK9D4imak4KEz4HZf76tI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9tAEB7RIHE8QLkNtN1KfUHCifGuvfYjAqKkjVFVJVLeLO-FEBCjHC_8emZ9QStAfbPk8bUz4_lmZ_cbgB9cFM2LuWtYSF1G5Zkb-0a52jDFtWBCFvOQyXXYG7Gf42C8BKfNXhitdbH4TLftYVHLV7lc2KmyThwziuHpEywHdjNuuVurqRmwoFzQ4VvOWC_066KkF3eGSR9TQd9vo_lijLSd9yhGWoTz0V_xqGiw8j7WLGJOdxOS-m3LpSZ37cVctOXTP0SO__s5n2GjAp_kvLSWLVjSk21Yf0VJuA0rSVVs34HLriWaQCyqSMXCekNyQ0qiavuXJP0H_BuR39PbfDojiH5J8qdPbEL7Qku7C6Pu1fCi51ZNF1xJGZ-7gZFKUqoD7mWCqVgivlHMFwIjnRLCMwYdNeO2_OZxkykaSYWiPIjDM8lMSPegNckn-gAI-nqQCdSHMBFTVKJEzHUkpKAacWLkQKce-lRWjOS2McZ9WmQmXpyi3lKrt7TSmwMnzRWPJRvHB7I7dsgbuWq0HTiutZtW7jpLEWNZXnzEmg58b06jo9nqSTbR-QJlOGWhzd2ZA_ulVTT3ro3p8O1nfoPV3jAZpIP-9a8jWLMd68sVv8fQQnXoL4hr5uJrYc7P_17uGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+of+Generative+Image+Priors+for+MRI+Reconstruction&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Elmas%2C+Gokberk&rft.au=Dar%2C+Salman+U.+H.&rft.au=Korkmaz%2C+Yilmaz&rft.au=Ceyani%2C+Emir&rft.date=2023-07-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=42&rft.issue=7&rft.spage=1996&rft.epage=2009&rft_id=info:doi/10.1109%2FTMI.2022.3220757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2022_3220757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon