Federated Learning of Generative Image Priors for MRI Reconstruction
Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has recently been introduced to address privacy concerns by enabling distributed training without transfer of imaging d...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 42; no. 7; pp. 1996 - 2009 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2022.3220757 |
Cover
Loading…
Abstract | Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has recently been introduced to address privacy concerns by enabling distributed training without transfer of imaging data. Existing FL methods employ conditional reconstruction models to map from undersampled to fully-sampled acquisitions via explicit knowledge of the accelerated imaging operator. Since conditional models generalize poorly across different acceleration rates or sampling densities, imaging operators must be fixed between training and testing, and they are typically matched across sites. To improve patient privacy, performance and flexibility in multi-site collaborations, here we introduce Federated learning of Generative IMage Priors (FedGIMP) for MRI reconstruction. FedGIMP leverages a two-stage approach: cross-site learning of a generative MRI prior, and prior adaptation following injection of the imaging operator. The global MRI prior is learned via an unconditional adversarial model that synthesizes high-quality MR images based on latent variables. A novel mapper subnetwork produces site-specific latents to maintain specificity in the prior. During inference, the prior is first combined with subject-specific imaging operators to enable reconstruction, and it is then adapted to individual cross-sections by minimizing a data-consistency loss. Comprehensive experiments on multi-institutional datasets clearly demonstrate enhanced performance of FedGIMP against both centralized and FL methods based on conditional models. |
---|---|
AbstractList | Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has recently been introduced to address privacy concerns by enabling distributed training without transfer of imaging data. Existing FL methods employ conditional reconstruction models to map from undersampled to fully-sampled acquisitions via explicit knowledge of the accelerated imaging operator. Since conditional models generalize poorly across different acceleration rates or sampling densities, imaging operators must be fixed between training and testing, and they are typically matched across sites. To improve patient privacy, performance and flexibility in multi-site collaborations, here we introduce Federated learning of Generative IMage Priors (FedGIMP) for MRI reconstruction. FedGIMP leverages a two-stage approach: cross-site learning of a generative MRI prior, and prior adaptation following injection of the imaging operator. The global MRI prior is learned via an unconditional adversarial model that synthesizes high-quality MR images based on latent variables. A novel mapper subnetwork produces site-specific latents to maintain specificity in the prior. During inference, the prior is first combined with subject-specific imaging operators to enable reconstruction, and it is then adapted to individual cross-sections by minimizing a data-consistency loss. Comprehensive experiments on multi-institutional datasets clearly demonstrate enhanced performance of FedGIMP against both centralized and FL methods based on conditional models. Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has recently been introduced to address privacy concerns by enabling distributed training without transfer of imaging data. Existing FL methods employ conditional reconstruction models to map from undersampled to fully-sampled acquisitions via explicit knowledge of the accelerated imaging operator. Since conditional models generalize poorly across different acceleration rates or sampling densities, imaging operators must be fixed between training and testing, and they are typically matched across sites. To improve patient privacy, performance and flexibility in multi-site collaborations, here we introduce Federated learning of Generative IMage Priors (FedGIMP) for MRI reconstruction. FedGIMP leverages a two-stage approach: cross-site learning of a generative MRI prior, and prior adaptation following injection of the imaging operator. The global MRI prior is learned via an unconditional adversarial model that synthesizes high-quality MR images based on latent variables. A novel mapper subnetwork produces site-specific latents to maintain specificity in the prior. During inference, the prior is first combined with subject-specific imaging operators to enable reconstruction, and it is then adapted to individual cross-sections by minimizing a data-consistency loss. Comprehensive experiments on multi-institutional datasets clearly demonstrate enhanced performance of FedGIMP against both centralized and FL methods based on conditional models.Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has recently been introduced to address privacy concerns by enabling distributed training without transfer of imaging data. Existing FL methods employ conditional reconstruction models to map from undersampled to fully-sampled acquisitions via explicit knowledge of the accelerated imaging operator. Since conditional models generalize poorly across different acceleration rates or sampling densities, imaging operators must be fixed between training and testing, and they are typically matched across sites. To improve patient privacy, performance and flexibility in multi-site collaborations, here we introduce Federated learning of Generative IMage Priors (FedGIMP) for MRI reconstruction. FedGIMP leverages a two-stage approach: cross-site learning of a generative MRI prior, and prior adaptation following injection of the imaging operator. The global MRI prior is learned via an unconditional adversarial model that synthesizes high-quality MR images based on latent variables. A novel mapper subnetwork produces site-specific latents to maintain specificity in the prior. During inference, the prior is first combined with subject-specific imaging operators to enable reconstruction, and it is then adapted to individual cross-sections by minimizing a data-consistency loss. Comprehensive experiments on multi-institutional datasets clearly demonstrate enhanced performance of FedGIMP against both centralized and FL methods based on conditional models. |
Author | Elmas, Gokberk Cukur, Tolga Korkmaz, Yilmaz Dar, Salman U. H. Susam, Burak Ceyani, Emir Ozbey, Muzaffer Avestimehr, Salman |
Author_xml | – sequence: 1 givenname: Gokberk orcidid: 0000-0003-0124-6048 surname: Elmas fullname: Elmas, Gokberk email: gokberk@ee.bilkent.edu.tr organization: Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey – sequence: 2 givenname: Salman U. H. surname: Dar fullname: Dar, Salman U. H. email: salman@ee.bilkent.edu.tr organization: Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA – sequence: 3 givenname: Yilmaz orcidid: 0000-0002-8670-3414 surname: Korkmaz fullname: Korkmaz, Yilmaz email: korkmaz@ee.bilkent.edu.tr organization: Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey – sequence: 4 givenname: Emir orcidid: 0000-0002-4107-1337 surname: Ceyani fullname: Ceyani, Emir email: ceyani@usc.edu organization: Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA – sequence: 5 givenname: Burak orcidid: 0000-0002-9770-4180 surname: Susam fullname: Susam, Burak email: burak.susam@ug.bilkent.edu.tr organization: Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey – sequence: 6 givenname: Muzaffer orcidid: 0000-0002-6262-8915 surname: Ozbey fullname: Ozbey, Muzaffer email: muzaffer@ee.bilkent.edu.tr organization: Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey – sequence: 7 givenname: Salman surname: Avestimehr fullname: Avestimehr, Salman email: avestime@usc.edu organization: Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA – sequence: 8 givenname: Tolga orcidid: 0000-0002-2296-851X surname: Cukur fullname: Cukur, Tolga email: cukur@ee.bilkent.edu.tr organization: Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36350868$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rGzEQxUVJaZy090KhLPTSyzqjr9XusaRNanBICQnkJrTSKCjYUirtBvrfV8ZODzn0NDD83mPmvRNyFFNEQj5SWFIKw9nt1WrJgLElZwyUVG_IgkrZt0yK-yOyAKb6FqBjx-SklEcAKiQM78gx77iEvusX5PsFOsxmQtes0eQY4kOTfHOJcbcNz9istuYBm185pFwan3JzdbNqbtCmWKY82ymk-J689WZT8MNhnpK7ix-35z_b9fXl6vzburVcqKmV3jrLOUoFZhRusExxJ9g48o65cQTvRwCjejpIUN443ltXUSWHjlrhO35Kvu59n3L6PWOZ9DYUi5uNiZjmoquf6GjNQlT0yyv0Mc051us06zmt31OQlfp8oOZxi04_5bA1-Y9-yacC3R6wOZWS0WsbJrP7ecombDQFvStC1yL0rgh9KKIK4ZXwxfs_kk97SUDEf_gwCM4Gzv8CTsmQ-Q |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1038_s41746_023_00941_5 crossref_primary_10_1109_TIM_2023_3331413 crossref_primary_10_1007_s10334_023_01128_5 crossref_primary_10_1109_TMI_2023_3300725 crossref_primary_10_1109_JBHI_2024_3365784 crossref_primary_10_1088_1361_6560_acfadf crossref_primary_10_1016_j_bspc_2024_107360 crossref_primary_10_1109_TMI_2023_3314430 crossref_primary_10_3390_diagnostics13091532 crossref_primary_10_1002_cpe_8379 crossref_primary_10_1016_j_cmpb_2023_107845 crossref_primary_10_1109_ACCESS_2023_3310400 crossref_primary_10_1002_mrm_29750 crossref_primary_10_1259_bjr_20220890 crossref_primary_10_1109_TMI_2024_3432388 crossref_primary_10_1109_JBHI_2022_3185956 crossref_primary_10_1016_j_compbiomed_2024_108905 crossref_primary_10_1016_j_media_2024_103121 crossref_primary_10_1007_s10334_024_01173_8 crossref_primary_10_1109_TCYB_2024_3403927 crossref_primary_10_1016_j_media_2023_102993 crossref_primary_10_1109_TCI_2025_3525960 crossref_primary_10_1109_TMI_2022_3199155 crossref_primary_10_1002_mef2_38 crossref_primary_10_3390_bioengineering10091012 crossref_primary_10_1016_j_patcog_2024_110424 crossref_primary_10_3390_appliedmath4030059 crossref_primary_10_1109_TMI_2023_3235757 crossref_primary_10_1002_mrm_30114 crossref_primary_10_1002_nbm_5179 crossref_primary_10_1109_JBHI_2023_3316468 crossref_primary_10_3390_bioengineering10030364 crossref_primary_10_1016_j_compbiomed_2023_107610 crossref_primary_10_1109_JIOT_2023_3325822 crossref_primary_10_1109_TMI_2023_3323540 crossref_primary_10_3390_diagnostics13193140 crossref_primary_10_1109_JBHI_2024_3415000 |
Cites_doi | 10.1038/s41746-020-00323-1 10.1002/mrm.27420 10.1109/JSTSP.2020.3001737 10.1109/TMI.2018.2865356 10.1016/j.mri.2019.05.041 10.1002/mrm.21391 10.1109/ISBI.2016.7493320 10.1016/j.neuroimage.2018.08.073 10.1002/mrm.27106 10.1109/TMI.2018.2858752 10.1109/CVPR46437.2021.00245 10.1007/978-3-319-59050-9_51 10.1109/TMI.2020.3022968 10.1016/j.media.2020.101765 10.1109/MSP.2020.2975749 10.1109/TMI.2012.2188039 10.1007/978-3-030-11723-8_9 10.1002/mrm.24751 10.1109/CVPR42600.2020.01387 10.1002/mrm.25717 10.1109/TCI.2020.3018562 10.1038/s42256-020-0186-1 10.1126/sciadv.abb7973 10.1109/CVPR.2019.00453 10.1145/3372297.3417238 10.1002/mrm.27706 10.1002/mrm.26977 10.1002/mrm.28219 10.1109/TMI.2018.2887072 10.1002/mrm.25421 10.1109/TMI.2018.2820120 10.1007/978-3-030-60548-3_18 10.1109/TMI.2014.2377694 10.1117/12.2527753 10.1002/mrm.28659 10.1002/mrm.28378 10.1109/TMI.2020.3046460 10.1109/ICCV48922.2021.00663 10.1038/nature25988 10.1002/mrm.27355 10.1148/ryai.2020190007 10.1002/mrm.27201 10.1109/TNNLS.2021.3090303 10.1002/mp.12600 10.1002/mrm.24267 10.1007/s10796-021-10144-6 10.1109/CVPR46437.2021.00107 10.1109/TMI.2022.3147426 10.1109/TBME.2018.2883958 10.1109/JBHI.2020.3040015 10.1109/MSP.2019.2950557 10.1109/ICCV.2017.167 10.1007/978-3-030-87231-1_2 10.1002/nbm.4131 10.1109/CVPR52688.2022.00985 10.1109/TPAMI.2018.2883941 10.1002/mrm.28148 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2022.3220757 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2009 |
ExternalDocumentID | 36350868 10_1109_TMI_2022_3220757 9943293 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Turkish Academy of Sciences (TUBA) GEBIP 2015 Fellowship – fundername: Science Academy BAGEP 2017 Fellowship |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c347t-5fcdc33e570ab4d9c273d42bb362dbb0ffb00a7819507fad38cd70a75961c4f63 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Fri Jul 11 15:45:35 EDT 2025 Sun Jun 29 16:13:08 EDT 2025 Mon Jul 21 05:27:37 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 03:16:06 EDT 2025 Wed Aug 27 02:25:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-5fcdc33e570ab4d9c273d42bb362dbb0ffb00a7819507fad38cd70a75961c4f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6262-8915 0000-0002-4107-1337 0000-0003-0124-6048 0000-0002-9770-4180 0000-0002-8670-3414 0000-0002-2296-851X |
PMID | 36350868 |
PQID | 2831508105 |
PQPubID | 85460 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2831508105 crossref_primary_10_1109_TMI_2022_3220757 pubmed_primary_36350868 crossref_citationtrail_10_1109_TMI_2022_3220757 ieee_primary_9943293 proquest_miscellaneous_2734613224 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 kumar aggarwal (ref59) 2021 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 park (ref53) 2021 pu liang (ref62) 2020 ref50 li (ref51) 2021 ref47 ref42 ref41 ref43 zhu (ref37) 2018; 555 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 feng (ref36) 2021 ref35 ref34 huang (ref44) 2019 ref31 ref33 zhang (ref71) 2021 li (ref23) 2019 ref32 ref2 ref1 ref39 ref38 wang (ref30) 2021 ref72 ref68 ref24 ref67 ref26 hu (ref46) 2021 wang (ref48) 2022 ref69 ref25 ref64 ref20 tamir (ref45) 2019 ref63 ref66 ref22 ref65 ref21 ref28 ref27 rasouli (ref61) 2020 ref60 ziller (ref70) 2021 mcmahan (ref29) 2017 |
References_xml | – ident: ref25 doi: 10.1038/s41746-020-00323-1 – ident: ref9 doi: 10.1002/mrm.27420 – ident: ref18 doi: 10.1109/JSTSP.2020.3001737 – ident: ref13 doi: 10.1109/TMI.2018.2865356 – ident: ref50 doi: 10.1016/j.mri.2019.05.041 – ident: ref1 doi: 10.1002/mrm.21391 – ident: ref3 doi: 10.1109/ISBI.2016.7493320 – ident: ref49 doi: 10.1016/j.neuroimage.2018.08.073 – ident: ref7 doi: 10.1002/mrm.27106 – ident: ref16 doi: 10.1109/TMI.2018.2858752 – ident: ref35 doi: 10.1109/CVPR46437.2021.00245 – year: 2020 ident: ref62 article-title: Think locally, act globally: Federated learning with local and global representations publication-title: arXiv 2001 01523 – ident: ref12 doi: 10.1007/978-3-319-59050-9_51 – year: 2021 ident: ref36 article-title: Specificity-preserving federated learning for MR image reconstruction publication-title: arXiv 2112 05752 – ident: ref42 doi: 10.1109/TMI.2020.3022968 – ident: ref27 doi: 10.1016/j.media.2020.101765 – ident: ref31 doi: 10.1109/MSP.2020.2975749 – ident: ref66 doi: 10.1109/TMI.2012.2188039 – ident: ref24 doi: 10.1007/978-3-030-11723-8_9 – ident: ref58 doi: 10.1002/mrm.24751 – year: 2021 ident: ref70 article-title: Complex-valued deep learning with differential privacy publication-title: arXiv 2110 03478 – start-page: 4668 year: 2019 ident: ref44 article-title: Deep MRI reconstruction without ground truth for training publication-title: Proc 27th Annu Meeting (ISMRM) – year: 2021 ident: ref30 article-title: A field guide to federated optimization publication-title: arXiv 2107 06917 – ident: ref39 doi: 10.1109/CVPR42600.2020.01387 – ident: ref60 doi: 10.1002/mrm.25717 – year: 2021 ident: ref59 article-title: Model adaptation for image reconstruction using generalized stein's unbiased risk estimator publication-title: arXiv 2102 00047 – start-page: 1 year: 2021 ident: ref53 article-title: Federated split task-agnostic vision transformer for COVID-19 CXR diagnosis publication-title: Proc Adv Neural Inf Process Syst – year: 2022 ident: ref48 article-title: PARCEL: Physics-based unsupervised contrastive representation learning for parallel MR imaging publication-title: arXiv 2202 01494 – start-page: 133 year: 2019 ident: ref23 article-title: Privacy-preserving federated brain tumour segmentation publication-title: Proc Int Workshop Mach Learn Med Imag – ident: ref41 doi: 10.1109/TCI.2020.3018562 – ident: ref22 doi: 10.1038/s42256-020-0186-1 – start-page: 382 year: 2021 ident: ref46 publication-title: Self-Supervised Learning for MRI Reconstruction With a Parallel Network Training Framework – ident: ref68 doi: 10.1126/sciadv.abb7973 – ident: ref56 doi: 10.1109/CVPR.2019.00453 – ident: ref65 doi: 10.1145/3372297.3417238 – ident: ref38 doi: 10.1002/mrm.27706 – ident: ref4 doi: 10.1002/mrm.26977 – start-page: 1273 year: 2017 ident: ref29 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc 20th Int Conf Artif Intell Statist – year: 2021 ident: ref51 article-title: FedBN: Federated learning on non-IID features via local batch normalization publication-title: arXiv 2102 07623 – ident: ref17 doi: 10.1002/mrm.28219 – ident: ref54 doi: 10.1109/TMI.2018.2887072 – start-page: 660 year: 2019 ident: ref45 article-title: Unsupervised deep basis pursuit: Learning reconstruction without ground-truth data publication-title: Proc Int Soc Magn Reson Med – ident: ref2 doi: 10.1002/mrm.25421 – ident: ref14 doi: 10.1109/TMI.2018.2820120 – year: 2021 ident: ref71 article-title: Personalized federated learning with first order model optimization publication-title: arXiv 2012 08565 – ident: ref26 doi: 10.1007/978-3-030-60548-3_18 – ident: ref63 doi: 10.1109/TMI.2014.2377694 – ident: ref32 doi: 10.1117/12.2527753 – ident: ref47 doi: 10.1002/mrm.28659 – ident: ref43 doi: 10.1002/mrm.28378 – ident: ref40 doi: 10.1109/TMI.2020.3046460 – ident: ref67 doi: 10.1109/ICCV48922.2021.00663 – volume: 555 start-page: 487 year: 2018 ident: ref37 article-title: Image reconstruction by domain transform manifold learning publication-title: Nature doi: 10.1038/nature25988 – year: 2020 ident: ref61 article-title: FedGAN: Federated generative adversarial networks for distributed data publication-title: arXiv 2006 07228 – ident: ref34 doi: 10.1002/mrm.27355 – ident: ref33 doi: 10.1148/ryai.2020190007 – ident: ref15 doi: 10.1002/mrm.27201 – ident: ref19 doi: 10.1109/TNNLS.2021.3090303 – ident: ref5 doi: 10.1002/mp.12600 – ident: ref64 doi: 10.1002/mrm.24267 – ident: ref69 doi: 10.1007/s10796-021-10144-6 – ident: ref28 doi: 10.1109/CVPR46437.2021.00107 – ident: ref55 doi: 10.1109/TMI.2022.3147426 – ident: ref10 doi: 10.1109/TBME.2018.2883958 – ident: ref52 doi: 10.1109/JBHI.2020.3040015 – ident: ref21 doi: 10.1109/MSP.2019.2950557 – ident: ref57 doi: 10.1109/ICCV.2017.167 – ident: ref20 doi: 10.1007/978-3-030-87231-1_2 – ident: ref11 doi: 10.1002/nbm.4131 – ident: ref72 doi: 10.1109/CVPR52688.2022.00985 – ident: ref8 doi: 10.1109/TPAMI.2018.2883941 – ident: ref6 doi: 10.1002/mrm.28148 |
SSID | ssj0014509 |
Score | 2.6277435 |
Snippet | Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1996 |
SubjectTerms | accelerated Adaptation models Biological system modeling collaborative Data models Deep Learning distributed Explicit knowledge Federated learning generative Humans Image processing Image Processing, Computer-Assisted - methods Image quality Image reconstruction Knowledge acquisition Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods MRI Operators Performance enhancement prior Privacy reconstruction Training |
Title | Federated Learning of Generative Image Priors for MRI Reconstruction |
URI | https://ieeexplore.ieee.org/document/9943293 https://www.ncbi.nlm.nih.gov/pubmed/36350868 https://www.proquest.com/docview/2831508105 https://www.proquest.com/docview/2734613224 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSsRAEC10DqIHt3GJGy14EcxMJt1JJ0dRB0eIiCjMLaQ3EXUis1z8equzuaDiLZDK1lWVetXV_QrgiIuieTF3DQupy6jsubFvlKsNU1wLJmQxD5lch5f37GoYDOfgpNkLo7UuFp_pjj0savkqlzM7VdaNY0YxPM3DPCZu5V6tpmLAgnI5h28ZY73Qr0uSXty9SwaYCPp-B40XI6Ttu0cxziKYj75Eo6K9yu9Is4g4_RVI6nctF5o8dWZT0ZFv32gc__sxq7BcQU9yWtrKGszp0TosfSIkXIeFpCq1t-G8b2kmEIkqUnGwPpDckJKm2v4jyeAF_0XkZvyYjycEsS9JbgfEprMfpLQbcN-_uDu7dKuWC66kjE_dwEglKdUB9zLBVCwR3SjmC4FxTgnhGYNumnFbfPO4yRSNpEJRHsRhTzIT0k1ojfKR3gaCnh5kAvUhTMQUlSgRcx0JKahGlBg50K2HPpUVH7lti_GcFnmJF6eot9TqLa305sBxc8VrycXxh2zbDnkjV422A3u1dtPKWScpIizLio9I04HD5jS6ma2dZCOdz1CGUxbazJ05sFVaRXPv2ph2fn7mLizaHvXlGt89aKEK9D4imak4KEz4HZf76tI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9tAEB7RIHE8QLkNtN1KfUHCifGuvfYjAqKkjVFVJVLeLO-FEBCjHC_8emZ9QStAfbPk8bUz4_lmZ_cbgB9cFM2LuWtYSF1G5Zkb-0a52jDFtWBCFvOQyXXYG7Gf42C8BKfNXhitdbH4TLftYVHLV7lc2KmyThwziuHpEywHdjNuuVurqRmwoFzQ4VvOWC_066KkF3eGSR9TQd9vo_lijLSd9yhGWoTz0V_xqGiw8j7WLGJOdxOS-m3LpSZ37cVctOXTP0SO__s5n2GjAp_kvLSWLVjSk21Yf0VJuA0rSVVs34HLriWaQCyqSMXCekNyQ0qiavuXJP0H_BuR39PbfDojiH5J8qdPbEL7Qku7C6Pu1fCi51ZNF1xJGZ-7gZFKUqoD7mWCqVgivlHMFwIjnRLCMwYdNeO2_OZxkykaSYWiPIjDM8lMSPegNckn-gAI-nqQCdSHMBFTVKJEzHUkpKAacWLkQKce-lRWjOS2McZ9WmQmXpyi3lKrt7TSmwMnzRWPJRvHB7I7dsgbuWq0HTiutZtW7jpLEWNZXnzEmg58b06jo9nqSTbR-QJlOGWhzd2ZA_ulVTT3ro3p8O1nfoPV3jAZpIP-9a8jWLMd68sVv8fQQnXoL4hr5uJrYc7P_17uGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+of+Generative+Image+Priors+for+MRI+Reconstruction&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Elmas%2C+Gokberk&rft.au=Dar%2C+Salman+U.+H.&rft.au=Korkmaz%2C+Yilmaz&rft.au=Ceyani%2C+Emir&rft.date=2023-07-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=42&rft.issue=7&rft.spage=1996&rft.epage=2009&rft_id=info:doi/10.1109%2FTMI.2022.3220757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2022_3220757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |