Understanding the stability of nanoplastics in aqueous environments: effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals
Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are highly influenced by various environmental factors, which warrants the necessity to understand their fate in ambient water systems. This study in...
Saved in:
Published in | Environmental science. Nano Vol. 6; no. 1; pp. 2968 - 2976 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are highly influenced by various environmental factors, which warrants the necessity to understand their fate in ambient water systems. This study investigates the polystyrene (PS) NP stability under the effect of varying ionic strength, temperature, dissolved organic matter (DOM), inorganic soil colloids and heavy metal salts using the dynamic light scattering technique. Controlled studies were used to examine the aggregation of NPs in the presence of natural river water (RW), groundwater (GW), and seawater (SW). Results highlight that, at all studied temperatures, divalent cations had a greater influence on the aggregation rate of NPs as compared to monovalent cations whereas for the same salt, a drop in temperature tended to increase the stability. A rise in critical coagulation concentration (CCC) by 1.6 and 2.4 times for NaCl and CaCl
2
was observed, respectively, at 15 °C as compared to 35 °C. Steric repulsion produced by DOM stabilizes NPs shifting the CCC value to a higher salt concentration for NaCl. However, faster aggregation with CaCl
2
due to complexation was notable. The clay colloids participate in heteroaggregation with NPs under the influence of salts; this was confirmed using cryo-TEM. Heavy metal salts such as ZnCl
2
and CdCl
2
had interactions with PS NPs similar to that presented by CaCl
2
but showed independent behaviour in the presence of HgCl
2
, due to metal speciation under different redox conditions. The concentration of salts and organic substances in the complex matrix of natural water results in the least stable NPs in SW > RW > GW. The results of this study contribute to the fundamental understanding of the fate of NPs in complex aquatic environments.
Impact of environmental factors such as temperature, dissolved organic matter, ionic strength and clay colloids on the stability of nanoplastics. |
---|---|
AbstractList | Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are highly influenced by various environmental factors, which warrants the necessity to understand their fate in ambient water systems. This study investigates the polystyrene (PS) NP stability under the effect of varying ionic strength, temperature, dissolved organic matter (DOM), inorganic soil colloids and heavy metal salts using the dynamic light scattering technique. Controlled studies were used to examine the aggregation of NPs in the presence of natural river water (RW), groundwater (GW), and seawater (SW). Results highlight that, at all studied temperatures, divalent cations had a greater influence on the aggregation rate of NPs as compared to monovalent cations whereas for the same salt, a drop in temperature tended to increase the stability. A rise in critical coagulation concentration (CCC) by 1.6 and 2.4 times for NaCl and CaCl2 was observed, respectively, at 15 °C as compared to 35 °C. Steric repulsion produced by DOM stabilizes NPs shifting the CCC value to a higher salt concentration for NaCl. However, faster aggregation with CaCl2 due to complexation was notable. The clay colloids participate in heteroaggregation with NPs under the influence of salts; this was confirmed using cryo-TEM. Heavy metal salts such as ZnCl2 and CdCl2 had interactions with PS NPs similar to that presented by CaCl2 but showed independent behaviour in the presence of HgCl2, due to metal speciation under different redox conditions. The concentration of salts and organic substances in the complex matrix of natural water results in the least stable NPs in SW > RW > GW. The results of this study contribute to the fundamental understanding of the fate of NPs in complex aquatic environments. Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are highly influenced by various environmental factors, which warrants the necessity to understand their fate in ambient water systems. This study investigates the polystyrene (PS) NP stability under the effect of varying ionic strength, temperature, dissolved organic matter (DOM), inorganic soil colloids and heavy metal salts using the dynamic light scattering technique. Controlled studies were used to examine the aggregation of NPs in the presence of natural river water (RW), groundwater (GW), and seawater (SW). Results highlight that, at all studied temperatures, divalent cations had a greater influence on the aggregation rate of NPs as compared to monovalent cations whereas for the same salt, a drop in temperature tended to increase the stability. A rise in critical coagulation concentration (CCC) by 1.6 and 2.4 times for NaCl and CaCl 2 was observed, respectively, at 15 °C as compared to 35 °C. Steric repulsion produced by DOM stabilizes NPs shifting the CCC value to a higher salt concentration for NaCl. However, faster aggregation with CaCl 2 due to complexation was notable. The clay colloids participate in heteroaggregation with NPs under the influence of salts; this was confirmed using cryo-TEM. Heavy metal salts such as ZnCl 2 and CdCl 2 had interactions with PS NPs similar to that presented by CaCl 2 but showed independent behaviour in the presence of HgCl 2 , due to metal speciation under different redox conditions. The concentration of salts and organic substances in the complex matrix of natural water results in the least stable NPs in SW > RW > GW. The results of this study contribute to the fundamental understanding of the fate of NPs in complex aquatic environments. Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are highly influenced by various environmental factors, which warrants the necessity to understand their fate in ambient water systems. This study investigates the polystyrene (PS) NP stability under the effect of varying ionic strength, temperature, dissolved organic matter (DOM), inorganic soil colloids and heavy metal salts using the dynamic light scattering technique. Controlled studies were used to examine the aggregation of NPs in the presence of natural river water (RW), groundwater (GW), and seawater (SW). Results highlight that, at all studied temperatures, divalent cations had a greater influence on the aggregation rate of NPs as compared to monovalent cations whereas for the same salt, a drop in temperature tended to increase the stability. A rise in critical coagulation concentration (CCC) by 1.6 and 2.4 times for NaCl and CaCl 2 was observed, respectively, at 15 °C as compared to 35 °C. Steric repulsion produced by DOM stabilizes NPs shifting the CCC value to a higher salt concentration for NaCl. However, faster aggregation with CaCl 2 due to complexation was notable. The clay colloids participate in heteroaggregation with NPs under the influence of salts; this was confirmed using cryo-TEM. Heavy metal salts such as ZnCl 2 and CdCl 2 had interactions with PS NPs similar to that presented by CaCl 2 but showed independent behaviour in the presence of HgCl 2 , due to metal speciation under different redox conditions. The concentration of salts and organic substances in the complex matrix of natural water results in the least stable NPs in SW > RW > GW. The results of this study contribute to the fundamental understanding of the fate of NPs in complex aquatic environments. Impact of environmental factors such as temperature, dissolved organic matter, ionic strength and clay colloids on the stability of nanoplastics. |
Author | Khandelwal, Nitin Darbha, Gopala Krishna Tiwari, Ekta Singh, Nisha |
AuthorAffiliation | Environmental Nanoscience Laboratory Indian Institute of Science Education and Research Kolkata Indian Institute of Science Education and Research - Kolkata Department of Earth Sciences Centre for Climate and Environmental Studies |
AuthorAffiliation_xml | – sequence: 0 name: Indian Institute of Science Education and Research - Kolkata – sequence: 0 name: Indian Institute of Science Education and Research Kolkata – sequence: 0 name: Environmental Nanoscience Laboratory – sequence: 0 name: Department of Earth Sciences – sequence: 0 name: Centre for Climate and Environmental Studies |
Author_xml | – sequence: 1 givenname: Nisha surname: Singh fullname: Singh, Nisha – sequence: 2 givenname: Ekta surname: Tiwari fullname: Tiwari, Ekta – sequence: 3 givenname: Nitin surname: Khandelwal fullname: Khandelwal, Nitin – sequence: 4 givenname: Gopala Krishna surname: Darbha fullname: Darbha, Gopala Krishna |
BookMark | eNptkU1LAzEQhoNUUGsv3oWAN2k12exH662U-gGiFz0v2WTSRnaTmkwL_S_-WFMrCuJheGfgmS_eE9Jz3gEhZ5xdcSYm12oCjrGiqOQBOc5YwUdjXvLeT16IIzKI8Y0xxnlWiLI6Jh-vTkOIKJ22bkFxCTQVjW0tbqk31EnnV62MaFWk1lH5vga_jhTcxgbvOnAYbygYAwp3vPXOqjQigFvgckgRuhUEiesAQ6ptjL7dgKY-LOQO7CQihCFVrdwOaTqCLkFutrQDlG08JYcmCQy-tU9eb-cvs_vR4_Pdw2z6OFIir3BUSK4bqGRecDEpTcahLHXecANV2eQAqik10xlXpRmPuaiaMTR5w4QCpozOmOiTi_3cVfDpv4j1m18Hl1bWmWAiBWdFotieUsHHGMDUyqLE9DEGaduas3pnQz2bzJ--bJimlss_LatgOxm2_8PnezhE9cP9eio-ARIvl9c |
CitedBy_id | crossref_primary_10_1016_j_resconrec_2024_107578 crossref_primary_10_3390_ijerph17238832 crossref_primary_10_1016_j_jwpe_2021_102128 crossref_primary_10_1016_j_watres_2021_117317 crossref_primary_10_1007_s11356_022_23810_2 crossref_primary_10_1016_j_marpolbul_2023_115265 crossref_primary_10_1016_j_jhazmat_2023_131716 crossref_primary_10_1016_j_jhazmat_2022_130625 crossref_primary_10_1016_j_watres_2022_119286 crossref_primary_10_1021_acsestwater_0c00283 crossref_primary_10_1016_j_jece_2024_113377 crossref_primary_10_1016_j_jhazmat_2020_123496 crossref_primary_10_1007_s10653_024_01992_7 crossref_primary_10_1016_j_scitotenv_2024_176225 crossref_primary_10_1016_j_jhazmat_2020_123415 crossref_primary_10_1016_j_watres_2022_119281 crossref_primary_10_1016_j_jhazmat_2021_126507 crossref_primary_10_1016_j_scitotenv_2025_178892 crossref_primary_10_1016_j_colsurfa_2025_136233 crossref_primary_10_1021_acs_langmuir_3c01700 crossref_primary_10_1016_j_envpol_2020_115950 crossref_primary_10_1007_s00128_021_03239_y crossref_primary_10_1016_j_scitotenv_2021_151831 crossref_primary_10_1177_14777606221128043 crossref_primary_10_1186_s12302_024_00959_w crossref_primary_10_1016_j_impact_2019_100206 crossref_primary_10_1021_acs_jafc_4c07368 crossref_primary_10_1007_s11356_023_27546_5 crossref_primary_10_1016_j_chemosphere_2021_129597 crossref_primary_10_1007_s10967_022_08703_5 crossref_primary_10_3390_polym13050796 crossref_primary_10_1016_j_fmre_2021_05_001 crossref_primary_10_2139_ssrn_4055968 crossref_primary_10_3390_nano11081903 crossref_primary_10_1016_j_scitotenv_2021_147190 crossref_primary_10_1016_j_jclepro_2022_133124 crossref_primary_10_1016_j_impact_2022_100437 crossref_primary_10_1016_j_scitotenv_2024_177131 crossref_primary_10_1016_j_cis_2021_102456 crossref_primary_10_1016_j_seppur_2024_127264 crossref_primary_10_1016_j_ecoenv_2022_113997 crossref_primary_10_1016_j_jhazmat_2023_133325 crossref_primary_10_1016_j_chemosphere_2022_134966 crossref_primary_10_1016_j_scitotenv_2023_163233 crossref_primary_10_1016_j_scitotenv_2022_157852 crossref_primary_10_1016_j_cej_2025_161467 crossref_primary_10_1016_j_jhazmat_2019_121973 crossref_primary_10_1016_j_scitotenv_2024_172455 crossref_primary_10_1016_j_jhazmat_2020_122195 crossref_primary_10_1016_j_scitotenv_2023_168076 crossref_primary_10_1016_j_watres_2023_119898 crossref_primary_10_1016_j_scitotenv_2021_152562 crossref_primary_10_1021_acsestwater_0c00130 crossref_primary_10_1016_j_scitotenv_2021_147019 crossref_primary_10_1016_j_cej_2021_133122 crossref_primary_10_1016_j_watres_2021_117637 crossref_primary_10_1016_j_envres_2021_111885 crossref_primary_10_1016_j_scitotenv_2023_164676 crossref_primary_10_1002_etc_5030 crossref_primary_10_1021_acs_est_2c09140 crossref_primary_10_1111_sum_12868 crossref_primary_10_1007_s11356_024_33726_8 crossref_primary_10_1007_s12274_023_5926_1 crossref_primary_10_1016_j_chemosphere_2021_132217 crossref_primary_10_1016_j_envpol_2021_117628 crossref_primary_10_1016_j_jhazmat_2025_137466 crossref_primary_10_1016_j_watres_2021_117884 crossref_primary_10_1111_raq_12639 crossref_primary_10_1016_j_jwpe_2023_103777 crossref_primary_10_1016_j_jece_2023_110487 crossref_primary_10_1016_j_jhazmat_2020_122769 crossref_primary_10_1080_10807039_2022_2071209 crossref_primary_10_1016_j_watres_2022_119481 crossref_primary_10_1016_j_scitotenv_2023_161824 crossref_primary_10_3390_foods12183396 crossref_primary_10_1080_10643389_2020_1845531 crossref_primary_10_1016_j_trac_2021_116235 crossref_primary_10_1016_j_jhazmat_2020_124382 crossref_primary_10_1016_j_jhazmat_2022_129802 crossref_primary_10_1002_smll_202305094 crossref_primary_10_1007_s10311_022_01433_w crossref_primary_10_1007_s11356_024_34301_x crossref_primary_10_1016_j_jhazmat_2021_126895 crossref_primary_10_1016_j_marpolbul_2020_111960 crossref_primary_10_1016_j_chemosphere_2022_136805 crossref_primary_10_1016_j_scitotenv_2023_167918 crossref_primary_10_1016_j_jhazmat_2021_127903 crossref_primary_10_1021_acs_estlett_4c00081 crossref_primary_10_1007_s11356_024_35434_9 crossref_primary_10_1021_acs_est_3c04726 crossref_primary_10_1016_j_enceco_2025_02_007 crossref_primary_10_1016_j_jhazmat_2024_134888 crossref_primary_10_1016_j_cej_2021_131191 crossref_primary_10_1016_j_envint_2020_105999 crossref_primary_10_1038_s41598_023_36603_5 crossref_primary_10_1016_j_scitotenv_2023_167404 crossref_primary_10_3390_microplastics2020016 crossref_primary_10_1016_j_eehl_2022_10_001 crossref_primary_10_1016_j_jhazmat_2021_126096 crossref_primary_10_1007_s44246_024_00107_2 crossref_primary_10_1007_s11356_020_12020_3 crossref_primary_10_1016_j_scitotenv_2023_169132 crossref_primary_10_1016_j_jhazmat_2022_128964 crossref_primary_10_1016_j_jhazmat_2021_126368 crossref_primary_10_1016_j_cocis_2021_101528 crossref_primary_10_1016_j_enmm_2021_100633 crossref_primary_10_1016_j_scitotenv_2022_153063 crossref_primary_10_1016_j_envpol_2023_121592 crossref_primary_10_1016_j_scitotenv_2022_159030 crossref_primary_10_1016_j_seppur_2024_129920 crossref_primary_10_3390_w16111595 crossref_primary_10_3390_toxics11070617 crossref_primary_10_1021_acs_langmuir_1c03204 crossref_primary_10_1016_j_scitotenv_2023_166783 crossref_primary_10_1021_acs_est_1c00434 crossref_primary_10_1016_j_clay_2024_107351 crossref_primary_10_1016_j_jhazmat_2023_132679 |
Cites_doi | 10.1021/acs.est.7b03667 10.1016/j.envpol.2016.10.001 10.1016/j.envpol.2016.05.006 10.1016/j.chemosphere.2014.07.049 10.2134/jeq2009.0462 10.1016/j.envpol.2018.02.042 10.1016/j.cis.2015.07.002 10.1016/j.mineng.2017.10.004 10.1021/es902987d 10.1097/00010694-200004000-00001 10.1021/es301969m 10.1016/j.chemosphere.2015.11.078 10.1016/j.chemosphere.2019.04.115 10.3184/095422998782775835 10.1021/la062072v 10.1021/la3003146 10.1021/j150311a018 10.1016/j.watres.2015.05.023 10.1021/es3004427 10.1021/es302559v 10.1002/adma.19960080318 10.1016/j.clay.2008.07.011 10.1016/j.envpol.2019.03.087 10.1016/j.scitotenv.2018.11.183 10.1007/s40362-017-0044-7 10.1021/es502342r 10.3389/fenvs.2019.00017 10.1016/j.envpol.2017.04.034 10.1002/etc.3311 10.1134/S2070205116030035 10.2136/sssaj1999.634830x 10.1016/j.scitotenv.2019.03.102 10.1016/j.atmosenv.2013.06.050 10.1007/s11356-018-3698-z 10.1007/978-3-7643-8340-4_6 10.1016/j.envpol.2019.05.135 10.1016/j.ecoenv.2017.07.068 10.1021/acs.est.7b05559 10.1016/j.envpol.2019.03.046 10.1021/es503001d 10.1007/978-3-319-30663-6 10.1016/j.chemosphere.2018.01.052 10.1016/j.envpol.2017.05.047 10.1021/acs.est.5b00357 10.1016/j.marpolbul.2011.05.030 10.1016/j.colsurfa.2011.12.049 10.1039/C5CP07238G 10.1016/j.envpol.2018.01.024 10.1016/j.chemosphere.2019.03.077 10.2478/intox-2014-0009 10.1016/j.clay.2004.01.001 10.1002/etc.1984 10.1021/acssuschemeng.8b00766 10.1002/etc.3501 10.1021/la802112h |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1039/c9en00557a |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2051-8161 |
EndPage | 2976 |
ExternalDocumentID | 10_1039_C9EN00557A c9en00557a |
GroupedDBID | -JG 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENGV AETIL AFLYV AFOGI AFRAH AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c347t-5a1dbe7a451396f21e66d4b1fe76b4eecb6d0d21c6f88137b8eb4b03ce0cfd203 |
ISSN | 2051-8153 |
IngestDate | Mon Jun 30 12:01:54 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Tue Jul 01 02:35:36 EDT 2025 Tue Dec 17 20:59:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-5a1dbe7a451396f21e66d4b1fe76b4eecb6d0d21c6f88137b8eb4b03ce0cfd203 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c9en00557a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2635-4037 0000-0001-6087-4568 |
PQID | 2303230105 |
PQPubID | 2047519 |
PageCount | 9 |
ParticipantIDs | rsc_primary_c9en00557a proquest_journals_2303230105 crossref_citationtrail_10_1039_C9EN00557A crossref_primary_10_1039_C9EN00557A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Grillo (C9EN00557A-(cit53)/*[position()=1]) 2015; 119 Davranche (C9EN00557A-(cit35)/*[position()=1]) 2019; 249 Tchounwou (C9EN00557A-(cit38)/*[position()=1]) 2012; 101 Babick (C9EN00557A-(cit43)/*[position()=1]) 2016; vol. 20 Darbha (C9EN00557A-(cit5)/*[position()=1]) 2012; 28 Cunha (C9EN00557A-(cit32)/*[position()=1]) 2019; 249 Wegner (C9EN00557A-(cit12)/*[position()=1]) 2012; 31 Besseling (C9EN00557A-(cit28)/*[position()=1]) 2017; 220 Mishra (C9EN00557A-(cit18)/*[position()=1]) 2019; 26 Manfra (C9EN00557A-(cit15)/*[position()=1]) 2017; 145 Greven (C9EN00557A-(cit14)/*[position()=1]) 2016; 35 Andrady (C9EN00557A-(cit7)/*[position()=1]) 2011; 62 Oriekhova (C9EN00557A-(cit33)/*[position()=1]) 2018; 5 Suyantara (C9EN00557A-(cit47)/*[position()=1]) 2018; 115 Haegerbaeumer (C9EN00557A-(cit49)/*[position()=1]) 2019; 7 Philippe (C9EN00557A-(cit25)/*[position()=1]) 2014; 48 Lagarde (C9EN00557A-(cit30)/*[position()=1]) 2016; 215 Keller (C9EN00557A-(cit60)/*[position()=1]) 2010; 44 Zhang (C9EN00557A-(cit11)/*[position()=1]) 2012; 46 Chen (C9EN00557A-(cit45)/*[position()=1]) 2006; 22 Long (C9EN00557A-(cit31)/*[position()=1]) 2017; 228 Blair (C9EN00557A-(cit2)/*[position()=1]) 2017; 5 Halle (C9EN00557A-(cit1)/*[position()=1]) 2017; 51 Alekseeva (C9EN00557A-(cit58)/*[position()=1]) 2016; 52 Hotze (C9EN00557A-(cit24)/*[position()=1]) 2010; 39 Li (C9EN00557A-(cit26)/*[position()=1]) 2018; 237 Liu (C9EN00557A-(cit34)/*[position()=1]) 2016; 35 Labille (C9EN00557A-(cit48)/*[position()=1]) 2015; 49 Wang (C9EN00557A-(cit44)/*[position()=1]) 2015; 80 Bhargava (C9EN00557A-(cit13)/*[position()=1]) 2018; 6 Fendler (C9EN00557A-(cit42)/*[position()=1]) 1996; 8 Rieuwerts (C9EN00557A-(cit59)/*[position()=1]) 1998; 10 Kalbitz (C9EN00557A-(cit41)/*[position()=1]) 2000; 165 Wang (C9EN00557A-(cit23)/*[position()=1]) 2015; 226 Stephens (C9EN00557A-(cit10)/*[position()=1]) 2013; 79 Zhang (C9EN00557A-(cit29)/*[position()=1]) 2019; 228 Zhao (C9EN00557A-(cit55)/*[position()=1]) 2008; 24 Darbha (C9EN00557A-(cit6)/*[position()=1]) 2012; 46 Abbott (C9EN00557A-(cit46)/*[position()=1]) 2013 Song (C9EN00557A-(cit20)/*[position()=1]) 2019; 669 Karathanasis (C9EN00557A-(cit57)/*[position()=1]) 1999; 63 Deacon (C9EN00557A-(cit51)/*[position()=1]) 1929; 34 Gigault (C9EN00557A-(cit3)/*[position()=1]) 2018; 235 García-García (C9EN00557A-(cit50)/*[position()=1]) 2009; 43 Besseling (C9EN00557A-(cit17)/*[position()=1]) 2014; 48 Massos (C9EN00557A-(cit36)/*[position()=1]) 2017; 227 Lee (C9EN00557A-(cit52)/*[position()=1]) 2012; 396 Jaishankar (C9EN00557A-(cit37)/*[position()=1]) 2014; 7 Oncsik (C9EN00557A-(cit40)/*[position()=1]) 2016; 18 Tombácz (C9EN00557A-(cit56)/*[position()=1]) 2004; 27 Tallec (C9EN00557A-(cit21)/*[position()=1]) 2019; 225 van Weert (C9EN00557A-(cit16)/*[position()=1]) 2019; 654 Koelmans (C9EN00557A-(cit8)/*[position()=1]) 2015 Lambert (C9EN00557A-(cit9)/*[position()=1]) 2016; 145 Eby (C9EN00557A-(cit39)/*[position()=1]) 2004 Zhou (C9EN00557A-(cit54)/*[position()=1]) 2012; 46 Saavedra (C9EN00557A-(cit19)/*[position()=1]) 2019; 252 Alimi (C9EN00557A-(cit22)/*[position()=1]) 2018; 52 Cai (C9EN00557A-(cit27)/*[position()=1]) 2018; 197 Mattsson (C9EN00557A-(cit4)/*[position()=1]) 2015; 17 |
References_xml | – issn: 2013 publication-title: Nanocoatings: Principles and Practice: From Research to Production doi: Abbott Holmes – issn: 2004 publication-title: Principles of Environmental Geochemistry doi: Eby – issn: 2016 issue: vol. 20 end-page: p 75-118 publication-title: Suspensions of Colloidal Particles and Aggregates doi: Babick – volume: 51 start-page: 13689 year: 2017 ident: C9EN00557A-(cit1)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03667 – volume: 220 start-page: 540 year: 2017 ident: C9EN00557A-(cit28)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.10.001 – volume: 215 start-page: 331 year: 2016 ident: C9EN00557A-(cit30)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.05.006 – volume: 119 start-page: 608 year: 2015 ident: C9EN00557A-(cit53)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.07.049 – volume: 39 start-page: 1909 year: 2010 ident: C9EN00557A-(cit24)/*[position()=1] publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0462 – volume: 237 start-page: 126 year: 2018 ident: C9EN00557A-(cit26)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.02.042 – volume: 226 start-page: 24 year: 2015 ident: C9EN00557A-(cit23)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2015.07.002 – volume: 115 start-page: 117 year: 2018 ident: C9EN00557A-(cit47)/*[position()=1] publication-title: Miner. Eng. doi: 10.1016/j.mineng.2017.10.004 – volume: 5 start-page: 792 year: 2018 ident: C9EN00557A-(cit33)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 44 start-page: 1962 year: 2010 ident: C9EN00557A-(cit60)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es902987d – volume: 165 start-page: 277 year: 2000 ident: C9EN00557A-(cit41)/*[position()=1] publication-title: Soil Sci. doi: 10.1097/00010694-200004000-00001 – volume: 46 start-page: 9378 issue: 17 year: 2012 ident: C9EN00557A-(cit6)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es301969m – volume-title: Principles of Environmental Geochemistry year: 2004 ident: C9EN00557A-(cit39)/*[position()=1] – volume: 145 start-page: 265 year: 2016 ident: C9EN00557A-(cit9)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.11.078 – volume: 228 start-page: 195 year: 2019 ident: C9EN00557A-(cit29)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.115 – volume-title: Nanocoatings: Principles and Practice: From Research to Production year: 2013 ident: C9EN00557A-(cit46)/*[position()=1] – volume: 10 start-page: 61 year: 1998 ident: C9EN00557A-(cit59)/*[position()=1] publication-title: Chem. Speciation Bioavailability doi: 10.3184/095422998782775835 – volume: 22 start-page: 10994 year: 2006 ident: C9EN00557A-(cit45)/*[position()=1] publication-title: Langmuir doi: 10.1021/la062072v – volume: 28 start-page: 6606 year: 2012 ident: C9EN00557A-(cit5)/*[position()=1] publication-title: Langmuir doi: 10.1021/la3003146 – volume: 34 start-page: 1105 year: 1929 ident: C9EN00557A-(cit51)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j150311a018 – volume: 80 start-page: 130 year: 2015 ident: C9EN00557A-(cit44)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2015.05.023 – volume: 46 start-page: 7520 year: 2012 ident: C9EN00557A-(cit54)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es3004427 – volume: 46 start-page: 10990 year: 2012 ident: C9EN00557A-(cit11)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es302559v – volume: 8 start-page: 260 year: 1996 ident: C9EN00557A-(cit42)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.19960080318 – volume: 43 start-page: 21 year: 2009 ident: C9EN00557A-(cit50)/*[position()=1] publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2008.07.011 – volume: 249 start-page: 940 year: 2019 ident: C9EN00557A-(cit35)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.03.087 – volume: 654 start-page: 1040 year: 2019 ident: C9EN00557A-(cit16)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.183 – volume: 5 start-page: 19 year: 2017 ident: C9EN00557A-(cit2)/*[position()=1] publication-title: Springer Sci. Rev. doi: 10.1007/s40362-017-0044-7 – volume: 48 start-page: 8946 year: 2014 ident: C9EN00557A-(cit25)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es502342r – volume: 7 start-page: 17 year: 2019 ident: C9EN00557A-(cit49)/*[position()=1] publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2019.00017 – volume: 227 start-page: 139 year: 2017 ident: C9EN00557A-(cit36)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.04.034 – volume: 35 start-page: 1650 year: 2016 ident: C9EN00557A-(cit34)/*[position()=1] publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3311 – volume: 52 start-page: 443 year: 2016 ident: C9EN00557A-(cit58)/*[position()=1] publication-title: Prot. Met. Phys. Chem. Surf. doi: 10.1134/S2070205116030035 – volume: 63 start-page: 830 year: 1999 ident: C9EN00557A-(cit57)/*[position()=1] publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1999.634830x – volume: 669 start-page: 120 year: 2019 ident: C9EN00557A-(cit20)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.102 – volume: 79 start-page: 334 year: 2013 ident: C9EN00557A-(cit10)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.06.050 – volume: 26 start-page: 1537 year: 2019 ident: C9EN00557A-(cit18)/*[position()=1] publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3698-z – volume: 101 start-page: 133 year: 2012 ident: C9EN00557A-(cit38)/*[position()=1] publication-title: Exper. Suppl. doi: 10.1007/978-3-7643-8340-4_6 – volume: 252 start-page: 715 year: 2019 ident: C9EN00557A-(cit19)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.05.135 – volume: 145 start-page: 557 year: 2017 ident: C9EN00557A-(cit15)/*[position()=1] publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.07.068 – volume: 52 start-page: 1704 year: 2018 ident: C9EN00557A-(cit22)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05559 – volume: 249 start-page: 372 year: 2019 ident: C9EN00557A-(cit32)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.03.046 – volume: 48 start-page: 12336 year: 2014 ident: C9EN00557A-(cit17)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es503001d – volume: vol. 20 volume-title: Suspensions of Colloidal Particles and Aggregates year: 2016 ident: C9EN00557A-(cit43)/*[position()=1] doi: 10.1007/978-3-319-30663-6 – volume: 197 start-page: 142 year: 2018 ident: C9EN00557A-(cit27)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.052 – volume: 228 start-page: 454 year: 2017 ident: C9EN00557A-(cit31)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.05.047 – volume: 49 start-page: 6608 year: 2015 ident: C9EN00557A-(cit48)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00357 – volume: 62 start-page: 1596 year: 2011 ident: C9EN00557A-(cit7)/*[position()=1] publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.05.030 – volume: 396 start-page: 106 year: 2012 ident: C9EN00557A-(cit52)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2011.12.049 – volume: 18 start-page: 7511 year: 2016 ident: C9EN00557A-(cit40)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07238G – volume: 235 start-page: 1030 year: 2018 ident: C9EN00557A-(cit3)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.01.024 – start-page: 325 year: 2015 ident: C9EN00557A-(cit8)/*[position()=1] publication-title: Crit. Rev. – volume: 225 start-page: 639 year: 2019 ident: C9EN00557A-(cit21)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.077 – volume: 7 start-page: 60 year: 2014 ident: C9EN00557A-(cit37)/*[position()=1] publication-title: Interdiscip. Toxicol. doi: 10.2478/intox-2014-0009 – volume: 27 start-page: 75 year: 2004 ident: C9EN00557A-(cit56)/*[position()=1] publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2004.01.001 – volume: 17 start-page: 1712 issue: 10 year: 2015 ident: C9EN00557A-(cit4)/*[position()=1] publication-title: Environ. Sci.: Processes Impacts – volume: 31 start-page: 2490 year: 2012 ident: C9EN00557A-(cit12)/*[position()=1] publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.1984 – volume: 6 start-page: 6932 year: 2018 ident: C9EN00557A-(cit13)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b00766 – volume: 35 start-page: 3093 year: 2016 ident: C9EN00557A-(cit14)/*[position()=1] publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3501 – volume: 24 start-page: 12899 year: 2008 ident: C9EN00557A-(cit55)/*[position()=1] publication-title: Langmuir doi: 10.1021/la802112h |
SSID | ssj0001125367 |
Score | 2.5355527 |
Snippet | Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2968 |
SubjectTerms | Agglomeration Aggregation Aquatic environment Aqueous environments Cadmium chloride Calcium chloride Cations Clay Coagulation Colloids Dissolved organic matter Divalent cations Environmental factors Groundwater Heavy metals Ionic strength Light scattering Mercuric chloride Mercury compounds Metal concentrations Metals Organic matter Oxidoreductions Photon correlation spectroscopy Polymers Polystyrene Polystyrene resins River water Rivers Salts Seawater Sodium chloride Soil Soil dynamics Soil temperature Speciation Stability Temperature Temperature effects Zinc chloride |
Title | Understanding the stability of nanoplastics in aqueous environments: effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals |
URI | https://www.proquest.com/docview/2303230105 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QsXBIIVhQVZggvapiR2mge3ChWW56mV9lbZjkMrQlJts7tafgt_gn_IjO08ql0k4NCosd007Xwaz0xmviHkRcx5KBV6J0omXpjmiSeiNPOSII8ldhVgEuMdn79Ep8vww9n0bDD41ctauqjlRP24ta7kf6QKYyBXrJL9B8m2F4UBeA_yhSNIGI5_JePlXmUKmpBwYrJdLU-0KKstWMeGiXlTngjYAzDjtV_cZjrzWAZjJI8w_XCwfqT8agMuSF3leJfxFB_fV8UlWKm2HZQ6-W4IOnFOFeK6SQYFFX95je2pRbHbC_53X91UYyo9QR1ftbEe-C1rC9Ldut00FpsrYYvi59_qdvQjxv11cSVsYvem4RF3oXf7MOtdtRWFMOpsbXuFN2EOp0aNHmSgNwA7llN4ovtjlse9UeTRDbw6pZzazj1ug2ep7ThzY_PwOXKvqlSXhpmst0W2iYvd5AE5ZOCZsCE5nM0X7z91gT0wGbnpXNzeeEOLy9NX3QX2DaHOuzk4b1rPGBNncY_cdb4JnVmg3ScDXT4gP_dARgFktAUZrXLaBxndlNSBjPZB9ppaiOF6AzHaQGxMewAb0xZe1MGLWniNKYJrTOEmqIEWtdB6SJZv54s3p55r6eEpHsa1NxVBJnUswil4HlHOAh1FWSiDXMeRDLVWMsr8jAUqypMk4LFMtAxBZyjtqzxjPj8iw7Iq9SNCwY-PdJb7SmkWpqCIYqaZ9HWuucjyqRqRl83_u1KO7x7brhQrk3fB0xXSxRlZzEbkebt2a1lebl113Ihp5bTAbgUuPIcXuCkjcgSiaz_fSfrxnyaekDsIdRvROybD-vxCPwUbt5bPHKp-A8BlshI |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+stability+of+nanoplastics+in+aqueous+environments%3A+effect+of+ionic+strength%2C+temperature%2C+dissolved+organic+matter%2C+clay%2C+and+heavy+metals&rft.jtitle=Environmental+science.+Nano&rft.au=Singh%2C+Nisha&rft.au=Tiwari%2C+Ekta&rft.au=Khandelwal%2C+Nitin&rft.au=Darbha%2C+Gopala+Krishna&rft.date=2019&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=6&rft.issue=1&rft.spage=2968&rft.epage=2976&rft_id=info:doi/10.1039%2Fc9en00557a&rft.externalDocID=c9en00557a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |