Understanding the stability of nanoplastics in aqueous environments: effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals

Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are highly influenced by various environmental factors, which warrants the necessity to understand their fate in ambient water systems. This study in...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Nano Vol. 6; no. 1; pp. 2968 - 2976
Main Authors Singh, Nisha, Tiwari, Ekta, Khandelwal, Nitin, Darbha, Gopala Krishna
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are highly influenced by various environmental factors, which warrants the necessity to understand their fate in ambient water systems. This study investigates the polystyrene (PS) NP stability under the effect of varying ionic strength, temperature, dissolved organic matter (DOM), inorganic soil colloids and heavy metal salts using the dynamic light scattering technique. Controlled studies were used to examine the aggregation of NPs in the presence of natural river water (RW), groundwater (GW), and seawater (SW). Results highlight that, at all studied temperatures, divalent cations had a greater influence on the aggregation rate of NPs as compared to monovalent cations whereas for the same salt, a drop in temperature tended to increase the stability. A rise in critical coagulation concentration (CCC) by 1.6 and 2.4 times for NaCl and CaCl 2 was observed, respectively, at 15 °C as compared to 35 °C. Steric repulsion produced by DOM stabilizes NPs shifting the CCC value to a higher salt concentration for NaCl. However, faster aggregation with CaCl 2 due to complexation was notable. The clay colloids participate in heteroaggregation with NPs under the influence of salts; this was confirmed using cryo-TEM. Heavy metal salts such as ZnCl 2 and CdCl 2 had interactions with PS NPs similar to that presented by CaCl 2 but showed independent behaviour in the presence of HgCl 2 , due to metal speciation under different redox conditions. The concentration of salts and organic substances in the complex matrix of natural water results in the least stable NPs in SW > RW > GW. The results of this study contribute to the fundamental understanding of the fate of NPs in complex aquatic environments. Impact of environmental factors such as temperature, dissolved organic matter, ionic strength and clay colloids on the stability of nanoplastics.
AbstractList Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are highly influenced by various environmental factors, which warrants the necessity to understand their fate in ambient water systems. This study investigates the polystyrene (PS) NP stability under the effect of varying ionic strength, temperature, dissolved organic matter (DOM), inorganic soil colloids and heavy metal salts using the dynamic light scattering technique. Controlled studies were used to examine the aggregation of NPs in the presence of natural river water (RW), groundwater (GW), and seawater (SW). Results highlight that, at all studied temperatures, divalent cations had a greater influence on the aggregation rate of NPs as compared to monovalent cations whereas for the same salt, a drop in temperature tended to increase the stability. A rise in critical coagulation concentration (CCC) by 1.6 and 2.4 times for NaCl and CaCl2 was observed, respectively, at 15 °C as compared to 35 °C. Steric repulsion produced by DOM stabilizes NPs shifting the CCC value to a higher salt concentration for NaCl. However, faster aggregation with CaCl2 due to complexation was notable. The clay colloids participate in heteroaggregation with NPs under the influence of salts; this was confirmed using cryo-TEM. Heavy metal salts such as ZnCl2 and CdCl2 had interactions with PS NPs similar to that presented by CaCl2 but showed independent behaviour in the presence of HgCl2, due to metal speciation under different redox conditions. The concentration of salts and organic substances in the complex matrix of natural water results in the least stable NPs in SW > RW > GW. The results of this study contribute to the fundamental understanding of the fate of NPs in complex aquatic environments.
Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are highly influenced by various environmental factors, which warrants the necessity to understand their fate in ambient water systems. This study investigates the polystyrene (PS) NP stability under the effect of varying ionic strength, temperature, dissolved organic matter (DOM), inorganic soil colloids and heavy metal salts using the dynamic light scattering technique. Controlled studies were used to examine the aggregation of NPs in the presence of natural river water (RW), groundwater (GW), and seawater (SW). Results highlight that, at all studied temperatures, divalent cations had a greater influence on the aggregation rate of NPs as compared to monovalent cations whereas for the same salt, a drop in temperature tended to increase the stability. A rise in critical coagulation concentration (CCC) by 1.6 and 2.4 times for NaCl and CaCl 2 was observed, respectively, at 15 °C as compared to 35 °C. Steric repulsion produced by DOM stabilizes NPs shifting the CCC value to a higher salt concentration for NaCl. However, faster aggregation with CaCl 2 due to complexation was notable. The clay colloids participate in heteroaggregation with NPs under the influence of salts; this was confirmed using cryo-TEM. Heavy metal salts such as ZnCl 2 and CdCl 2 had interactions with PS NPs similar to that presented by CaCl 2 but showed independent behaviour in the presence of HgCl 2 , due to metal speciation under different redox conditions. The concentration of salts and organic substances in the complex matrix of natural water results in the least stable NPs in SW > RW > GW. The results of this study contribute to the fundamental understanding of the fate of NPs in complex aquatic environments.
Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are highly influenced by various environmental factors, which warrants the necessity to understand their fate in ambient water systems. This study investigates the polystyrene (PS) NP stability under the effect of varying ionic strength, temperature, dissolved organic matter (DOM), inorganic soil colloids and heavy metal salts using the dynamic light scattering technique. Controlled studies were used to examine the aggregation of NPs in the presence of natural river water (RW), groundwater (GW), and seawater (SW). Results highlight that, at all studied temperatures, divalent cations had a greater influence on the aggregation rate of NPs as compared to monovalent cations whereas for the same salt, a drop in temperature tended to increase the stability. A rise in critical coagulation concentration (CCC) by 1.6 and 2.4 times for NaCl and CaCl 2 was observed, respectively, at 15 °C as compared to 35 °C. Steric repulsion produced by DOM stabilizes NPs shifting the CCC value to a higher salt concentration for NaCl. However, faster aggregation with CaCl 2 due to complexation was notable. The clay colloids participate in heteroaggregation with NPs under the influence of salts; this was confirmed using cryo-TEM. Heavy metal salts such as ZnCl 2 and CdCl 2 had interactions with PS NPs similar to that presented by CaCl 2 but showed independent behaviour in the presence of HgCl 2 , due to metal speciation under different redox conditions. The concentration of salts and organic substances in the complex matrix of natural water results in the least stable NPs in SW > RW > GW. The results of this study contribute to the fundamental understanding of the fate of NPs in complex aquatic environments. Impact of environmental factors such as temperature, dissolved organic matter, ionic strength and clay colloids on the stability of nanoplastics.
Author Khandelwal, Nitin
Darbha, Gopala Krishna
Tiwari, Ekta
Singh, Nisha
AuthorAffiliation Environmental Nanoscience Laboratory
Indian Institute of Science Education and Research Kolkata
Indian Institute of Science Education and Research - Kolkata
Department of Earth Sciences
Centre for Climate and Environmental Studies
AuthorAffiliation_xml – sequence: 0
  name: Indian Institute of Science Education and Research - Kolkata
– sequence: 0
  name: Indian Institute of Science Education and Research Kolkata
– sequence: 0
  name: Environmental Nanoscience Laboratory
– sequence: 0
  name: Department of Earth Sciences
– sequence: 0
  name: Centre for Climate and Environmental Studies
Author_xml – sequence: 1
  givenname: Nisha
  surname: Singh
  fullname: Singh, Nisha
– sequence: 2
  givenname: Ekta
  surname: Tiwari
  fullname: Tiwari, Ekta
– sequence: 3
  givenname: Nitin
  surname: Khandelwal
  fullname: Khandelwal, Nitin
– sequence: 4
  givenname: Gopala Krishna
  surname: Darbha
  fullname: Darbha, Gopala Krishna
BookMark eNptkU1LAzEQhoNUUGsv3oWAN2k12exH662U-gGiFz0v2WTSRnaTmkwL_S_-WFMrCuJheGfgmS_eE9Jz3gEhZ5xdcSYm12oCjrGiqOQBOc5YwUdjXvLeT16IIzKI8Y0xxnlWiLI6Jh-vTkOIKJ22bkFxCTQVjW0tbqk31EnnV62MaFWk1lH5vga_jhTcxgbvOnAYbygYAwp3vPXOqjQigFvgckgRuhUEiesAQ6ptjL7dgKY-LOQO7CQihCFVrdwOaTqCLkFutrQDlG08JYcmCQy-tU9eb-cvs_vR4_Pdw2z6OFIir3BUSK4bqGRecDEpTcahLHXecANV2eQAqik10xlXpRmPuaiaMTR5w4QCpozOmOiTi_3cVfDpv4j1m18Hl1bWmWAiBWdFotieUsHHGMDUyqLE9DEGaduas3pnQz2bzJ--bJimlss_LatgOxm2_8PnezhE9cP9eio-ARIvl9c
CitedBy_id crossref_primary_10_1016_j_resconrec_2024_107578
crossref_primary_10_3390_ijerph17238832
crossref_primary_10_1016_j_jwpe_2021_102128
crossref_primary_10_1016_j_watres_2021_117317
crossref_primary_10_1007_s11356_022_23810_2
crossref_primary_10_1016_j_marpolbul_2023_115265
crossref_primary_10_1016_j_jhazmat_2023_131716
crossref_primary_10_1016_j_jhazmat_2022_130625
crossref_primary_10_1016_j_watres_2022_119286
crossref_primary_10_1021_acsestwater_0c00283
crossref_primary_10_1016_j_jece_2024_113377
crossref_primary_10_1016_j_jhazmat_2020_123496
crossref_primary_10_1007_s10653_024_01992_7
crossref_primary_10_1016_j_scitotenv_2024_176225
crossref_primary_10_1016_j_jhazmat_2020_123415
crossref_primary_10_1016_j_watres_2022_119281
crossref_primary_10_1016_j_jhazmat_2021_126507
crossref_primary_10_1016_j_scitotenv_2025_178892
crossref_primary_10_1016_j_colsurfa_2025_136233
crossref_primary_10_1021_acs_langmuir_3c01700
crossref_primary_10_1016_j_envpol_2020_115950
crossref_primary_10_1007_s00128_021_03239_y
crossref_primary_10_1016_j_scitotenv_2021_151831
crossref_primary_10_1177_14777606221128043
crossref_primary_10_1186_s12302_024_00959_w
crossref_primary_10_1016_j_impact_2019_100206
crossref_primary_10_1021_acs_jafc_4c07368
crossref_primary_10_1007_s11356_023_27546_5
crossref_primary_10_1016_j_chemosphere_2021_129597
crossref_primary_10_1007_s10967_022_08703_5
crossref_primary_10_3390_polym13050796
crossref_primary_10_1016_j_fmre_2021_05_001
crossref_primary_10_2139_ssrn_4055968
crossref_primary_10_3390_nano11081903
crossref_primary_10_1016_j_scitotenv_2021_147190
crossref_primary_10_1016_j_jclepro_2022_133124
crossref_primary_10_1016_j_impact_2022_100437
crossref_primary_10_1016_j_scitotenv_2024_177131
crossref_primary_10_1016_j_cis_2021_102456
crossref_primary_10_1016_j_seppur_2024_127264
crossref_primary_10_1016_j_ecoenv_2022_113997
crossref_primary_10_1016_j_jhazmat_2023_133325
crossref_primary_10_1016_j_chemosphere_2022_134966
crossref_primary_10_1016_j_scitotenv_2023_163233
crossref_primary_10_1016_j_scitotenv_2022_157852
crossref_primary_10_1016_j_cej_2025_161467
crossref_primary_10_1016_j_jhazmat_2019_121973
crossref_primary_10_1016_j_scitotenv_2024_172455
crossref_primary_10_1016_j_jhazmat_2020_122195
crossref_primary_10_1016_j_scitotenv_2023_168076
crossref_primary_10_1016_j_watres_2023_119898
crossref_primary_10_1016_j_scitotenv_2021_152562
crossref_primary_10_1021_acsestwater_0c00130
crossref_primary_10_1016_j_scitotenv_2021_147019
crossref_primary_10_1016_j_cej_2021_133122
crossref_primary_10_1016_j_watres_2021_117637
crossref_primary_10_1016_j_envres_2021_111885
crossref_primary_10_1016_j_scitotenv_2023_164676
crossref_primary_10_1002_etc_5030
crossref_primary_10_1021_acs_est_2c09140
crossref_primary_10_1111_sum_12868
crossref_primary_10_1007_s11356_024_33726_8
crossref_primary_10_1007_s12274_023_5926_1
crossref_primary_10_1016_j_chemosphere_2021_132217
crossref_primary_10_1016_j_envpol_2021_117628
crossref_primary_10_1016_j_jhazmat_2025_137466
crossref_primary_10_1016_j_watres_2021_117884
crossref_primary_10_1111_raq_12639
crossref_primary_10_1016_j_jwpe_2023_103777
crossref_primary_10_1016_j_jece_2023_110487
crossref_primary_10_1016_j_jhazmat_2020_122769
crossref_primary_10_1080_10807039_2022_2071209
crossref_primary_10_1016_j_watres_2022_119481
crossref_primary_10_1016_j_scitotenv_2023_161824
crossref_primary_10_3390_foods12183396
crossref_primary_10_1080_10643389_2020_1845531
crossref_primary_10_1016_j_trac_2021_116235
crossref_primary_10_1016_j_jhazmat_2020_124382
crossref_primary_10_1016_j_jhazmat_2022_129802
crossref_primary_10_1002_smll_202305094
crossref_primary_10_1007_s10311_022_01433_w
crossref_primary_10_1007_s11356_024_34301_x
crossref_primary_10_1016_j_jhazmat_2021_126895
crossref_primary_10_1016_j_marpolbul_2020_111960
crossref_primary_10_1016_j_chemosphere_2022_136805
crossref_primary_10_1016_j_scitotenv_2023_167918
crossref_primary_10_1016_j_jhazmat_2021_127903
crossref_primary_10_1021_acs_estlett_4c00081
crossref_primary_10_1007_s11356_024_35434_9
crossref_primary_10_1021_acs_est_3c04726
crossref_primary_10_1016_j_enceco_2025_02_007
crossref_primary_10_1016_j_jhazmat_2024_134888
crossref_primary_10_1016_j_cej_2021_131191
crossref_primary_10_1016_j_envint_2020_105999
crossref_primary_10_1038_s41598_023_36603_5
crossref_primary_10_1016_j_scitotenv_2023_167404
crossref_primary_10_3390_microplastics2020016
crossref_primary_10_1016_j_eehl_2022_10_001
crossref_primary_10_1016_j_jhazmat_2021_126096
crossref_primary_10_1007_s44246_024_00107_2
crossref_primary_10_1007_s11356_020_12020_3
crossref_primary_10_1016_j_scitotenv_2023_169132
crossref_primary_10_1016_j_jhazmat_2022_128964
crossref_primary_10_1016_j_jhazmat_2021_126368
crossref_primary_10_1016_j_cocis_2021_101528
crossref_primary_10_1016_j_enmm_2021_100633
crossref_primary_10_1016_j_scitotenv_2022_153063
crossref_primary_10_1016_j_envpol_2023_121592
crossref_primary_10_1016_j_scitotenv_2022_159030
crossref_primary_10_1016_j_seppur_2024_129920
crossref_primary_10_3390_w16111595
crossref_primary_10_3390_toxics11070617
crossref_primary_10_1021_acs_langmuir_1c03204
crossref_primary_10_1016_j_scitotenv_2023_166783
crossref_primary_10_1021_acs_est_1c00434
crossref_primary_10_1016_j_clay_2024_107351
crossref_primary_10_1016_j_jhazmat_2023_132679
Cites_doi 10.1021/acs.est.7b03667
10.1016/j.envpol.2016.10.001
10.1016/j.envpol.2016.05.006
10.1016/j.chemosphere.2014.07.049
10.2134/jeq2009.0462
10.1016/j.envpol.2018.02.042
10.1016/j.cis.2015.07.002
10.1016/j.mineng.2017.10.004
10.1021/es902987d
10.1097/00010694-200004000-00001
10.1021/es301969m
10.1016/j.chemosphere.2015.11.078
10.1016/j.chemosphere.2019.04.115
10.3184/095422998782775835
10.1021/la062072v
10.1021/la3003146
10.1021/j150311a018
10.1016/j.watres.2015.05.023
10.1021/es3004427
10.1021/es302559v
10.1002/adma.19960080318
10.1016/j.clay.2008.07.011
10.1016/j.envpol.2019.03.087
10.1016/j.scitotenv.2018.11.183
10.1007/s40362-017-0044-7
10.1021/es502342r
10.3389/fenvs.2019.00017
10.1016/j.envpol.2017.04.034
10.1002/etc.3311
10.1134/S2070205116030035
10.2136/sssaj1999.634830x
10.1016/j.scitotenv.2019.03.102
10.1016/j.atmosenv.2013.06.050
10.1007/s11356-018-3698-z
10.1007/978-3-7643-8340-4_6
10.1016/j.envpol.2019.05.135
10.1016/j.ecoenv.2017.07.068
10.1021/acs.est.7b05559
10.1016/j.envpol.2019.03.046
10.1021/es503001d
10.1007/978-3-319-30663-6
10.1016/j.chemosphere.2018.01.052
10.1016/j.envpol.2017.05.047
10.1021/acs.est.5b00357
10.1016/j.marpolbul.2011.05.030
10.1016/j.colsurfa.2011.12.049
10.1039/C5CP07238G
10.1016/j.envpol.2018.01.024
10.1016/j.chemosphere.2019.03.077
10.2478/intox-2014-0009
10.1016/j.clay.2004.01.001
10.1002/etc.1984
10.1021/acssuschemeng.8b00766
10.1002/etc.3501
10.1021/la802112h
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/c9en00557a
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

DeliveryMethod fulltext_linktorsrc
EISSN 2051-8161
EndPage 2976
ExternalDocumentID 10_1039_C9EN00557A
c9en00557a
GroupedDBID -JG
0R~
4.4
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRAH
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c347t-5a1dbe7a451396f21e66d4b1fe76b4eecb6d0d21c6f88137b8eb4b03ce0cfd203
ISSN 2051-8153
IngestDate Mon Jun 30 12:01:54 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Tue Jul 01 02:35:36 EDT 2025
Tue Dec 17 20:59:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-5a1dbe7a451396f21e66d4b1fe76b4eecb6d0d21c6f88137b8eb4b03ce0cfd203
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c9en00557a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2635-4037
0000-0001-6087-4568
PQID 2303230105
PQPubID 2047519
PageCount 9
ParticipantIDs rsc_primary_c9en00557a
proquest_journals_2303230105
crossref_citationtrail_10_1039_C9EN00557A
crossref_primary_10_1039_C9EN00557A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Environmental science. Nano
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Grillo (C9EN00557A-(cit53)/*[position()=1]) 2015; 119
Davranche (C9EN00557A-(cit35)/*[position()=1]) 2019; 249
Tchounwou (C9EN00557A-(cit38)/*[position()=1]) 2012; 101
Babick (C9EN00557A-(cit43)/*[position()=1]) 2016; vol. 20
Darbha (C9EN00557A-(cit5)/*[position()=1]) 2012; 28
Cunha (C9EN00557A-(cit32)/*[position()=1]) 2019; 249
Wegner (C9EN00557A-(cit12)/*[position()=1]) 2012; 31
Besseling (C9EN00557A-(cit28)/*[position()=1]) 2017; 220
Mishra (C9EN00557A-(cit18)/*[position()=1]) 2019; 26
Manfra (C9EN00557A-(cit15)/*[position()=1]) 2017; 145
Greven (C9EN00557A-(cit14)/*[position()=1]) 2016; 35
Andrady (C9EN00557A-(cit7)/*[position()=1]) 2011; 62
Oriekhova (C9EN00557A-(cit33)/*[position()=1]) 2018; 5
Suyantara (C9EN00557A-(cit47)/*[position()=1]) 2018; 115
Haegerbaeumer (C9EN00557A-(cit49)/*[position()=1]) 2019; 7
Philippe (C9EN00557A-(cit25)/*[position()=1]) 2014; 48
Lagarde (C9EN00557A-(cit30)/*[position()=1]) 2016; 215
Keller (C9EN00557A-(cit60)/*[position()=1]) 2010; 44
Zhang (C9EN00557A-(cit11)/*[position()=1]) 2012; 46
Chen (C9EN00557A-(cit45)/*[position()=1]) 2006; 22
Long (C9EN00557A-(cit31)/*[position()=1]) 2017; 228
Blair (C9EN00557A-(cit2)/*[position()=1]) 2017; 5
Halle (C9EN00557A-(cit1)/*[position()=1]) 2017; 51
Alekseeva (C9EN00557A-(cit58)/*[position()=1]) 2016; 52
Hotze (C9EN00557A-(cit24)/*[position()=1]) 2010; 39
Li (C9EN00557A-(cit26)/*[position()=1]) 2018; 237
Liu (C9EN00557A-(cit34)/*[position()=1]) 2016; 35
Labille (C9EN00557A-(cit48)/*[position()=1]) 2015; 49
Wang (C9EN00557A-(cit44)/*[position()=1]) 2015; 80
Bhargava (C9EN00557A-(cit13)/*[position()=1]) 2018; 6
Fendler (C9EN00557A-(cit42)/*[position()=1]) 1996; 8
Rieuwerts (C9EN00557A-(cit59)/*[position()=1]) 1998; 10
Kalbitz (C9EN00557A-(cit41)/*[position()=1]) 2000; 165
Wang (C9EN00557A-(cit23)/*[position()=1]) 2015; 226
Stephens (C9EN00557A-(cit10)/*[position()=1]) 2013; 79
Zhang (C9EN00557A-(cit29)/*[position()=1]) 2019; 228
Zhao (C9EN00557A-(cit55)/*[position()=1]) 2008; 24
Darbha (C9EN00557A-(cit6)/*[position()=1]) 2012; 46
Abbott (C9EN00557A-(cit46)/*[position()=1]) 2013
Song (C9EN00557A-(cit20)/*[position()=1]) 2019; 669
Karathanasis (C9EN00557A-(cit57)/*[position()=1]) 1999; 63
Deacon (C9EN00557A-(cit51)/*[position()=1]) 1929; 34
Gigault (C9EN00557A-(cit3)/*[position()=1]) 2018; 235
García-García (C9EN00557A-(cit50)/*[position()=1]) 2009; 43
Besseling (C9EN00557A-(cit17)/*[position()=1]) 2014; 48
Massos (C9EN00557A-(cit36)/*[position()=1]) 2017; 227
Lee (C9EN00557A-(cit52)/*[position()=1]) 2012; 396
Jaishankar (C9EN00557A-(cit37)/*[position()=1]) 2014; 7
Oncsik (C9EN00557A-(cit40)/*[position()=1]) 2016; 18
Tombácz (C9EN00557A-(cit56)/*[position()=1]) 2004; 27
Tallec (C9EN00557A-(cit21)/*[position()=1]) 2019; 225
van Weert (C9EN00557A-(cit16)/*[position()=1]) 2019; 654
Koelmans (C9EN00557A-(cit8)/*[position()=1]) 2015
Lambert (C9EN00557A-(cit9)/*[position()=1]) 2016; 145
Eby (C9EN00557A-(cit39)/*[position()=1]) 2004
Zhou (C9EN00557A-(cit54)/*[position()=1]) 2012; 46
Saavedra (C9EN00557A-(cit19)/*[position()=1]) 2019; 252
Alimi (C9EN00557A-(cit22)/*[position()=1]) 2018; 52
Cai (C9EN00557A-(cit27)/*[position()=1]) 2018; 197
Mattsson (C9EN00557A-(cit4)/*[position()=1]) 2015; 17
References_xml – issn: 2013
  publication-title: Nanocoatings: Principles and Practice: From Research to Production
  doi: Abbott Holmes
– issn: 2004
  publication-title: Principles of Environmental Geochemistry
  doi: Eby
– issn: 2016
  issue: vol. 20
  end-page: p 75-118
  publication-title: Suspensions of Colloidal Particles and Aggregates
  doi: Babick
– volume: 51
  start-page: 13689
  year: 2017
  ident: C9EN00557A-(cit1)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03667
– volume: 220
  start-page: 540
  year: 2017
  ident: C9EN00557A-(cit28)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.10.001
– volume: 215
  start-page: 331
  year: 2016
  ident: C9EN00557A-(cit30)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.05.006
– volume: 119
  start-page: 608
  year: 2015
  ident: C9EN00557A-(cit53)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.07.049
– volume: 39
  start-page: 1909
  year: 2010
  ident: C9EN00557A-(cit24)/*[position()=1]
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0462
– volume: 237
  start-page: 126
  year: 2018
  ident: C9EN00557A-(cit26)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.02.042
– volume: 226
  start-page: 24
  year: 2015
  ident: C9EN00557A-(cit23)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2015.07.002
– volume: 115
  start-page: 117
  year: 2018
  ident: C9EN00557A-(cit47)/*[position()=1]
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2017.10.004
– volume: 5
  start-page: 792
  year: 2018
  ident: C9EN00557A-(cit33)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 44
  start-page: 1962
  year: 2010
  ident: C9EN00557A-(cit60)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902987d
– volume: 165
  start-page: 277
  year: 2000
  ident: C9EN00557A-(cit41)/*[position()=1]
  publication-title: Soil Sci.
  doi: 10.1097/00010694-200004000-00001
– volume: 46
  start-page: 9378
  issue: 17
  year: 2012
  ident: C9EN00557A-(cit6)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301969m
– volume-title: Principles of Environmental Geochemistry
  year: 2004
  ident: C9EN00557A-(cit39)/*[position()=1]
– volume: 145
  start-page: 265
  year: 2016
  ident: C9EN00557A-(cit9)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.11.078
– volume: 228
  start-page: 195
  year: 2019
  ident: C9EN00557A-(cit29)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.04.115
– volume-title: Nanocoatings: Principles and Practice: From Research to Production
  year: 2013
  ident: C9EN00557A-(cit46)/*[position()=1]
– volume: 10
  start-page: 61
  year: 1998
  ident: C9EN00557A-(cit59)/*[position()=1]
  publication-title: Chem. Speciation Bioavailability
  doi: 10.3184/095422998782775835
– volume: 22
  start-page: 10994
  year: 2006
  ident: C9EN00557A-(cit45)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la062072v
– volume: 28
  start-page: 6606
  year: 2012
  ident: C9EN00557A-(cit5)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la3003146
– volume: 34
  start-page: 1105
  year: 1929
  ident: C9EN00557A-(cit51)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150311a018
– volume: 80
  start-page: 130
  year: 2015
  ident: C9EN00557A-(cit44)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.05.023
– volume: 46
  start-page: 7520
  year: 2012
  ident: C9EN00557A-(cit54)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3004427
– volume: 46
  start-page: 10990
  year: 2012
  ident: C9EN00557A-(cit11)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302559v
– volume: 8
  start-page: 260
  year: 1996
  ident: C9EN00557A-(cit42)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19960080318
– volume: 43
  start-page: 21
  year: 2009
  ident: C9EN00557A-(cit50)/*[position()=1]
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2008.07.011
– volume: 249
  start-page: 940
  year: 2019
  ident: C9EN00557A-(cit35)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.03.087
– volume: 654
  start-page: 1040
  year: 2019
  ident: C9EN00557A-(cit16)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.183
– volume: 5
  start-page: 19
  year: 2017
  ident: C9EN00557A-(cit2)/*[position()=1]
  publication-title: Springer Sci. Rev.
  doi: 10.1007/s40362-017-0044-7
– volume: 48
  start-page: 8946
  year: 2014
  ident: C9EN00557A-(cit25)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es502342r
– volume: 7
  start-page: 17
  year: 2019
  ident: C9EN00557A-(cit49)/*[position()=1]
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2019.00017
– volume: 227
  start-page: 139
  year: 2017
  ident: C9EN00557A-(cit36)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.04.034
– volume: 35
  start-page: 1650
  year: 2016
  ident: C9EN00557A-(cit34)/*[position()=1]
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.3311
– volume: 52
  start-page: 443
  year: 2016
  ident: C9EN00557A-(cit58)/*[position()=1]
  publication-title: Prot. Met. Phys. Chem. Surf.
  doi: 10.1134/S2070205116030035
– volume: 63
  start-page: 830
  year: 1999
  ident: C9EN00557A-(cit57)/*[position()=1]
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.634830x
– volume: 669
  start-page: 120
  year: 2019
  ident: C9EN00557A-(cit20)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.102
– volume: 79
  start-page: 334
  year: 2013
  ident: C9EN00557A-(cit10)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.06.050
– volume: 26
  start-page: 1537
  year: 2019
  ident: C9EN00557A-(cit18)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-3698-z
– volume: 101
  start-page: 133
  year: 2012
  ident: C9EN00557A-(cit38)/*[position()=1]
  publication-title: Exper. Suppl.
  doi: 10.1007/978-3-7643-8340-4_6
– volume: 252
  start-page: 715
  year: 2019
  ident: C9EN00557A-(cit19)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.05.135
– volume: 145
  start-page: 557
  year: 2017
  ident: C9EN00557A-(cit15)/*[position()=1]
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.07.068
– volume: 52
  start-page: 1704
  year: 2018
  ident: C9EN00557A-(cit22)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05559
– volume: 249
  start-page: 372
  year: 2019
  ident: C9EN00557A-(cit32)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.03.046
– volume: 48
  start-page: 12336
  year: 2014
  ident: C9EN00557A-(cit17)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503001d
– volume: vol. 20
  volume-title: Suspensions of Colloidal Particles and Aggregates
  year: 2016
  ident: C9EN00557A-(cit43)/*[position()=1]
  doi: 10.1007/978-3-319-30663-6
– volume: 197
  start-page: 142
  year: 2018
  ident: C9EN00557A-(cit27)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.052
– volume: 228
  start-page: 454
  year: 2017
  ident: C9EN00557A-(cit31)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.05.047
– volume: 49
  start-page: 6608
  year: 2015
  ident: C9EN00557A-(cit48)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00357
– volume: 62
  start-page: 1596
  year: 2011
  ident: C9EN00557A-(cit7)/*[position()=1]
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.05.030
– volume: 396
  start-page: 106
  year: 2012
  ident: C9EN00557A-(cit52)/*[position()=1]
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2011.12.049
– volume: 18
  start-page: 7511
  year: 2016
  ident: C9EN00557A-(cit40)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07238G
– volume: 235
  start-page: 1030
  year: 2018
  ident: C9EN00557A-(cit3)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.01.024
– start-page: 325
  year: 2015
  ident: C9EN00557A-(cit8)/*[position()=1]
  publication-title: Crit. Rev.
– volume: 225
  start-page: 639
  year: 2019
  ident: C9EN00557A-(cit21)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.03.077
– volume: 7
  start-page: 60
  year: 2014
  ident: C9EN00557A-(cit37)/*[position()=1]
  publication-title: Interdiscip. Toxicol.
  doi: 10.2478/intox-2014-0009
– volume: 27
  start-page: 75
  year: 2004
  ident: C9EN00557A-(cit56)/*[position()=1]
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2004.01.001
– volume: 17
  start-page: 1712
  issue: 10
  year: 2015
  ident: C9EN00557A-(cit4)/*[position()=1]
  publication-title: Environ. Sci.: Processes Impacts
– volume: 31
  start-page: 2490
  year: 2012
  ident: C9EN00557A-(cit12)/*[position()=1]
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.1984
– volume: 6
  start-page: 6932
  year: 2018
  ident: C9EN00557A-(cit13)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00766
– volume: 35
  start-page: 3093
  year: 2016
  ident: C9EN00557A-(cit14)/*[position()=1]
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.3501
– volume: 24
  start-page: 12899
  year: 2008
  ident: C9EN00557A-(cit55)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la802112h
SSID ssj0001125367
Score 2.5355527
Snippet Nanoplastics (NPs) are one of the most dangerous fractions of plastics because of their possible eco-toxicological impacts. NP stability and transport are...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2968
SubjectTerms Agglomeration
Aggregation
Aquatic environment
Aqueous environments
Cadmium chloride
Calcium chloride
Cations
Clay
Coagulation
Colloids
Dissolved organic matter
Divalent cations
Environmental factors
Groundwater
Heavy metals
Ionic strength
Light scattering
Mercuric chloride
Mercury compounds
Metal concentrations
Metals
Organic matter
Oxidoreductions
Photon correlation spectroscopy
Polymers
Polystyrene
Polystyrene resins
River water
Rivers
Salts
Seawater
Sodium chloride
Soil
Soil dynamics
Soil temperature
Speciation
Stability
Temperature
Temperature effects
Zinc chloride
Title Understanding the stability of nanoplastics in aqueous environments: effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals
URI https://www.proquest.com/docview/2303230105
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QsXBIIVhQVZggvapiR2mge3ChWW56mV9lbZjkMrQlJts7tafgt_gn_IjO08ql0k4NCosd007Xwaz0xmviHkRcx5KBV6J0omXpjmiSeiNPOSII8ldhVgEuMdn79Ep8vww9n0bDD41ctauqjlRP24ta7kf6QKYyBXrJL9B8m2F4UBeA_yhSNIGI5_JePlXmUKmpBwYrJdLU-0KKstWMeGiXlTngjYAzDjtV_cZjrzWAZjJI8w_XCwfqT8agMuSF3leJfxFB_fV8UlWKm2HZQ6-W4IOnFOFeK6SQYFFX95je2pRbHbC_53X91UYyo9QR1ftbEe-C1rC9Ldut00FpsrYYvi59_qdvQjxv11cSVsYvem4RF3oXf7MOtdtRWFMOpsbXuFN2EOp0aNHmSgNwA7llN4ovtjlse9UeTRDbw6pZzazj1ug2ep7ThzY_PwOXKvqlSXhpmst0W2iYvd5AE5ZOCZsCE5nM0X7z91gT0wGbnpXNzeeEOLy9NX3QX2DaHOuzk4b1rPGBNncY_cdb4JnVmg3ScDXT4gP_dARgFktAUZrXLaBxndlNSBjPZB9ppaiOF6AzHaQGxMewAb0xZe1MGLWniNKYJrTOEmqIEWtdB6SJZv54s3p55r6eEpHsa1NxVBJnUswil4HlHOAh1FWSiDXMeRDLVWMsr8jAUqypMk4LFMtAxBZyjtqzxjPj8iw7Iq9SNCwY-PdJb7SmkWpqCIYqaZ9HWuucjyqRqRl83_u1KO7x7brhQrk3fB0xXSxRlZzEbkebt2a1lebl113Ihp5bTAbgUuPIcXuCkjcgSiaz_fSfrxnyaekDsIdRvROybD-vxCPwUbt5bPHKp-A8BlshI
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+stability+of+nanoplastics+in+aqueous+environments%3A+effect+of+ionic+strength%2C+temperature%2C+dissolved+organic+matter%2C+clay%2C+and+heavy+metals&rft.jtitle=Environmental+science.+Nano&rft.au=Singh%2C+Nisha&rft.au=Tiwari%2C+Ekta&rft.au=Khandelwal%2C+Nitin&rft.au=Darbha%2C+Gopala+Krishna&rft.date=2019&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=6&rft.issue=1&rft.spage=2968&rft.epage=2976&rft_id=info:doi/10.1039%2Fc9en00557a&rft.externalDocID=c9en00557a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon