Cost-effective genotyping for classical congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) in resource-poor settings: multiplex ligation probe amplification (MLPA) with/without sequential next-generation sequencing (NGS)
Purpose Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cos...
Saved in:
Published in | Hormones (Athens, Greece) Vol. 22; no. 2; pp. 311 - 320 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1109-3099 2520-8721 2520-8721 |
DOI | 10.1007/s42000-023-00445-7 |
Cover
Loading…
Abstract | Purpose
Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner.
Methods
The genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants.
Results
The common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population.
Conclusion
MLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings. |
---|---|
AbstractList | Purpose
Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner.
Methods
The genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants.
Results
The common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population.
Conclusion
MLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings. Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner.PURPOSEGenotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner.The genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants.METHODSThe genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants.The common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population.RESULTSThe common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population.MLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings.CONCLUSIONMLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings. Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner. The genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants. The common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population. MLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings. |
Author | Pavithran, Praveen V. Nampoothiri, Sheela Monteiro, Ana Yesodharan, Dhanya Puthukulangara, Manuprasad Kumaran, Reshma Bhavani, Nisha |
Author_xml | – sequence: 1 givenname: Ana surname: Monteiro fullname: Monteiro, Ana organization: Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre – sequence: 2 givenname: Praveen V. orcidid: 0000-0003-2678-8847 surname: Pavithran fullname: Pavithran, Praveen V. email: pravvp@gmail.com organization: Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre – sequence: 3 givenname: Manuprasad surname: Puthukulangara fullname: Puthukulangara, Manuprasad organization: Paediatric Clinical Genetics Laboratory, Amrita Institute of Medical Sciences – sequence: 4 givenname: Nisha surname: Bhavani fullname: Bhavani, Nisha organization: Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre – sequence: 5 givenname: Sheela surname: Nampoothiri fullname: Nampoothiri, Sheela organization: Department of Paediatric Genetics, Amrita Institute of Medical Sciences – sequence: 6 givenname: Dhanya surname: Yesodharan fullname: Yesodharan, Dhanya organization: Department of Paediatric Genetics, Amrita Institute of Medical Sciences – sequence: 7 givenname: Reshma surname: Kumaran fullname: Kumaran, Reshma organization: Paediatric Clinical Genetics Laboratory, Amrita Institute of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36952211$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk2P0zAQjdAitrvwBzggH9tDWNv5NLeqwBapsEjA2XKcSetVagfbgeafc2RKdi8c9mJbfm_ezOi9q-TCOgtJ8prRt4zS6ibknFKaUp6llOZ5kVbPkgUvOE3rirOLZMEYFWlGhbhMrkK4p7QsRM1eJJdZKQrOGVskfzYuxBS6DnQ0v4Dswbo4DcbuSec80b0KwWjVE-0sYibiU7UeLN6HaQA_IMMostystyvSjkCiI5ylh6n17jQhCKSFzmgDVk9kidDd9v2KGEs8BDd6DengsFOAGLFreEeOYx_N0MOJ9GavonGWDN41QNRx6A1KzX_Lz7uv6xX5beLh5ny4MaLIzxFsNDichVNMcWLwM32G9Hmx5Zfbb6uXyfNO9QFePdzXyY-PH75vtunu7vbTZr1LdZZXMS2EAsaqjGcZL5u8pbyjJWtopdu6a7OyFSovEWtrUdddw6AqG8WhKqDVlRY6u06Wsy7ugBOEKI8maOh7ZcGNQfJKoHlC5BVS3zxQx-YIrRy8OSo_yUe3kFDPBO1dCB46qdGQ83rRK9NLRuU5GHIOhsRgyH_BkGdt_l_po_qTRdlcFJCM9nt5j46h9eGpqr8FmM8w |
CitedBy_id | crossref_primary_10_4103_ijem_ijem_303_23 crossref_primary_10_1007_s13312_024_3296_8 crossref_primary_10_1007_s42000_023_00452_8 crossref_primary_10_1007_s12020_024_03747_x |
Cites_doi | 10.1038/sj.gt.3301018 10.1016/j.celrep.2018.01.003 10.1093/bioinformatics/btp352 10.1002/humu.23351 10.1093/bioinformatics/btp698 10.1210/jcem.85.3.6441 10.1210/jc.2012-3343 10.1210/jc.2002-021681 10.1186/1472-6823-11-5 10.3275/8648 10.1007/s004390050436 10.1016/j.ymgme.2005.11.015 10.1530/eje.1.01944 10.1016/s0889-8529(08)70017-3 10.1016/j.cca.2016.11.037 10.1007/s12020-020-02494-z 10.1172/JCI115897 10.1097/00008480-199708000-00018 10.1530/EJE-16-0171 10.1210/jcem.87.6.8522 10.1016/j.beem.2008.10.014 10.1016/S0021-9258(17)45304-X 10.1101/gr.107524.110 10.1210/jcem.78.5.8175971 10.3389/fendo.2019.00432 10.2165/00129785-200101020-00003 10.1038/s41431-020-0653-5 10.1210/jc.2006-2163 10.1093/nar/gks1048 10.4103/2230-8210.95679 10.1080/09723757.2017.1383647 10.1111/j.1365-2265.2011.04123.x 10.1007/s12098-018-2645-9 10.1073/pnas.1300057110 10.1515/jpem.2001.14.1.27 10.1093/bioinformatics/btq330 10.1016/j.steroids.2016.01.007 10.1507/endocrj.EJ16-0112 10.1074/jbc.274.17.12147 10.1016/j.ejmg.2021.104369 10.1210/jc.2009-2631 10.1093/oxfordjournals.jbchem.a123433 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Hellenic Endocrine Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Hellenic Endocrine Society. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Hellenic Endocrine Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Hellenic Endocrine Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/s42000-023-00445-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2520-8721 |
EndPage | 320 |
ExternalDocumentID | 36952211 10_1007_s42000_023_00445_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Amrita Vishwa Vidyapeetham University funderid: http://dx.doi.org/10.13039/100009526 |
GroupedDBID | --- -EM 0R~ 406 53G AAAVM AACDK AAHNG AAIAL AAJBT AASML AATNV AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADBBV ADKNI ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AEOHA AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BAWUL BGNMA CSCUP DIK DPUIP EBLON EBS EJD F5P FIGPU FINBP FNLPD FRP FSGXE GGCAI HG6 IKXTQ IWAJR J-C JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 O9J OK1 PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 TR2 TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM 7X8 ABRTQ |
ID | FETCH-LOGICAL-c347t-59ae117323326b4d02f061b07cd8fd36d9a46332d8988fb1e76ba2e75edc7c9c3 |
ISSN | 1109-3099 2520-8721 |
IngestDate | Tue Aug 05 10:00:41 EDT 2025 Wed Feb 19 02:23:37 EST 2025 Thu Apr 24 22:56:37 EDT 2025 Tue Jul 01 03:52:07 EDT 2025 Fri Feb 21 02:43:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Variant Deletion Duplication South India Salt wasting Simple virilizing |
Language | English |
License | 2023. The Author(s), under exclusive licence to Hellenic Endocrine Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-59ae117323326b4d02f061b07cd8fd36d9a46332d8988fb1e76ba2e75edc7c9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2678-8847 |
PMID | 36952211 |
PQID | 2790049947 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2790049947 pubmed_primary_36952211 crossref_citationtrail_10_1007_s42000_023_00445_7 crossref_primary_10_1007_s42000_023_00445_7 springer_journals_10_1007_s42000_023_00445_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230600 2023-06-00 2023-Jun 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland |
PublicationSubtitle | International Journal of Endocrinology and Metabolism |
PublicationTitle | Hormones (Athens, Greece) |
PublicationTitleAbbrev | Hormones |
PublicationTitleAlternate | Hormones (Athens) |
PublicationYear | 2023 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Wang, Yu, Ye, Han, Qiu, Zhang (CR35) 2016; 108 Koyama, Toyoura, Saisho, Shimozawa, Yata (CR37) 2002; 87 Wedell, Thilén, Ritzén, Stengler, Luthman (CR39) 1994; 78 Friães, Rêgo, Aragües, Moura, Mirante, Mascarenhas (CR41) 2006; 88 Therrell (CR3) 2001; 30 Marumudi, Sharma, Kulshreshtha, Khadgawat, Khurana, Ammini (CR15) 2012; 16 Ravichandran, Korula, Asha, Varghese, Parthiban, Johnson (CR19) 2021; 64 Li, Durbin (CR20) 2010; 26 McLaren, Pritchard, Rios, Chen, Flicek, Cunningham (CR24) 2010; 26 Gangodkar, Khadilkar, Raghupathy, Kumar, Dayal, Dayal (CR18) 2021; 71 Baumgartner-Parzer, Witsch-Baumgartner, Hoeppner (CR13) 2020; 28 New, Abraham, Gonzalez, Dumic, Razzaghy-Azar, Chitayat (CR29) 2013; 110 Yang, Mendoza, Welch, Zipf, Yu (CR6) 1999; 274 Khajuria, Walia, Bhansali, Prasad (CR16) 2017; 464 Balraj, Lim, Sidek, Wu, Khoo (CR36) 2013; 36 Meyer, Zweig, Hinrichs, Karolchik, Kuhn, Wong (CR21) 2013; 41 Nageshwari, Dhivakar, Balakrishnan, Selvan, Kumaravel (CR17) 2017; 17 Krone, Arlt (CR5) 2009; 23 Tusie-Luna, Traktman, White (CR7) 1990; 265 Araújo, Mendonca, Barbosa, Lin, Marcondes, Billerbeck (CR33) 2007; 92 Simonetti, Bruque, Fernandez, Benavides-Mori, Delea, Kolomenski (CR9) 2018; 39 Speiser, Dupont, Zhu, Serrat, Buegeleisen, Tusie-Luna (CR32) 1992; 90 Khan, Aban, Raza, Haq, Jabbar, Moatter (CR34) 2011; 11 Li, Handsaker, Wysoker, Fennell, Ruan, Homer (CR23) 2009; 25 Lajic, Levo, Nikoshkov, Lundberg, Partanen, Wedell (CR27) 1997; 99 Krone, Rose, Willis, Hodson, Wild, Doherty (CR40) 2013; 98 (CR4) 2018; 85 Speiser (CR8) 2001; 1 Higashi, Hiromasa, Tanae, Miki, Nakura, Kondo (CR26) 1991; 109 Naiki, Miyado, Horikawa, Katsumata, Onodera, Pang (CR11) 2016; 63 McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky (CR22) 2010; 20 Stikkelbroeck, Hoefsloot, de Wijs, Otten, Hermus, Sistermans (CR28) 2003; 88 Mathur, Menon, Kabra, Goyal, Verma (CR14) 2001; 14 Ruiz-Babot, Balyura, Hadjidemetriou, Ajodha, Taylor, Ghataore, Taylor (CR12) 2020; 22 Pang, Shook (CR2) 1997; 9 Pignatelli, Carvalho, Palmeiro, Barros, Guerreiro, Maçut (CR25) 2019; 10 Marino, Ramirez, Galeano, Perez Garrido, Rocco, Ciaccio, Warman (CR42) 2011; 75 Speiser, Azziz, Baskin, Ghizzoni, Hensle, Merke (CR1) 2010; 95 Dolzan, Sólyom, Fekete, Kovács, Rakosnikova, Votava (CR38) 2005; 153 Krone, Braun, Roscher, Knorr, Schwarz (CR31) 2009; 85 Tajima, Okada, Ma, Ramsey, Bornstein, Aguilera (CR10) 1999; 6 de Carvalho, Miranda, Gomes, Madureira, Marcondes, Billerbeck (CR30) 2016; 175 N Krone (445_CR31) 2009; 85 PW Speiser (445_CR8) 2001; 1 L Simonetti (445_CR9) 2018; 39 G Ruiz-Babot (445_CR12) 2020; 22 R Marino (445_CR42) 2011; 75 S Pang (445_CR2) 1997; 9 R Khajuria (445_CR16) 2017; 464 BL Therrell (445_CR3) 2001; 30 NM Stikkelbroeck (445_CR28) 2003; 88 A Wedell (445_CR39) 1994; 78 H Li (445_CR23) 2009; 25 MT Tusie-Luna (445_CR7) 1990; 265 ICMR Task Force on Inherited Metabolic Disorders (445_CR4) 2018; 85 N Krone (445_CR5) 2009; 23 E Marumudi (445_CR15) 2012; 16 RS Araújo (445_CR33) 2007; 92 Y Higashi (445_CR26) 1991; 109 P Gangodkar (445_CR18) 2021; 71 Y Naiki (445_CR11) 2016; 63 Z Yang (445_CR6) 1999; 274 S Koyama (445_CR37) 2002; 87 N Krone (445_CR40) 2013; 98 L Ravichandran (445_CR19) 2021; 64 MI New (445_CR29) 2013; 110 D Pignatelli (445_CR25) 2019; 10 AH Khan (445_CR34) 2011; 11 P Balraj (445_CR36) 2013; 36 H Li (445_CR20) 2010; 26 DF de Carvalho (445_CR30) 2016; 175 PW Speiser (445_CR32) 1992; 90 T Tajima (445_CR10) 1999; 6 S Baumgartner-Parzer (445_CR13) 2020; 28 A McKenna (445_CR22) 2010; 20 R Nageshwari (445_CR17) 2017; 17 R Mathur (445_CR14) 2001; 14 LR Meyer (445_CR21) 2013; 41 R Wang (445_CR35) 2016; 108 V Dolzan (445_CR38) 2005; 153 PW Speiser (445_CR1) 2010; 95 W McLaren (445_CR24) 2010; 26 A Friães (445_CR41) 2006; 88 S Lajic (445_CR27) 1997; 99 |
References_xml | – volume: 6 start-page: 1898 year: 1999 end-page: 1903 ident: CR10 article-title: Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochromeP450 21-hydroxylase into the adrenal gland of 21-hydroxylase-deficient mice publication-title: Gene Ther doi: 10.1038/sj.gt.3301018 – volume: 22 start-page: 1236 year: 2020 end-page: 1249 ident: CR12 article-title: Modeling congenital adrenal hyperplasia and testing interventions for adrenal insufficiency using donor-specific reprogrammed cells publication-title: Cell Rep doi: 10.1016/j.celrep.2018.01.003 – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: CR23 article-title: The sequence alignment/map format and SAM tools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 39 start-page: 5 year: 2018 end-page: 22 ident: CR9 article-title: CYP21A2 mutation update: comprehensive analysis of databases and published genetic variants publication-title: Hum Mutat doi: 10.1002/humu.23351 – volume: 26 start-page: 589 year: 2010 end-page: 595 ident: CR20 article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp698 – volume: 85 start-page: 1059 year: 2009 end-page: 1065 ident: CR31 article-title: Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany publication-title: J Clin Endocrinol Metab doi: 10.1210/jcem.85.3.6441 – volume: 98 start-page: E346 year: 2013 end-page: E354 ident: CR40 article-title: Genotype-phenotype correlation in 153 adult patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: analysis of the United Kingdom congenital adrenal hyperplasia adult study executive (CaHASE) cohort publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2012-3343 – volume: 88 start-page: 3852 year: 2003 end-page: 3859 ident: CR28 article-title: CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in The Netherlands: six novel mutations and a specific cluster of four mutations publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2002-021681 – volume: 11 start-page: 1 year: 2011 end-page: 6 ident: CR34 article-title: Ethnic disparity in 21-hydroxylase gene mutations identified in Pakistani congenital adrenal hyperplasia patients publication-title: BMC Endocr Disord doi: 10.1186/1472-6823-11-5 – volume: 36 start-page: 366 year: 2013 end-page: 374 ident: CR36 article-title: Mutational characterization of congenital adrenal hyperplasia due to 21-hydroxylase deficiency in Malaysia publication-title: J Endocrinol Invest doi: 10.3275/8648 – volume: 99 start-page: 704 year: 1997 end-page: 709 ident: CR27 article-title: A cluster of missense mutations at Arg356 of human steroid 21-hydroxylase may impair redox partner interaction publication-title: Hum Genet doi: 10.1007/s004390050436 – volume: 88 start-page: 58 year: 2006 end-page: 65 ident: CR41 article-title: CYP21A2 mutations in Portuguese patients with congenital adrenal hyperplasia: identification of two novel mutations and characterization of four different partial gene conversions publication-title: Mol Genet Metab doi: 10.1016/j.ymgme.2005.11.015 – volume: 153 start-page: 99 year: 2005 end-page: 106 ident: CR38 article-title: Mutational spectrum of steroid 21-hydroxylase and the genotype phenotype association in Middle European patients with congenital adrenal hyperplasia publication-title: Eur J Endocrinol doi: 10.1530/eje.1.01944 – volume: 30 start-page: 15 year: 2001 end-page: 30 ident: CR3 article-title: Newborn screening for congenital adrenal hyperplasia publication-title: Endocrinol Metab Clin North Am doi: 10.1016/s0889-8529(08)70017-3 – volume: 464 start-page: 189 year: 2017 end-page: 194 ident: CR16 article-title: The spectrum of CYP21A2 mutations in congenital adrenal hyperplasia in an Indian cohort publication-title: Clin Chim Acta doi: 10.1016/j.cca.2016.11.037 – volume: 71 start-page: 189 year: 2021 end-page: 198 ident: CR18 article-title: Clinical application of a novel next generation sequencing assay for CYP21A2 gene in 310 cases of 21-hydroxylase congenital adrenal hyperplasia from India publication-title: Endocrine doi: 10.1007/s12020-020-02494-z – volume: 90 start-page: 584 year: 1992 end-page: 595 ident: CR32 article-title: Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency publication-title: J Clin Invest doi: 10.1172/JCI115897 – volume: 9 start-page: 419 year: 1997 end-page: 423 ident: CR2 article-title: Status of neonatal screening for congenital adrenal hyperplasia publication-title: Curr Opin Pediatr doi: 10.1097/00008480-199708000-00018 – volume: 175 start-page: 107 year: 2016 end-page: 116 ident: CR30 article-title: Molecular CYP21A2 diagnosis in 480 Brazilian patients with congenital adrenal hyperplasia before newborn screening introduction publication-title: Eur J Endocrinol doi: 10.1530/EJE-16-0171 – volume: 87 start-page: 2668 year: 2002 end-page: 2673 ident: CR37 article-title: Genetic analysis of Japanese patients with 21-hydroxylase deficiency: identification of a patient with a new mutation of a homozygous deletion of adenine at codon 246 and patients without demonstrable mutations within the structural gene for CYP21 publication-title: J Clin Endocrinol Metab doi: 10.1210/jcem.87.6.8522 – volume: 23 start-page: 181 year: 2009 end-page: 192 ident: CR5 article-title: Genetics of congenital adrenal hyperplasia publication-title: Best Pract Res Clin Endocrinol Metab doi: 10.1016/j.beem.2008.10.014 – volume: 265 start-page: 20916 year: 1990 end-page: 20922 ident: CR7 article-title: Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)45304-X – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: CR22 article-title: The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 78 start-page: 1145 year: 1994 end-page: 1152 ident: CR39 article-title: Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation publication-title: J Clin Endocrinol Metab doi: 10.1210/jcem.78.5.8175971 – volume: 10 start-page: 432 year: 2019 ident: CR25 article-title: The complexities in genotyping of congenital adrenal hyperplasia: 21-hydroxylase deficiency publication-title: Front Endocrinol doi: 10.3389/fendo.2019.00432 – volume: 1 start-page: 101 year: 2001 end-page: 110 ident: CR8 article-title: Molecular diagnosis of CYP21 mutations in congenital adrenal hyperplasia: implications for genetic counseling publication-title: Am J Pharmacogenomics doi: 10.2165/00129785-200101020-00003 – volume: 28 start-page: 1341 year: 2020 end-page: 1367 ident: CR13 article-title: EMQN best practice guidelines for molecular genetic testing and reporting of 21-hydroxylase deficiency publication-title: Eur J Hum Genet doi: 10.1038/s41431-020-0653-5 – volume: 92 start-page: 4028 year: 2007 end-page: 4034 ident: CR33 article-title: Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2006-2163 – volume: 41 start-page: D64 year: 2013 end-page: 69 ident: CR21 article-title: The UCSC genome browser database: extensions and updates publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1048 – volume: 16 start-page: 384 year: 2012 end-page: 388 ident: CR15 article-title: Molecular genetic analysis of CYP21A2 gene in patients with congenital adrenal hyperplasia publication-title: Indian J Endocr Metab doi: 10.4103/2230-8210.95679 – volume: 17 start-page: 103 year: 2017 end-page: 108 ident: CR17 article-title: Common CYP21A2 gene mutations in South Indian congenital adrenal hyperplasia patients publication-title: Int J Hum Genet doi: 10.1080/09723757.2017.1383647 – volume: 75 start-page: 427 year: 2011 end-page: 435 ident: CR42 article-title: Steroid 21-hydroxylase gene mutational spectrum in 454 Argentinean patients: genotype-phenotype correlation in a large cohort of patients with congenital adrenal hyperplasia publication-title: Clin Endocrinol doi: 10.1111/j.1365-2265.2011.04123.x – volume: 85 start-page: 935 year: 2018 end-page: 940 ident: CR4 article-title: Newborn screening for congenital hypothyroidism and congenital adrenal hyperplasia publication-title: Indian J Pediatr doi: 10.1007/s12098-018-2645-9 – volume: 110 start-page: 2611 year: 2013 end-page: 2616 ident: CR29 article-title: Genotype–phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1300057110 – volume: 14 start-page: 27 year: 2001 end-page: 35 ident: CR14 article-title: Molecular characterization of mutations in Indian children with congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency publication-title: J Pediatr Endocrinol Metab doi: 10.1515/jpem.2001.14.1.27 – volume: 26 start-page: 2069 year: 2010 end-page: 2070 ident: CR24 article-title: Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor-PubMed publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq330 – volume: 108 start-page: 47 year: 2016 end-page: 55 ident: CR35 article-title: 21-hydroxylase deficiency-induced congenital adrenal hyperplasia in 230 Chinese patients: genotype–phenotype correlation and identification of nine novel mutations publication-title: Steroids doi: 10.1016/j.steroids.2016.01.007 – volume: 63 start-page: 897 year: 2016 end-page: 904 ident: CR11 article-title: Extra-adrenal induction of Cyp21a1 ameliorates systemic steroid metabolism in a mouse model of congenital adrenal hyperplasia publication-title: Endocr J doi: 10.1507/endocrj.EJ16-0112 – volume: 274 start-page: 12147 year: 1999 end-page: 12156 ident: CR6 article-title: Modular variations of the human major histocompatibility complex class III genes for serine/threonine kinase RP, complement component C4, steroid 21-hydroxylase CYP21, and tenascin TNX (the RCCX module). A mechanism for gene deletions and disease associations publication-title: J Biol Chem doi: 10.1074/jbc.274.17.12147 – volume: 64 start-page: 104369 year: 2021 ident: CR19 article-title: Allele-specific PCR and next-generation sequencing based genetic screening for congenital adrenal hyperplasia in India publication-title: Eur J Med Genet doi: 10.1016/j.ejmg.2021.104369 – volume: 95 start-page: 4133 year: 2010 end-page: 4160 ident: CR1 article-title: Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2009-2631 – volume: 109 start-page: 638 year: 1991 end-page: 644 ident: CR26 article-title: Effects of individual mutations in the P-450(C21) pseudogene on the P-450(C21) activity and their distribution in the patient genomes of congenital steroid 21-hydroxylase deficiency publication-title: J Biochem doi: 10.1093/oxfordjournals.jbchem.a123433 – volume: 85 start-page: 1059 year: 2009 ident: 445_CR31 publication-title: J Clin Endocrinol Metab doi: 10.1210/jcem.85.3.6441 – volume: 88 start-page: 58 year: 2006 ident: 445_CR41 publication-title: Mol Genet Metab doi: 10.1016/j.ymgme.2005.11.015 – volume: 88 start-page: 3852 year: 2003 ident: 445_CR28 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2002-021681 – volume: 16 start-page: 384 year: 2012 ident: 445_CR15 publication-title: Indian J Endocr Metab doi: 10.4103/2230-8210.95679 – volume: 464 start-page: 189 year: 2017 ident: 445_CR16 publication-title: Clin Chim Acta doi: 10.1016/j.cca.2016.11.037 – volume: 10 start-page: 432 year: 2019 ident: 445_CR25 publication-title: Front Endocrinol doi: 10.3389/fendo.2019.00432 – volume: 109 start-page: 638 year: 1991 ident: 445_CR26 publication-title: J Biochem doi: 10.1093/oxfordjournals.jbchem.a123433 – volume: 78 start-page: 1145 year: 1994 ident: 445_CR39 publication-title: J Clin Endocrinol Metab doi: 10.1210/jcem.78.5.8175971 – volume: 90 start-page: 584 year: 1992 ident: 445_CR32 publication-title: J Clin Invest doi: 10.1172/JCI115897 – volume: 85 start-page: 935 year: 2018 ident: 445_CR4 publication-title: Indian J Pediatr doi: 10.1007/s12098-018-2645-9 – volume: 23 start-page: 181 year: 2009 ident: 445_CR5 publication-title: Best Pract Res Clin Endocrinol Metab doi: 10.1016/j.beem.2008.10.014 – volume: 110 start-page: 2611 year: 2013 ident: 445_CR29 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1300057110 – volume: 274 start-page: 12147 year: 1999 ident: 445_CR6 publication-title: J Biol Chem doi: 10.1074/jbc.274.17.12147 – volume: 14 start-page: 27 year: 2001 ident: 445_CR14 publication-title: J Pediatr Endocrinol Metab doi: 10.1515/jpem.2001.14.1.27 – volume: 20 start-page: 1297 year: 2010 ident: 445_CR22 publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 71 start-page: 189 year: 2021 ident: 445_CR18 publication-title: Endocrine doi: 10.1007/s12020-020-02494-z – volume: 64 start-page: 104369 year: 2021 ident: 445_CR19 publication-title: Eur J Med Genet doi: 10.1016/j.ejmg.2021.104369 – volume: 92 start-page: 4028 year: 2007 ident: 445_CR33 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2006-2163 – volume: 11 start-page: 1 year: 2011 ident: 445_CR34 publication-title: BMC Endocr Disord doi: 10.1186/1472-6823-11-5 – volume: 75 start-page: 427 year: 2011 ident: 445_CR42 publication-title: Clin Endocrinol doi: 10.1111/j.1365-2265.2011.04123.x – volume: 28 start-page: 1341 year: 2020 ident: 445_CR13 publication-title: Eur J Hum Genet doi: 10.1038/s41431-020-0653-5 – volume: 22 start-page: 1236 year: 2020 ident: 445_CR12 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.01.003 – volume: 30 start-page: 15 year: 2001 ident: 445_CR3 publication-title: Endocrinol Metab Clin North Am doi: 10.1016/s0889-8529(08)70017-3 – volume: 87 start-page: 2668 year: 2002 ident: 445_CR37 publication-title: J Clin Endocrinol Metab doi: 10.1210/jcem.87.6.8522 – volume: 1 start-page: 101 year: 2001 ident: 445_CR8 publication-title: Am J Pharmacogenomics doi: 10.2165/00129785-200101020-00003 – volume: 63 start-page: 897 year: 2016 ident: 445_CR11 publication-title: Endocr J doi: 10.1507/endocrj.EJ16-0112 – volume: 98 start-page: E346 year: 2013 ident: 445_CR40 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2012-3343 – volume: 25 start-page: 2078 year: 2009 ident: 445_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 95 start-page: 4133 year: 2010 ident: 445_CR1 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2009-2631 – volume: 175 start-page: 107 year: 2016 ident: 445_CR30 publication-title: Eur J Endocrinol doi: 10.1530/EJE-16-0171 – volume: 36 start-page: 366 year: 2013 ident: 445_CR36 publication-title: J Endocrinol Invest doi: 10.3275/8648 – volume: 153 start-page: 99 year: 2005 ident: 445_CR38 publication-title: Eur J Endocrinol doi: 10.1530/eje.1.01944 – volume: 6 start-page: 1898 year: 1999 ident: 445_CR10 publication-title: Gene Ther doi: 10.1038/sj.gt.3301018 – volume: 108 start-page: 47 year: 2016 ident: 445_CR35 publication-title: Steroids doi: 10.1016/j.steroids.2016.01.007 – volume: 9 start-page: 419 year: 1997 ident: 445_CR2 publication-title: Curr Opin Pediatr doi: 10.1097/00008480-199708000-00018 – volume: 26 start-page: 589 year: 2010 ident: 445_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp698 – volume: 41 start-page: D64 year: 2013 ident: 445_CR21 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1048 – volume: 265 start-page: 20916 year: 1990 ident: 445_CR7 publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)45304-X – volume: 39 start-page: 5 year: 2018 ident: 445_CR9 publication-title: Hum Mutat doi: 10.1002/humu.23351 – volume: 17 start-page: 103 year: 2017 ident: 445_CR17 publication-title: Int J Hum Genet doi: 10.1080/09723757.2017.1383647 – volume: 26 start-page: 2069 year: 2010 ident: 445_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq330 – volume: 99 start-page: 704 year: 1997 ident: 445_CR27 publication-title: Hum Genet doi: 10.1007/s004390050436 |
SSID | ssj0065981 |
Score | 2.3137178 |
Snippet | Purpose
Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond... Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 311 |
SubjectTerms | Adrenal Hyperplasia, Congenital - diagnosis Adrenal Hyperplasia, Congenital - genetics Cost-Benefit Analysis Endocrinology Genotype High-Throughput Nucleotide Sequencing Humans Medicine Medicine & Public Health Metabolic Diseases Mutation Original Article Steroid 21-Hydroxylase - genetics |
Title | Cost-effective genotyping for classical congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) in resource-poor settings: multiplex ligation probe amplification (MLPA) with/without sequential next-generation sequencing (NGS) |
URI | https://link.springer.com/article/10.1007/s42000-023-00445-7 https://www.ncbi.nlm.nih.gov/pubmed/36952211 https://www.proquest.com/docview/2790049947 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF71kFBfEFCOcGmQEEpUXOL1zVtaKBGiJRKt1Ddrba9JRetEsV0ov5xHZtbrIwQq4CWJ7PU60nyfd3b8zQxjzx2eStPzpOHEXBh2ajtGZMapkbixdJIEPQapqn0eueMT-_2pc7q2bnRUS2UR7cbff5tX8j9WxWNoV8qS_QfLNpPiAfyN9sVPtDB-_pWN92d5YVSKDBIAUb3V4mpeayNjcox1ARDKoKL2IDuCMrcp_xH3n4u5yqFUL3JHY4oPJKXqpMFNY3qVkMAFB1BiFZWZUDmaOBRPfhy_odEqFaaK_hvzGd4xl0pFrVR2tVLx2865quIxU1owUnaQhj3VoUKa8PDDZETTfVUxngP6IrF0JfIuKKKf0fb8syqQrS7S-m8d5Th696mOZ2gve4yOOPUgoLMjKu-Q63QcGctO6OOQKnOd6USfrFmfJuIS_8KiigxPqD2TzFot8KQspuWXkuK8QvVoIgVROV-IXCRNbGMqLqteWci0fCq6oRVutRKwXakewdzBzbXvVTnc9XrBeYcXvPPwt6plY2VRqnQouV1l8dNthjZywusORsPMLxRMLTdAn1ivQMulwOtT62yT466Ib7DN0cHe3lHterhO4Js6M0zlh67ccovdqCdZdsRWdlcrygDlcB3fYjf1TglGFexvszWZ3WHbaKdidnEFL0Bpl9VLoW32Y5kJ0DIBkAnQMAFaJoBmAnSYAH3kwQCQBVDMYJkF0LIA-hUHBnCWwRIDoGbAa2jwDzX-QeEflvAPfUL_AAj0rzTyoUU-_IJ8aJEPfcT94C47OXh7vD82dE8TI7ZsrzCcQEjT9Cxu4b4pspMhT9GjjoZenPhpYrlJIGwXzyV-4PtpZErPjQSXniOT2IuD2LrHNjJk0AMGqU2tEfgQZ0zsRMbCS_GqKBWxF0jX9nvMrA0cxrrgP_WdOQ-bUuUKHyHiI1T4CL0e22mumVflbq4d_azGTYirEr1qFJmclXnIvUAFU2wcc78CVDNfDcAee1kjLNQP1fyamz3840SP2FbL3sdso1iU8gluFYroqSbIT_OgF7w |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-effective+genotyping+for+classical+congenital+adrenal+hyperplasia+%28CAH%29+due+to+21-hydroxylase+deficiency+%2821-OHD%29+in+resource-poor+settings%3A+multiplex+ligation+probe+amplification+%28MLPA%29+with%2Fwithout+sequential+next-generation+sequencing+%28NGS%29&rft.jtitle=Hormones+%28Athens%2C+Greece%29&rft.au=Monteiro%2C+Ana&rft.au=Pavithran%2C+Praveen+V&rft.au=Puthukulangara%2C+Manuprasad&rft.au=Bhavani%2C+Nisha&rft.date=2023-06-01&rft.eissn=2520-8721&rft.volume=22&rft.issue=2&rft.spage=311&rft_id=info:doi/10.1007%2Fs42000-023-00445-7&rft_id=info%3Apmid%2F36952211&rft.externalDocID=36952211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1109-3099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1109-3099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1109-3099&client=summon |