Cost-effective genotyping for classical congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) in resource-poor settings: multiplex ligation probe amplification (MLPA) with/without sequential next-generation sequencing (NGS)

Purpose Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cos...

Full description

Saved in:
Bibliographic Details
Published inHormones (Athens, Greece) Vol. 22; no. 2; pp. 311 - 320
Main Authors Monteiro, Ana, Pavithran, Praveen V., Puthukulangara, Manuprasad, Bhavani, Nisha, Nampoothiri, Sheela, Yesodharan, Dhanya, Kumaran, Reshma
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2023
Subjects
Online AccessGet full text
ISSN1109-3099
2520-8721
2520-8721
DOI10.1007/s42000-023-00445-7

Cover

Loading…
Abstract Purpose Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner. Methods The genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants. Results The common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population. Conclusion MLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings.
AbstractList Purpose Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner. Methods The genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants. Results The common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population. Conclusion MLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings.
Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner.PURPOSEGenotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner.The genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants.METHODSThe genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants.The common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population.RESULTSThe common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population.MLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings.CONCLUSIONMLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings.
Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner. The genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants. The common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population. MLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings.
Author Pavithran, Praveen V.
Nampoothiri, Sheela
Monteiro, Ana
Yesodharan, Dhanya
Puthukulangara, Manuprasad
Kumaran, Reshma
Bhavani, Nisha
Author_xml – sequence: 1
  givenname: Ana
  surname: Monteiro
  fullname: Monteiro, Ana
  organization: Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre
– sequence: 2
  givenname: Praveen V.
  orcidid: 0000-0003-2678-8847
  surname: Pavithran
  fullname: Pavithran, Praveen V.
  email: pravvp@gmail.com
  organization: Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre
– sequence: 3
  givenname: Manuprasad
  surname: Puthukulangara
  fullname: Puthukulangara, Manuprasad
  organization: Paediatric Clinical Genetics Laboratory, Amrita Institute of Medical Sciences
– sequence: 4
  givenname: Nisha
  surname: Bhavani
  fullname: Bhavani, Nisha
  organization: Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre
– sequence: 5
  givenname: Sheela
  surname: Nampoothiri
  fullname: Nampoothiri, Sheela
  organization: Department of Paediatric Genetics, Amrita Institute of Medical Sciences
– sequence: 6
  givenname: Dhanya
  surname: Yesodharan
  fullname: Yesodharan, Dhanya
  organization: Department of Paediatric Genetics, Amrita Institute of Medical Sciences
– sequence: 7
  givenname: Reshma
  surname: Kumaran
  fullname: Kumaran, Reshma
  organization: Paediatric Clinical Genetics Laboratory, Amrita Institute of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36952211$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk2P0zAQjdAitrvwBzggH9tDWNv5NLeqwBapsEjA2XKcSetVagfbgeafc2RKdi8c9mJbfm_ezOi9q-TCOgtJ8prRt4zS6ibknFKaUp6llOZ5kVbPkgUvOE3rirOLZMEYFWlGhbhMrkK4p7QsRM1eJJdZKQrOGVskfzYuxBS6DnQ0v4Dswbo4DcbuSec80b0KwWjVE-0sYibiU7UeLN6HaQA_IMMostystyvSjkCiI5ylh6n17jQhCKSFzmgDVk9kidDd9v2KGEs8BDd6DengsFOAGLFreEeOYx_N0MOJ9GavonGWDN41QNRx6A1KzX_Lz7uv6xX5beLh5ny4MaLIzxFsNDichVNMcWLwM32G9Hmx5Zfbb6uXyfNO9QFePdzXyY-PH75vtunu7vbTZr1LdZZXMS2EAsaqjGcZL5u8pbyjJWtopdu6a7OyFSovEWtrUdddw6AqG8WhKqDVlRY6u06Wsy7ugBOEKI8maOh7ZcGNQfJKoHlC5BVS3zxQx-YIrRy8OSo_yUe3kFDPBO1dCB46qdGQ83rRK9NLRuU5GHIOhsRgyH_BkGdt_l_po_qTRdlcFJCM9nt5j46h9eGpqr8FmM8w
CitedBy_id crossref_primary_10_4103_ijem_ijem_303_23
crossref_primary_10_1007_s13312_024_3296_8
crossref_primary_10_1007_s42000_023_00452_8
crossref_primary_10_1007_s12020_024_03747_x
Cites_doi 10.1038/sj.gt.3301018
10.1016/j.celrep.2018.01.003
10.1093/bioinformatics/btp352
10.1002/humu.23351
10.1093/bioinformatics/btp698
10.1210/jcem.85.3.6441
10.1210/jc.2012-3343
10.1210/jc.2002-021681
10.1186/1472-6823-11-5
10.3275/8648
10.1007/s004390050436
10.1016/j.ymgme.2005.11.015
10.1530/eje.1.01944
10.1016/s0889-8529(08)70017-3
10.1016/j.cca.2016.11.037
10.1007/s12020-020-02494-z
10.1172/JCI115897
10.1097/00008480-199708000-00018
10.1530/EJE-16-0171
10.1210/jcem.87.6.8522
10.1016/j.beem.2008.10.014
10.1016/S0021-9258(17)45304-X
10.1101/gr.107524.110
10.1210/jcem.78.5.8175971
10.3389/fendo.2019.00432
10.2165/00129785-200101020-00003
10.1038/s41431-020-0653-5
10.1210/jc.2006-2163
10.1093/nar/gks1048
10.4103/2230-8210.95679
10.1080/09723757.2017.1383647
10.1111/j.1365-2265.2011.04123.x
10.1007/s12098-018-2645-9
10.1073/pnas.1300057110
10.1515/jpem.2001.14.1.27
10.1093/bioinformatics/btq330
10.1016/j.steroids.2016.01.007
10.1507/endocrj.EJ16-0112
10.1074/jbc.274.17.12147
10.1016/j.ejmg.2021.104369
10.1210/jc.2009-2631
10.1093/oxfordjournals.jbchem.a123433
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Hellenic Endocrine Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Hellenic Endocrine Society.
Copyright_xml – notice: The Author(s), under exclusive licence to Hellenic Endocrine Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Hellenic Endocrine Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s42000-023-00445-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2520-8721
EndPage 320
ExternalDocumentID 36952211
10_1007_s42000_023_00445_7
Genre Journal Article
GrantInformation_xml – fundername: Amrita Vishwa Vidyapeetham University
  funderid: http://dx.doi.org/10.13039/100009526
GroupedDBID ---
-EM
0R~
406
53G
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADBBV
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BAWUL
BGNMA
CSCUP
DIK
DPUIP
EBLON
EBS
EJD
F5P
FIGPU
FINBP
FNLPD
FRP
FSGXE
GGCAI
HG6
IKXTQ
IWAJR
J-C
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
TR2
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABRTQ
ID FETCH-LOGICAL-c347t-59ae117323326b4d02f061b07cd8fd36d9a46332d8988fb1e76ba2e75edc7c9c3
ISSN 1109-3099
2520-8721
IngestDate Tue Aug 05 10:00:41 EDT 2025
Wed Feb 19 02:23:37 EST 2025
Thu Apr 24 22:56:37 EDT 2025
Tue Jul 01 03:52:07 EDT 2025
Fri Feb 21 02:43:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Variant
Deletion
Duplication
South India
Salt wasting
Simple virilizing
Language English
License 2023. The Author(s), under exclusive licence to Hellenic Endocrine Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-59ae117323326b4d02f061b07cd8fd36d9a46332d8988fb1e76ba2e75edc7c9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2678-8847
PMID 36952211
PQID 2790049947
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2790049947
pubmed_primary_36952211
crossref_citationtrail_10_1007_s42000_023_00445_7
crossref_primary_10_1007_s42000_023_00445_7
springer_journals_10_1007_s42000_023_00445_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
PublicationSubtitle International Journal of Endocrinology and Metabolism
PublicationTitle Hormones (Athens, Greece)
PublicationTitleAbbrev Hormones
PublicationTitleAlternate Hormones (Athens)
PublicationYear 2023
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Wang, Yu, Ye, Han, Qiu, Zhang (CR35) 2016; 108
Koyama, Toyoura, Saisho, Shimozawa, Yata (CR37) 2002; 87
Wedell, Thilén, Ritzén, Stengler, Luthman (CR39) 1994; 78
Friães, Rêgo, Aragües, Moura, Mirante, Mascarenhas (CR41) 2006; 88
Therrell (CR3) 2001; 30
Marumudi, Sharma, Kulshreshtha, Khadgawat, Khurana, Ammini (CR15) 2012; 16
Ravichandran, Korula, Asha, Varghese, Parthiban, Johnson (CR19) 2021; 64
Li, Durbin (CR20) 2010; 26
McLaren, Pritchard, Rios, Chen, Flicek, Cunningham (CR24) 2010; 26
Gangodkar, Khadilkar, Raghupathy, Kumar, Dayal, Dayal (CR18) 2021; 71
Baumgartner-Parzer, Witsch-Baumgartner, Hoeppner (CR13) 2020; 28
New, Abraham, Gonzalez, Dumic, Razzaghy-Azar, Chitayat (CR29) 2013; 110
Yang, Mendoza, Welch, Zipf, Yu (CR6) 1999; 274
Khajuria, Walia, Bhansali, Prasad (CR16) 2017; 464
Balraj, Lim, Sidek, Wu, Khoo (CR36) 2013; 36
Meyer, Zweig, Hinrichs, Karolchik, Kuhn, Wong (CR21) 2013; 41
Nageshwari, Dhivakar, Balakrishnan, Selvan, Kumaravel (CR17) 2017; 17
Krone, Arlt (CR5) 2009; 23
Tusie-Luna, Traktman, White (CR7) 1990; 265
Araújo, Mendonca, Barbosa, Lin, Marcondes, Billerbeck (CR33) 2007; 92
Simonetti, Bruque, Fernandez, Benavides-Mori, Delea, Kolomenski (CR9) 2018; 39
Speiser, Dupont, Zhu, Serrat, Buegeleisen, Tusie-Luna (CR32) 1992; 90
Khan, Aban, Raza, Haq, Jabbar, Moatter (CR34) 2011; 11
Li, Handsaker, Wysoker, Fennell, Ruan, Homer (CR23) 2009; 25
Lajic, Levo, Nikoshkov, Lundberg, Partanen, Wedell (CR27) 1997; 99
Krone, Rose, Willis, Hodson, Wild, Doherty (CR40) 2013; 98
(CR4) 2018; 85
Speiser (CR8) 2001; 1
Higashi, Hiromasa, Tanae, Miki, Nakura, Kondo (CR26) 1991; 109
Naiki, Miyado, Horikawa, Katsumata, Onodera, Pang (CR11) 2016; 63
McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky (CR22) 2010; 20
Stikkelbroeck, Hoefsloot, de Wijs, Otten, Hermus, Sistermans (CR28) 2003; 88
Mathur, Menon, Kabra, Goyal, Verma (CR14) 2001; 14
Ruiz-Babot, Balyura, Hadjidemetriou, Ajodha, Taylor, Ghataore, Taylor (CR12) 2020; 22
Pang, Shook (CR2) 1997; 9
Pignatelli, Carvalho, Palmeiro, Barros, Guerreiro, Maçut (CR25) 2019; 10
Marino, Ramirez, Galeano, Perez Garrido, Rocco, Ciaccio, Warman (CR42) 2011; 75
Speiser, Azziz, Baskin, Ghizzoni, Hensle, Merke (CR1) 2010; 95
Dolzan, Sólyom, Fekete, Kovács, Rakosnikova, Votava (CR38) 2005; 153
Krone, Braun, Roscher, Knorr, Schwarz (CR31) 2009; 85
Tajima, Okada, Ma, Ramsey, Bornstein, Aguilera (CR10) 1999; 6
de Carvalho, Miranda, Gomes, Madureira, Marcondes, Billerbeck (CR30) 2016; 175
N Krone (445_CR31) 2009; 85
PW Speiser (445_CR8) 2001; 1
L Simonetti (445_CR9) 2018; 39
G Ruiz-Babot (445_CR12) 2020; 22
R Marino (445_CR42) 2011; 75
S Pang (445_CR2) 1997; 9
R Khajuria (445_CR16) 2017; 464
BL Therrell (445_CR3) 2001; 30
NM Stikkelbroeck (445_CR28) 2003; 88
A Wedell (445_CR39) 1994; 78
H Li (445_CR23) 2009; 25
MT Tusie-Luna (445_CR7) 1990; 265
ICMR Task Force on Inherited Metabolic Disorders (445_CR4) 2018; 85
N Krone (445_CR5) 2009; 23
E Marumudi (445_CR15) 2012; 16
RS Araújo (445_CR33) 2007; 92
Y Higashi (445_CR26) 1991; 109
P Gangodkar (445_CR18) 2021; 71
Y Naiki (445_CR11) 2016; 63
Z Yang (445_CR6) 1999; 274
S Koyama (445_CR37) 2002; 87
N Krone (445_CR40) 2013; 98
L Ravichandran (445_CR19) 2021; 64
MI New (445_CR29) 2013; 110
D Pignatelli (445_CR25) 2019; 10
AH Khan (445_CR34) 2011; 11
P Balraj (445_CR36) 2013; 36
H Li (445_CR20) 2010; 26
DF de Carvalho (445_CR30) 2016; 175
PW Speiser (445_CR32) 1992; 90
T Tajima (445_CR10) 1999; 6
S Baumgartner-Parzer (445_CR13) 2020; 28
A McKenna (445_CR22) 2010; 20
R Nageshwari (445_CR17) 2017; 17
R Mathur (445_CR14) 2001; 14
LR Meyer (445_CR21) 2013; 41
R Wang (445_CR35) 2016; 108
V Dolzan (445_CR38) 2005; 153
PW Speiser (445_CR1) 2010; 95
W McLaren (445_CR24) 2010; 26
A Friães (445_CR41) 2006; 88
S Lajic (445_CR27) 1997; 99
References_xml – volume: 6
  start-page: 1898
  year: 1999
  end-page: 1903
  ident: CR10
  article-title: Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochromeP450 21-hydroxylase into the adrenal gland of 21-hydroxylase-deficient mice
  publication-title: Gene Ther
  doi: 10.1038/sj.gt.3301018
– volume: 22
  start-page: 1236
  year: 2020
  end-page: 1249
  ident: CR12
  article-title: Modeling congenital adrenal hyperplasia and testing interventions for adrenal insufficiency using donor-specific reprogrammed cells
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.01.003
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: CR23
  article-title: The sequence alignment/map format and SAM tools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 39
  start-page: 5
  year: 2018
  end-page: 22
  ident: CR9
  article-title: CYP21A2 mutation update: comprehensive analysis of databases and published genetic variants
  publication-title: Hum Mutat
  doi: 10.1002/humu.23351
– volume: 26
  start-page: 589
  year: 2010
  end-page: 595
  ident: CR20
  article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp698
– volume: 85
  start-page: 1059
  year: 2009
  end-page: 1065
  ident: CR31
  article-title: Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.85.3.6441
– volume: 98
  start-page: E346
  year: 2013
  end-page: E354
  ident: CR40
  article-title: Genotype-phenotype correlation in 153 adult patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: analysis of the United Kingdom congenital adrenal hyperplasia adult study executive (CaHASE) cohort
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2012-3343
– volume: 88
  start-page: 3852
  year: 2003
  end-page: 3859
  ident: CR28
  article-title: CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in The Netherlands: six novel mutations and a specific cluster of four mutations
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2002-021681
– volume: 11
  start-page: 1
  year: 2011
  end-page: 6
  ident: CR34
  article-title: Ethnic disparity in 21-hydroxylase gene mutations identified in Pakistani congenital adrenal hyperplasia patients
  publication-title: BMC Endocr Disord
  doi: 10.1186/1472-6823-11-5
– volume: 36
  start-page: 366
  year: 2013
  end-page: 374
  ident: CR36
  article-title: Mutational characterization of congenital adrenal hyperplasia due to 21-hydroxylase deficiency in Malaysia
  publication-title: J Endocrinol Invest
  doi: 10.3275/8648
– volume: 99
  start-page: 704
  year: 1997
  end-page: 709
  ident: CR27
  article-title: A cluster of missense mutations at Arg356 of human steroid 21-hydroxylase may impair redox partner interaction
  publication-title: Hum Genet
  doi: 10.1007/s004390050436
– volume: 88
  start-page: 58
  year: 2006
  end-page: 65
  ident: CR41
  article-title: CYP21A2 mutations in Portuguese patients with congenital adrenal hyperplasia: identification of two novel mutations and characterization of four different partial gene conversions
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2005.11.015
– volume: 153
  start-page: 99
  year: 2005
  end-page: 106
  ident: CR38
  article-title: Mutational spectrum of steroid 21-hydroxylase and the genotype phenotype association in Middle European patients with congenital adrenal hyperplasia
  publication-title: Eur J Endocrinol
  doi: 10.1530/eje.1.01944
– volume: 30
  start-page: 15
  year: 2001
  end-page: 30
  ident: CR3
  article-title: Newborn screening for congenital adrenal hyperplasia
  publication-title: Endocrinol Metab Clin North Am
  doi: 10.1016/s0889-8529(08)70017-3
– volume: 464
  start-page: 189
  year: 2017
  end-page: 194
  ident: CR16
  article-title: The spectrum of CYP21A2 mutations in congenital adrenal hyperplasia in an Indian cohort
  publication-title: Clin Chim Acta
  doi: 10.1016/j.cca.2016.11.037
– volume: 71
  start-page: 189
  year: 2021
  end-page: 198
  ident: CR18
  article-title: Clinical application of a novel next generation sequencing assay for CYP21A2 gene in 310 cases of 21-hydroxylase congenital adrenal hyperplasia from India
  publication-title: Endocrine
  doi: 10.1007/s12020-020-02494-z
– volume: 90
  start-page: 584
  year: 1992
  end-page: 595
  ident: CR32
  article-title: Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency
  publication-title: J Clin Invest
  doi: 10.1172/JCI115897
– volume: 9
  start-page: 419
  year: 1997
  end-page: 423
  ident: CR2
  article-title: Status of neonatal screening for congenital adrenal hyperplasia
  publication-title: Curr Opin Pediatr
  doi: 10.1097/00008480-199708000-00018
– volume: 175
  start-page: 107
  year: 2016
  end-page: 116
  ident: CR30
  article-title: Molecular CYP21A2 diagnosis in 480 Brazilian patients with congenital adrenal hyperplasia before newborn screening introduction
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-16-0171
– volume: 87
  start-page: 2668
  year: 2002
  end-page: 2673
  ident: CR37
  article-title: Genetic analysis of Japanese patients with 21-hydroxylase deficiency: identification of a patient with a new mutation of a homozygous deletion of adenine at codon 246 and patients without demonstrable mutations within the structural gene for CYP21
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.87.6.8522
– volume: 23
  start-page: 181
  year: 2009
  end-page: 192
  ident: CR5
  article-title: Genetics of congenital adrenal hyperplasia
  publication-title: Best Pract Res Clin Endocrinol Metab
  doi: 10.1016/j.beem.2008.10.014
– volume: 265
  start-page: 20916
  year: 1990
  end-page: 20922
  ident: CR7
  article-title: Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)45304-X
– volume: 20
  start-page: 1297
  year: 2010
  end-page: 1303
  ident: CR22
  article-title: The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 78
  start-page: 1145
  year: 1994
  end-page: 1152
  ident: CR39
  article-title: Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.78.5.8175971
– volume: 10
  start-page: 432
  year: 2019
  ident: CR25
  article-title: The complexities in genotyping of congenital adrenal hyperplasia: 21-hydroxylase deficiency
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2019.00432
– volume: 1
  start-page: 101
  year: 2001
  end-page: 110
  ident: CR8
  article-title: Molecular diagnosis of CYP21 mutations in congenital adrenal hyperplasia: implications for genetic counseling
  publication-title: Am J Pharmacogenomics
  doi: 10.2165/00129785-200101020-00003
– volume: 28
  start-page: 1341
  year: 2020
  end-page: 1367
  ident: CR13
  article-title: EMQN best practice guidelines for molecular genetic testing and reporting of 21-hydroxylase deficiency
  publication-title: Eur J Hum Genet
  doi: 10.1038/s41431-020-0653-5
– volume: 92
  start-page: 4028
  year: 2007
  end-page: 4034
  ident: CR33
  article-title: Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2006-2163
– volume: 41
  start-page: D64
  year: 2013
  end-page: 69
  ident: CR21
  article-title: The UCSC genome browser database: extensions and updates
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1048
– volume: 16
  start-page: 384
  year: 2012
  end-page: 388
  ident: CR15
  article-title: Molecular genetic analysis of CYP21A2 gene in patients with congenital adrenal hyperplasia
  publication-title: Indian J Endocr Metab
  doi: 10.4103/2230-8210.95679
– volume: 17
  start-page: 103
  year: 2017
  end-page: 108
  ident: CR17
  article-title: Common CYP21A2 gene mutations in South Indian congenital adrenal hyperplasia patients
  publication-title: Int J Hum Genet
  doi: 10.1080/09723757.2017.1383647
– volume: 75
  start-page: 427
  year: 2011
  end-page: 435
  ident: CR42
  article-title: Steroid 21-hydroxylase gene mutational spectrum in 454 Argentinean patients: genotype-phenotype correlation in a large cohort of patients with congenital adrenal hyperplasia
  publication-title: Clin Endocrinol
  doi: 10.1111/j.1365-2265.2011.04123.x
– volume: 85
  start-page: 935
  year: 2018
  end-page: 940
  ident: CR4
  article-title: Newborn screening for congenital hypothyroidism and congenital adrenal hyperplasia
  publication-title: Indian J Pediatr
  doi: 10.1007/s12098-018-2645-9
– volume: 110
  start-page: 2611
  year: 2013
  end-page: 2616
  ident: CR29
  article-title: Genotype–phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1300057110
– volume: 14
  start-page: 27
  year: 2001
  end-page: 35
  ident: CR14
  article-title: Molecular characterization of mutations in Indian children with congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency
  publication-title: J Pediatr Endocrinol Metab
  doi: 10.1515/jpem.2001.14.1.27
– volume: 26
  start-page: 2069
  year: 2010
  end-page: 2070
  ident: CR24
  article-title: Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor-PubMed
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq330
– volume: 108
  start-page: 47
  year: 2016
  end-page: 55
  ident: CR35
  article-title: 21-hydroxylase deficiency-induced congenital adrenal hyperplasia in 230 Chinese patients: genotype–phenotype correlation and identification of nine novel mutations
  publication-title: Steroids
  doi: 10.1016/j.steroids.2016.01.007
– volume: 63
  start-page: 897
  year: 2016
  end-page: 904
  ident: CR11
  article-title: Extra-adrenal induction of Cyp21a1 ameliorates systemic steroid metabolism in a mouse model of congenital adrenal hyperplasia
  publication-title: Endocr J
  doi: 10.1507/endocrj.EJ16-0112
– volume: 274
  start-page: 12147
  year: 1999
  end-page: 12156
  ident: CR6
  article-title: Modular variations of the human major histocompatibility complex class III genes for serine/threonine kinase RP, complement component C4, steroid 21-hydroxylase CYP21, and tenascin TNX (the RCCX module). A mechanism for gene deletions and disease associations
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.17.12147
– volume: 64
  start-page: 104369
  year: 2021
  ident: CR19
  article-title: Allele-specific PCR and next-generation sequencing based genetic screening for congenital adrenal hyperplasia in India
  publication-title: Eur J Med Genet
  doi: 10.1016/j.ejmg.2021.104369
– volume: 95
  start-page: 4133
  year: 2010
  end-page: 4160
  ident: CR1
  article-title: Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2009-2631
– volume: 109
  start-page: 638
  year: 1991
  end-page: 644
  ident: CR26
  article-title: Effects of individual mutations in the P-450(C21) pseudogene on the P-450(C21) activity and their distribution in the patient genomes of congenital steroid 21-hydroxylase deficiency
  publication-title: J Biochem
  doi: 10.1093/oxfordjournals.jbchem.a123433
– volume: 85
  start-page: 1059
  year: 2009
  ident: 445_CR31
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.85.3.6441
– volume: 88
  start-page: 58
  year: 2006
  ident: 445_CR41
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2005.11.015
– volume: 88
  start-page: 3852
  year: 2003
  ident: 445_CR28
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2002-021681
– volume: 16
  start-page: 384
  year: 2012
  ident: 445_CR15
  publication-title: Indian J Endocr Metab
  doi: 10.4103/2230-8210.95679
– volume: 464
  start-page: 189
  year: 2017
  ident: 445_CR16
  publication-title: Clin Chim Acta
  doi: 10.1016/j.cca.2016.11.037
– volume: 10
  start-page: 432
  year: 2019
  ident: 445_CR25
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2019.00432
– volume: 109
  start-page: 638
  year: 1991
  ident: 445_CR26
  publication-title: J Biochem
  doi: 10.1093/oxfordjournals.jbchem.a123433
– volume: 78
  start-page: 1145
  year: 1994
  ident: 445_CR39
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.78.5.8175971
– volume: 90
  start-page: 584
  year: 1992
  ident: 445_CR32
  publication-title: J Clin Invest
  doi: 10.1172/JCI115897
– volume: 85
  start-page: 935
  year: 2018
  ident: 445_CR4
  publication-title: Indian J Pediatr
  doi: 10.1007/s12098-018-2645-9
– volume: 23
  start-page: 181
  year: 2009
  ident: 445_CR5
  publication-title: Best Pract Res Clin Endocrinol Metab
  doi: 10.1016/j.beem.2008.10.014
– volume: 110
  start-page: 2611
  year: 2013
  ident: 445_CR29
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1300057110
– volume: 274
  start-page: 12147
  year: 1999
  ident: 445_CR6
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.17.12147
– volume: 14
  start-page: 27
  year: 2001
  ident: 445_CR14
  publication-title: J Pediatr Endocrinol Metab
  doi: 10.1515/jpem.2001.14.1.27
– volume: 20
  start-page: 1297
  year: 2010
  ident: 445_CR22
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 71
  start-page: 189
  year: 2021
  ident: 445_CR18
  publication-title: Endocrine
  doi: 10.1007/s12020-020-02494-z
– volume: 64
  start-page: 104369
  year: 2021
  ident: 445_CR19
  publication-title: Eur J Med Genet
  doi: 10.1016/j.ejmg.2021.104369
– volume: 92
  start-page: 4028
  year: 2007
  ident: 445_CR33
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2006-2163
– volume: 11
  start-page: 1
  year: 2011
  ident: 445_CR34
  publication-title: BMC Endocr Disord
  doi: 10.1186/1472-6823-11-5
– volume: 75
  start-page: 427
  year: 2011
  ident: 445_CR42
  publication-title: Clin Endocrinol
  doi: 10.1111/j.1365-2265.2011.04123.x
– volume: 28
  start-page: 1341
  year: 2020
  ident: 445_CR13
  publication-title: Eur J Hum Genet
  doi: 10.1038/s41431-020-0653-5
– volume: 22
  start-page: 1236
  year: 2020
  ident: 445_CR12
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.01.003
– volume: 30
  start-page: 15
  year: 2001
  ident: 445_CR3
  publication-title: Endocrinol Metab Clin North Am
  doi: 10.1016/s0889-8529(08)70017-3
– volume: 87
  start-page: 2668
  year: 2002
  ident: 445_CR37
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.87.6.8522
– volume: 1
  start-page: 101
  year: 2001
  ident: 445_CR8
  publication-title: Am J Pharmacogenomics
  doi: 10.2165/00129785-200101020-00003
– volume: 63
  start-page: 897
  year: 2016
  ident: 445_CR11
  publication-title: Endocr J
  doi: 10.1507/endocrj.EJ16-0112
– volume: 98
  start-page: E346
  year: 2013
  ident: 445_CR40
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2012-3343
– volume: 25
  start-page: 2078
  year: 2009
  ident: 445_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 95
  start-page: 4133
  year: 2010
  ident: 445_CR1
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2009-2631
– volume: 175
  start-page: 107
  year: 2016
  ident: 445_CR30
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-16-0171
– volume: 36
  start-page: 366
  year: 2013
  ident: 445_CR36
  publication-title: J Endocrinol Invest
  doi: 10.3275/8648
– volume: 153
  start-page: 99
  year: 2005
  ident: 445_CR38
  publication-title: Eur J Endocrinol
  doi: 10.1530/eje.1.01944
– volume: 6
  start-page: 1898
  year: 1999
  ident: 445_CR10
  publication-title: Gene Ther
  doi: 10.1038/sj.gt.3301018
– volume: 108
  start-page: 47
  year: 2016
  ident: 445_CR35
  publication-title: Steroids
  doi: 10.1016/j.steroids.2016.01.007
– volume: 9
  start-page: 419
  year: 1997
  ident: 445_CR2
  publication-title: Curr Opin Pediatr
  doi: 10.1097/00008480-199708000-00018
– volume: 26
  start-page: 589
  year: 2010
  ident: 445_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp698
– volume: 41
  start-page: D64
  year: 2013
  ident: 445_CR21
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1048
– volume: 265
  start-page: 20916
  year: 1990
  ident: 445_CR7
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)45304-X
– volume: 39
  start-page: 5
  year: 2018
  ident: 445_CR9
  publication-title: Hum Mutat
  doi: 10.1002/humu.23351
– volume: 17
  start-page: 103
  year: 2017
  ident: 445_CR17
  publication-title: Int J Hum Genet
  doi: 10.1080/09723757.2017.1383647
– volume: 26
  start-page: 2069
  year: 2010
  ident: 445_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq330
– volume: 99
  start-page: 704
  year: 1997
  ident: 445_CR27
  publication-title: Hum Genet
  doi: 10.1007/s004390050436
SSID ssj0065981
Score 2.3137178
Snippet Purpose Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond...
Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 311
SubjectTerms Adrenal Hyperplasia, Congenital - diagnosis
Adrenal Hyperplasia, Congenital - genetics
Cost-Benefit Analysis
Endocrinology
Genotype
High-Throughput Nucleotide Sequencing
Humans
Medicine
Medicine & Public Health
Metabolic Diseases
Mutation
Original Article
Steroid 21-Hydroxylase - genetics
Title Cost-effective genotyping for classical congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) in resource-poor settings: multiplex ligation probe amplification (MLPA) with/without sequential next-generation sequencing (NGS)
URI https://link.springer.com/article/10.1007/s42000-023-00445-7
https://www.ncbi.nlm.nih.gov/pubmed/36952211
https://www.proquest.com/docview/2790049947
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF71kFBfEFCOcGmQEEpUXOL1zVtaKBGiJRKt1Ddrba9JRetEsV0ov5xHZtbrIwQq4CWJ7PU60nyfd3b8zQxjzx2eStPzpOHEXBh2ajtGZMapkbixdJIEPQapqn0eueMT-_2pc7q2bnRUS2UR7cbff5tX8j9WxWNoV8qS_QfLNpPiAfyN9sVPtDB-_pWN92d5YVSKDBIAUb3V4mpeayNjcox1ARDKoKL2IDuCMrcp_xH3n4u5yqFUL3JHY4oPJKXqpMFNY3qVkMAFB1BiFZWZUDmaOBRPfhy_odEqFaaK_hvzGd4xl0pFrVR2tVLx2865quIxU1owUnaQhj3VoUKa8PDDZETTfVUxngP6IrF0JfIuKKKf0fb8syqQrS7S-m8d5Th696mOZ2gve4yOOPUgoLMjKu-Q63QcGctO6OOQKnOd6USfrFmfJuIS_8KiigxPqD2TzFot8KQspuWXkuK8QvVoIgVROV-IXCRNbGMqLqteWci0fCq6oRVutRKwXakewdzBzbXvVTnc9XrBeYcXvPPwt6plY2VRqnQouV1l8dNthjZywusORsPMLxRMLTdAn1ivQMulwOtT62yT466Ib7DN0cHe3lHterhO4Js6M0zlh67ccovdqCdZdsRWdlcrygDlcB3fYjf1TglGFexvszWZ3WHbaKdidnEFL0Bpl9VLoW32Y5kJ0DIBkAnQMAFaJoBmAnSYAH3kwQCQBVDMYJkF0LIA-hUHBnCWwRIDoGbAa2jwDzX-QeEflvAPfUL_AAj0rzTyoUU-_IJ8aJEPfcT94C47OXh7vD82dE8TI7ZsrzCcQEjT9Cxu4b4pspMhT9GjjoZenPhpYrlJIGwXzyV-4PtpZErPjQSXniOT2IuD2LrHNjJk0AMGqU2tEfgQZ0zsRMbCS_GqKBWxF0jX9nvMrA0cxrrgP_WdOQ-bUuUKHyHiI1T4CL0e22mumVflbq4d_azGTYirEr1qFJmclXnIvUAFU2wcc78CVDNfDcAee1kjLNQP1fyamz3840SP2FbL3sdso1iU8gluFYroqSbIT_OgF7w
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-effective+genotyping+for+classical+congenital+adrenal+hyperplasia+%28CAH%29+due+to+21-hydroxylase+deficiency+%2821-OHD%29+in+resource-poor+settings%3A+multiplex+ligation+probe+amplification+%28MLPA%29+with%2Fwithout+sequential+next-generation+sequencing+%28NGS%29&rft.jtitle=Hormones+%28Athens%2C+Greece%29&rft.au=Monteiro%2C+Ana&rft.au=Pavithran%2C+Praveen+V&rft.au=Puthukulangara%2C+Manuprasad&rft.au=Bhavani%2C+Nisha&rft.date=2023-06-01&rft.eissn=2520-8721&rft.volume=22&rft.issue=2&rft.spage=311&rft_id=info:doi/10.1007%2Fs42000-023-00445-7&rft_id=info%3Apmid%2F36952211&rft.externalDocID=36952211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1109-3099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1109-3099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1109-3099&client=summon