TSA-SCC: Text Semantic-Aware Screen Content Coding With Ultra Low Bitrate
Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information avera...
Saved in:
Published in | IEEE transactions on image processing Vol. 31; pp. 2463 - 2477 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates. |
---|---|
AbstractList | Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to 3× at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates.Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to 3× at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates. Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates. Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to [Formula Omitted] at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates. Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to 3× at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates. |
Author | Tang, Tong Li, Ling Chen, Ruizhi Cheng, Limin Lu, Guo Wu, Xiaoyu Li, Haochen |
Author_xml | – sequence: 1 givenname: Tong orcidid: 0000-0003-0616-2003 surname: Tang fullname: Tang, Tong email: tangtong@cqupt.edu.cn organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, the Advanced Network and Intelligent Interconnection Technology Key Laboratory of Chongqing Education Commission of China, and the Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, China – sequence: 2 givenname: Ling orcidid: 0000-0001-8877-9052 surname: Li fullname: Li, Ling email: liling@iscas.ac.cn organization: Chinese Academy of Sciences, Institute of Software, Beijing, China – sequence: 3 givenname: Xiaoyu surname: Wu fullname: Wu, Xiaoyu email: xiaoyu2019@iscas.ac.cn organization: Chinese Academy of Sciences, Institute of Software, Beijing, China – sequence: 4 givenname: Ruizhi orcidid: 0000-0001-7219-4658 surname: Chen fullname: Chen, Ruizhi email: ruizhi@iscas.ac.cn organization: Chinese Academy of Sciences, Institute of Software, Beijing, China – sequence: 5 givenname: Haochen orcidid: 0000-0003-0813-6351 surname: Li fullname: Li, Haochen email: haochen2021@iscas.ac.cn organization: Chinese Academy of Sciences, Institute of Software, Beijing, China – sequence: 6 givenname: Guo surname: Lu fullname: Lu, Guo email: sdluguo@gmail.com organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 7 givenname: Limin surname: Cheng fullname: Cheng, Limin email: chenglimin@iscas.ac.cn organization: Chinese Academy of Sciences, Institute of Software, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35196232$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1r20AQxZeS0iRu74VCEfTSi5yZ_dBKvbmiHwZDA3bocVmtR-0GeZWu1iT977PGTg859DTv8HuP4b1LdhbGQIy9RZgjQnO1WV7POXA-F6g4gHjBLrCRWAJIfpY1KF1qlM05u5ymWwCUCqtX7FwobCou-AVbbtaLct22n4oNPaRiTTsbknfl4t5GKtYuEoWiHUOikPLd-vCr-OnT7-JmSNEWq_G--OyzSvSaveztMNGb052xm69fNu33cvXj27JdrEonpE6lJLSyol7XFfSge-u00FJosVXUdTXaukbVqabvVF2hbVTHVd0J3HJ0neVOzNjHY-5dHP_saUpm5ydHw2ADjfvJ8ErwGvkhcsY-PENvx30M-btMydxRA0Jm6v2J2nc72pq76Hc2_jVPJWWgOgIujtMUqTfOJ5t8biVaPxgEc1jD5DXMYQ1zWiMb4ZnxKfs_lndHiyeif3ijOSAH8QhcL5CA |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1016_j_dcan_2023_09_001 crossref_primary_10_1109_TVT_2023_3241959 crossref_primary_10_1109_TVT_2023_3234141 crossref_primary_10_1109_TGRS_2023_3315725 crossref_primary_10_1109_TMM_2024_3410116 crossref_primary_10_1007_s11036_023_02101_1 crossref_primary_10_1109_TVT_2023_3277191 crossref_primary_10_1109_TCSVT_2024_3379675 crossref_primary_10_3390_electronics12010112 crossref_primary_10_3390_electronics14020221 crossref_primary_10_1016_j_vehcom_2023_100648 crossref_primary_10_3390_s23156711 crossref_primary_10_1109_TCSVT_2024_3473543 crossref_primary_10_3390_electronics12132873 crossref_primary_10_1109_TMM_2023_3323895 crossref_primary_10_1007_s11276_022_03138_y crossref_primary_10_1109_JIOT_2022_3199937 crossref_primary_10_1016_j_patrec_2025_03_006 crossref_primary_10_3389_fmars_2023_1134286 crossref_primary_10_1109_TKDE_2024_3485108 crossref_primary_10_1109_TWC_2023_3290769 crossref_primary_10_1155_2022_4992957 crossref_primary_10_1016_j_displa_2024_102865 crossref_primary_10_1109_JIOT_2023_3264826 crossref_primary_10_1016_j_eswa_2022_118237 crossref_primary_10_1109_JIOT_2023_3281360 crossref_primary_10_1002_ett_4847 crossref_primary_10_1016_j_dcan_2024_05_003 crossref_primary_10_1109_JIOT_2023_3241984 crossref_primary_10_1016_j_patrec_2022_08_011 crossref_primary_10_1109_JIOT_2023_3280956 crossref_primary_10_1155_2022_3513063 |
Cites_doi | 10.1109/TCYB.2020.3024627 10.1117/12.334618 10.1109/TIP.2005.849776 10.1109/76.735380 10.1109/TCSVT.2017.2689032 10.1109/ICIP.2006.312816 10.1109/CVPR.2016.90 10.1109/ICIP.2000.899498 10.1109/ICIP.2014.7026124 10.1145/2733373.2806219 10.1109/ICME.2006.262624 10.1109/CVPR.2018.00619 10.1109/TIP.2017.2711279 10.1109/TCSVT.2012.2221191 10.1117/1.1469618 10.1109/TBC.2016.2623241 10.1145/103085.103089 10.1109/ICIP.2019.8803389 10.1109/ICASSP.2019.8683541 10.1016/0196-6774(85)90036-7 10.14209/sbrt.2007.31122 10.1117/1.482609 10.1109/TMM.2015.2512539 10.1109/ICIP.2001.958148 10.1109/APSIPA.2014.7041533 10.1109/ICASSP.2019.8683285 10.1109/ICDAR.2007.4376991 10.1109/ICDAR.1999.791865 10.1109/JETCAS.2016.2608971 10.1109/ICIP.2019.8803805 10.1109/ISPACS.2017.8266580 10.1109/TIP.2017.2735192 10.1109/PCS48520.2019.8954509 10.1109/CVPR.2019.00959 10.1109/TIP.2017.2718185 10.1109/83.862619 10.1109/ICIP.2007.4379161 10.1109/TIP.2015.2465145 10.1109/TCSVT.2003.815165 10.1109/CVPR.2017.283 10.1007/978-3-642-21458-5_6 10.1109/TMM.2019.2900168 10.1109/PCS.2012.6213345 10.1145/965105.807509 10.1109/ICME.2014.6890229 10.1109/TIP.2014.2355716 10.1117/1.1344590 10.1109/TIP.2009.2038636 10.1117/12.641557 10.1109/TIP.2018.2839890 10.1109/ICASSP.2013.6637945 10.1109/TMM.2014.2315782 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2022.3152003 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 2477 |
ExternalDocumentID | 35196232 10_1109_TIP_2022_3152003 9720120 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: NSF of China grantid: 61732020; 61672491 funderid: 10.13039/501100001809 – fundername: General Program of Chongqing Natural Science Foundation grantid: cstc2021jcyj-msxmX0032 funderid: 10.13039/501100005230 – fundername: Xplore Prize – fundername: Science and Technology Research Program of Chongqing Municipal Education Commission grantid: KJQN201900604 funderid: 10.13039/501100007957 – fundername: Strategic Priority Research Program of Chinese Academy of Sciences grantid: XDC05040200; XDC05040000 funderid: 10.13039/501100002367 – fundername: National Key Research and Development Program of China grantid: 2017YFA0700900; 2017YFA0700903 funderid: 10.13039/501100012166 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM PKN Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c347t-4e1a46ef7860f07fac7374373d5ebb81a8815b59fb5861a95b258b31d21cba2c3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 11:46:47 EDT 2025 Mon Jun 30 10:24:46 EDT 2025 Wed Feb 19 02:26:25 EST 2025 Tue Jul 01 02:03:27 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Wed Aug 27 02:48:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-4e1a46ef7860f07fac7374373d5ebb81a8815b59fb5861a95b258b31d21cba2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0813-6351 0000-0001-8877-9052 0000-0003-0616-2003 0000-0001-7219-4658 |
PMID | 35196232 |
PQID | 2640429034 |
PQPubID | 85429 |
PageCount | 15 |
ParticipantIDs | pubmed_primary_35196232 crossref_citationtrail_10_1109_TIP_2022_3152003 proquest_miscellaneous_2632812437 ieee_primary_9720120 proquest_journals_2640429034 crossref_primary_10_1109_TIP_2022_3152003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 Bochkarev (ref50) 2012 ref52 ref11 ref55 ref10 ref17 ref16 ref19 ref18 Zacharias (ref43) 2020 (ref1) 2012 ref46 ref45 ref48 ref42 ref41 ref44 ref49 ref8 ref7 ref3 Baroncini (ref4) 2017 ref6 ref5 ref40 de Queiroz (ref9) 2005 ref35 ref34 ref37 (ref51) 2020 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 Bjontegaard (ref54) 2001 ref24 ref23 ref26 ref25 ref20 Levenshtein (ref61) 1966; 10 ref22 ref21 Oswal (ref47) 2016; 4 ref28 ref27 ref29 ref60 |
References_xml | – ident: ref60 doi: 10.1109/TCYB.2020.3024627 – ident: ref6 doi: 10.1117/12.334618 – ident: ref18 doi: 10.1109/TIP.2005.849776 – volume-title: Calculation of Average PSNR Differences Between RD-Curves year: 2001 ident: ref54 – ident: ref26 doi: 10.1109/76.735380 – volume-title: The New Multi-Screen World: Understanding Cross-Platform Consumer Behavior year: 2012 ident: ref1 – ident: ref20 doi: 10.1109/TCSVT.2017.2689032 – ident: ref29 doi: 10.1109/ICIP.2006.312816 – ident: ref45 doi: 10.1109/CVPR.2016.90 – ident: ref28 doi: 10.1109/ICIP.2000.899498 – volume: 4 start-page: 430 issue: 1 year: 2016 ident: ref47 article-title: Deflate compression algorithm publication-title: Int. J. Eng. Res. Gen. Sci. – ident: ref32 doi: 10.1109/ICIP.2014.7026124 – ident: ref44 doi: 10.1145/2733373.2806219 – ident: ref14 doi: 10.1109/ICME.2006.262624 – volume-title: Draft of Final Report on SCC Verification Test year: 2017 ident: ref4 – ident: ref41 doi: 10.1109/CVPR.2018.00619 – volume-title: arXiv:2004.08079 year: 2020 ident: ref43 article-title: Image processing based scene-text detection and recognition with tesseract – volume-title: arXiv:1208.6109 year: 2012 ident: ref50 article-title: Average word length dynamics as indicator of cultural changes in society – ident: ref57 doi: 10.1109/TIP.2017.2711279 – ident: ref23 doi: 10.1109/TCSVT.2012.2221191 – ident: ref52 doi: 10.1117/1.1469618 – ident: ref25 doi: 10.1109/TBC.2016.2623241 – ident: ref21 doi: 10.1145/103085.103089 – ident: ref12 doi: 10.1109/ICIP.2019.8803389 – ident: ref37 doi: 10.1109/ICASSP.2019.8683541 – ident: ref49 doi: 10.1016/0196-6774(85)90036-7 – ident: ref8 doi: 10.14209/sbrt.2007.31122 – ident: ref7 doi: 10.1117/1.482609 – ident: ref34 doi: 10.1109/TMM.2015.2512539 – ident: ref13 doi: 10.1109/ICIP.2001.958148 – ident: ref33 doi: 10.1109/APSIPA.2014.7041533 – ident: ref35 doi: 10.1109/ICASSP.2019.8683285 – ident: ref42 doi: 10.1109/ICDAR.2007.4376991 – ident: ref53 doi: 10.1109/ICDAR.1999.791865 – ident: ref5 doi: 10.1109/JETCAS.2016.2608971 – ident: ref38 doi: 10.1109/ICIP.2019.8803805 – ident: ref2 doi: 10.1109/ISPACS.2017.8266580 – ident: ref58 doi: 10.1109/TIP.2017.2735192 – ident: ref36 doi: 10.1109/PCS48520.2019.8954509 – ident: ref40 doi: 10.1109/CVPR.2019.00959 – ident: ref55 doi: 10.1109/TIP.2017.2718185 – ident: ref10 doi: 10.1109/83.862619 – ident: ref15 doi: 10.1109/ICIP.2007.4379161 – ident: ref3 doi: 10.1109/TIP.2015.2465145 – ident: ref22 doi: 10.1109/TCSVT.2003.815165 – ident: ref39 doi: 10.1109/CVPR.2017.283 – ident: ref48 doi: 10.1007/978-3-642-21458-5_6 – volume-title: The Document Image Compress Handbook year: 2005 ident: ref9 article-title: Compressing compound documents – ident: ref24 doi: 10.1109/TMM.2019.2900168 – volume: 10 start-page: 707 issue: 8 year: 1966 ident: ref61 article-title: Binary codes capable of correcting deletions, insertions, and reversals publication-title: Sov. Phys.-Dokl. – ident: ref30 doi: 10.1109/PCS.2012.6213345 – ident: ref46 doi: 10.1145/965105.807509 – ident: ref19 doi: 10.1109/ICME.2014.6890229 – ident: ref59 doi: 10.1109/TIP.2014.2355716 – volume-title: HEVC SCC Reference Software year: 2020 ident: ref51 – ident: ref11 doi: 10.1117/1.1344590 – ident: ref16 doi: 10.1109/TIP.2009.2038636 – ident: ref27 doi: 10.1117/12.641557 – ident: ref56 doi: 10.1109/TIP.2018.2839890 – ident: ref31 doi: 10.1109/ICASSP.2013.6637945 – ident: ref17 doi: 10.1109/TMM.2014.2315782 |
SSID | ssj0014516 |
Score | 2.551853 |
Snippet | Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2463 |
SubjectTerms | Bit rate Blurring Coding Computer & video games Encoding high efficiency video coding (HEVC) Image coding Image color analysis low bitrate Neural networks Object recognition Screen content coding (SCC) Semantics Text recognition text semantics Texts Video compression |
Title | TSA-SCC: Text Semantic-Aware Screen Content Coding With Ultra Low Bitrate |
URI | https://ieeexplore.ieee.org/document/9720120 https://www.ncbi.nlm.nih.gov/pubmed/35196232 https://www.proquest.com/docview/2640429034 https://www.proquest.com/docview/2632812437 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9te4IHBhsfhYGMxAsSbmM7jhPeSrVpQwwhtRV7i-zkIqptKepSTeKvx-d8iCFAPCVS7MTxnX2_89m_A3hjPUQtjFTc-emfx85F3BqVcF0mKDEhAhJaGjj_nJwu448X-mIH3g1nYRAxbD7DMd2GWH65Lra0VDbJjKSznruw6x239qzWEDGghLMhsqkNNx729yHJKJsszr54R1BK758SyRClzqG0dN7wyzvWKKRX-TvSDBbnZB_O-7a2G00ux9vGjYsfv9E4_u_PPIQHHfRk01ZXHsEO1gew38FQ1g3ymwO4_wtH4SGcLeZTPp_N3rOFn8fZHK-9LFYFn97aDfpatG-HBY6ruvFXMoXs66r5xpZXzcayT-tb9mEVKHAfw_LkeDE75V3-BV6o2DQ8RmHjBCuTJlEVmcoWRhmiQio1OpcKm6ZCO51VTqeJsJl2UqdOiVKKwllZqCewV69rfAZMxA6FcNZlpYu1w6zKPNRIPViLkhIxHsGkl0NedOTklCPjKg9OSpTlXog5CTHvhDiCt0ON7y0xxz_KHlL_D-W6rh_BUS_qvBu5N7kHiGSjI-Xb9Hp47MccBVJsjestlVGSgJEyI3jaqsjw7l6znv_5my_gHrWsXcQ5gr1ms8WXHtY07lXQ558xg-0B |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8QA8MNgYKwwwEi9IuE3sOE54KxVTC-2E1FTsLbKTi6jYUtSlmsRfjy-_BAgQT4kUO7n4zr7PPvs7gFfGQdRMC8mtG_55YK3HjZYhV3mIAkMiIKGlgcV5OF0FHy7UxR686c_CIGK9-QyHdFvH8vNNtqOlslGsBZ31vAW3nd9Xojmt1ccMKOVsHdtUmmsH_LugpBePktknNxUUws1QiWaIkudQYjrn-sUv_qhOsPJ3rFn7nLMDWHTSNltNvg53lR1m338jcvzf33kA91vwycaNtTyEPSwP4aAFoqzt5teHcO8nlsIjmCXLMV9OJm9Z4kZytsQrp411xsc3ZouuFu3cYTXLVVm5KzlD9nldfWGry2pr2Hxzw96taxLcR7A6e59MprzNwMAzGeiKB-ibIMRCR6FXeLowmZaayJByhdZGvokiX1kVF1ZFoW9iZYWKrPRz4WfWiEwew365KfEEmB9Y9H1rbJzbQFmMi9iBjcjBNS_MEYMBjDo9pFlLT05ZMi7TeprixalTYkpKTFslDuB1X-NbQ83xj7JH1P59ubbpB3DaqTpt--516iAieWlPOple9o9dr6NQiilxs6MyUhA0knoAjxsT6d_dWdaTP3_zBdyZJot5Op-df3wKd0nKZknnFPar7Q6fOZBT2ee1bf8AvLrwSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TSA-SCC%3A+Text+Semantic-Aware+Screen+Content+Coding+With+Ultra+Low+Bitrate&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Tang%2C+Tong&rft.au=Li%2C+Ling&rft.au=Wu%2C+Xiaoyu&rft.au=Chen%2C+Ruizhi&rft.date=2022&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=31&rft.spage=2463&rft.epage=2477&rft_id=info:doi/10.1109%2FTIP.2022.3152003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2022_3152003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |