TSA-SCC: Text Semantic-Aware Screen Content Coding With Ultra Low Bitrate

Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information avera...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 31; pp. 2463 - 2477
Main Authors Tang, Tong, Li, Ling, Wu, Xiaoyu, Chen, Ruizhi, Li, Haochen, Lu, Guo, Cheng, Limin
Format Journal Article
LanguageEnglish
Published United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates.
AbstractList Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to 3× at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates.Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to 3× at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates.
Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates.
Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to [Formula Omitted] at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates.
Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information and over 90% of online media interactions are screen based. Meanwhile, as the main component in the screen content, textual information averagely takes up over 40% of the whole image on various commonly used screen content datasets. However, it is difficult to compress the textual information by using the traditional coding schemes as HEVC, which assumes strong spatial and temporal correlations within the image/video. State-of-the-art screen content coding (SCC) standard as HEVC-SCC still adopts a block-based coding framework and does not consider the text semantics for compression, thus inevitably blurring texts at a lower bitrate. In this paper, we propose a general text semantic-aware screen content coding scheme (TSA-SCC) for ultra low bitrate setting. This method detects the abrupt picture in a screen content video (or image), recognizes textual information (including word, position, font type, font size and font color) in the abrupt picture based on neural networks, and encodes texts with text coding tools. The other pictures as well as the background image after removing texts from the abrupt picture via inpainting, are encoded with HEVC-SCC. Compared with HEVC-SCC, the proposed method TSA-SCC reduces bitrate by up to 3× at a similar compression quality. Moreover, TSA-SCC achieves much better visual quality with less bitrate consumption when encoding the screen content video/image at ultra low bitrates.
Author Tang, Tong
Li, Ling
Chen, Ruizhi
Cheng, Limin
Lu, Guo
Wu, Xiaoyu
Li, Haochen
Author_xml – sequence: 1
  givenname: Tong
  orcidid: 0000-0003-0616-2003
  surname: Tang
  fullname: Tang, Tong
  email: tangtong@cqupt.edu.cn
  organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, the Advanced Network and Intelligent Interconnection Technology Key Laboratory of Chongqing Education Commission of China, and the Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, China
– sequence: 2
  givenname: Ling
  orcidid: 0000-0001-8877-9052
  surname: Li
  fullname: Li, Ling
  email: liling@iscas.ac.cn
  organization: Chinese Academy of Sciences, Institute of Software, Beijing, China
– sequence: 3
  givenname: Xiaoyu
  surname: Wu
  fullname: Wu, Xiaoyu
  email: xiaoyu2019@iscas.ac.cn
  organization: Chinese Academy of Sciences, Institute of Software, Beijing, China
– sequence: 4
  givenname: Ruizhi
  orcidid: 0000-0001-7219-4658
  surname: Chen
  fullname: Chen, Ruizhi
  email: ruizhi@iscas.ac.cn
  organization: Chinese Academy of Sciences, Institute of Software, Beijing, China
– sequence: 5
  givenname: Haochen
  orcidid: 0000-0003-0813-6351
  surname: Li
  fullname: Li, Haochen
  email: haochen2021@iscas.ac.cn
  organization: Chinese Academy of Sciences, Institute of Software, Beijing, China
– sequence: 6
  givenname: Guo
  surname: Lu
  fullname: Lu, Guo
  email: sdluguo@gmail.com
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 7
  givenname: Limin
  surname: Cheng
  fullname: Cheng, Limin
  email: chenglimin@iscas.ac.cn
  organization: Chinese Academy of Sciences, Institute of Software, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35196232$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r20AQxZeS0iRu74VCEfTSi5yZ_dBKvbmiHwZDA3bocVmtR-0GeZWu1iT977PGTg859DTv8HuP4b1LdhbGQIy9RZgjQnO1WV7POXA-F6g4gHjBLrCRWAJIfpY1KF1qlM05u5ymWwCUCqtX7FwobCou-AVbbtaLct22n4oNPaRiTTsbknfl4t5GKtYuEoWiHUOikPLd-vCr-OnT7-JmSNEWq_G--OyzSvSaveztMNGb052xm69fNu33cvXj27JdrEonpE6lJLSyol7XFfSge-u00FJosVXUdTXaukbVqabvVF2hbVTHVd0J3HJ0neVOzNjHY-5dHP_saUpm5ydHw2ADjfvJ8ErwGvkhcsY-PENvx30M-btMydxRA0Jm6v2J2nc72pq76Hc2_jVPJWWgOgIujtMUqTfOJ5t8biVaPxgEc1jD5DXMYQ1zWiMb4ZnxKfs_lndHiyeif3ijOSAH8QhcL5CA
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_dcan_2023_09_001
crossref_primary_10_1109_TVT_2023_3241959
crossref_primary_10_1109_TVT_2023_3234141
crossref_primary_10_1109_TGRS_2023_3315725
crossref_primary_10_1109_TMM_2024_3410116
crossref_primary_10_1007_s11036_023_02101_1
crossref_primary_10_1109_TVT_2023_3277191
crossref_primary_10_1109_TCSVT_2024_3379675
crossref_primary_10_3390_electronics12010112
crossref_primary_10_3390_electronics14020221
crossref_primary_10_1016_j_vehcom_2023_100648
crossref_primary_10_3390_s23156711
crossref_primary_10_1109_TCSVT_2024_3473543
crossref_primary_10_3390_electronics12132873
crossref_primary_10_1109_TMM_2023_3323895
crossref_primary_10_1007_s11276_022_03138_y
crossref_primary_10_1109_JIOT_2022_3199937
crossref_primary_10_1016_j_patrec_2025_03_006
crossref_primary_10_3389_fmars_2023_1134286
crossref_primary_10_1109_TKDE_2024_3485108
crossref_primary_10_1109_TWC_2023_3290769
crossref_primary_10_1155_2022_4992957
crossref_primary_10_1016_j_displa_2024_102865
crossref_primary_10_1109_JIOT_2023_3264826
crossref_primary_10_1016_j_eswa_2022_118237
crossref_primary_10_1109_JIOT_2023_3281360
crossref_primary_10_1002_ett_4847
crossref_primary_10_1016_j_dcan_2024_05_003
crossref_primary_10_1109_JIOT_2023_3241984
crossref_primary_10_1016_j_patrec_2022_08_011
crossref_primary_10_1109_JIOT_2023_3280956
crossref_primary_10_1155_2022_3513063
Cites_doi 10.1109/TCYB.2020.3024627
10.1117/12.334618
10.1109/TIP.2005.849776
10.1109/76.735380
10.1109/TCSVT.2017.2689032
10.1109/ICIP.2006.312816
10.1109/CVPR.2016.90
10.1109/ICIP.2000.899498
10.1109/ICIP.2014.7026124
10.1145/2733373.2806219
10.1109/ICME.2006.262624
10.1109/CVPR.2018.00619
10.1109/TIP.2017.2711279
10.1109/TCSVT.2012.2221191
10.1117/1.1469618
10.1109/TBC.2016.2623241
10.1145/103085.103089
10.1109/ICIP.2019.8803389
10.1109/ICASSP.2019.8683541
10.1016/0196-6774(85)90036-7
10.14209/sbrt.2007.31122
10.1117/1.482609
10.1109/TMM.2015.2512539
10.1109/ICIP.2001.958148
10.1109/APSIPA.2014.7041533
10.1109/ICASSP.2019.8683285
10.1109/ICDAR.2007.4376991
10.1109/ICDAR.1999.791865
10.1109/JETCAS.2016.2608971
10.1109/ICIP.2019.8803805
10.1109/ISPACS.2017.8266580
10.1109/TIP.2017.2735192
10.1109/PCS48520.2019.8954509
10.1109/CVPR.2019.00959
10.1109/TIP.2017.2718185
10.1109/83.862619
10.1109/ICIP.2007.4379161
10.1109/TIP.2015.2465145
10.1109/TCSVT.2003.815165
10.1109/CVPR.2017.283
10.1007/978-3-642-21458-5_6
10.1109/TMM.2019.2900168
10.1109/PCS.2012.6213345
10.1145/965105.807509
10.1109/ICME.2014.6890229
10.1109/TIP.2014.2355716
10.1117/1.1344590
10.1109/TIP.2009.2038636
10.1117/12.641557
10.1109/TIP.2018.2839890
10.1109/ICASSP.2013.6637945
10.1109/TMM.2014.2315782
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2022.3152003
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2477
ExternalDocumentID 35196232
10_1109_TIP_2022_3152003
9720120
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSF of China
  grantid: 61732020; 61672491
  funderid: 10.13039/501100001809
– fundername: General Program of Chongqing Natural Science Foundation
  grantid: cstc2021jcyj-msxmX0032
  funderid: 10.13039/501100005230
– fundername: Xplore Prize
– fundername: Science and Technology Research Program of Chongqing Municipal Education Commission
  grantid: KJQN201900604
  funderid: 10.13039/501100007957
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  grantid: XDC05040200; XDC05040000
  funderid: 10.13039/501100002367
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0700900; 2017YFA0700903
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-4e1a46ef7860f07fac7374373d5ebb81a8815b59fb5861a95b258b31d21cba2c3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 11:46:47 EDT 2025
Mon Jun 30 10:24:46 EDT 2025
Wed Feb 19 02:26:25 EST 2025
Tue Jul 01 02:03:27 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Wed Aug 27 02:48:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-4e1a46ef7860f07fac7374373d5ebb81a8815b59fb5861a95b258b31d21cba2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0813-6351
0000-0001-8877-9052
0000-0003-0616-2003
0000-0001-7219-4658
PMID 35196232
PQID 2640429034
PQPubID 85429
PageCount 15
ParticipantIDs pubmed_primary_35196232
crossref_citationtrail_10_1109_TIP_2022_3152003
proquest_miscellaneous_2632812437
ieee_primary_9720120
proquest_journals_2640429034
crossref_primary_10_1109_TIP_2022_3152003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
Bochkarev (ref50) 2012
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
Zacharias (ref43) 2020
(ref1) 2012
ref46
ref45
ref48
ref42
ref41
ref44
ref49
ref8
ref7
ref3
Baroncini (ref4) 2017
ref6
ref5
ref40
de Queiroz (ref9) 2005
ref35
ref34
ref37
(ref51) 2020
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
Bjontegaard (ref54) 2001
ref24
ref23
ref26
ref25
ref20
Levenshtein (ref61) 1966; 10
ref22
ref21
Oswal (ref47) 2016; 4
ref28
ref27
ref29
ref60
References_xml – ident: ref60
  doi: 10.1109/TCYB.2020.3024627
– ident: ref6
  doi: 10.1117/12.334618
– ident: ref18
  doi: 10.1109/TIP.2005.849776
– volume-title: Calculation of Average PSNR Differences Between RD-Curves
  year: 2001
  ident: ref54
– ident: ref26
  doi: 10.1109/76.735380
– volume-title: The New Multi-Screen World: Understanding Cross-Platform Consumer Behavior
  year: 2012
  ident: ref1
– ident: ref20
  doi: 10.1109/TCSVT.2017.2689032
– ident: ref29
  doi: 10.1109/ICIP.2006.312816
– ident: ref45
  doi: 10.1109/CVPR.2016.90
– ident: ref28
  doi: 10.1109/ICIP.2000.899498
– volume: 4
  start-page: 430
  issue: 1
  year: 2016
  ident: ref47
  article-title: Deflate compression algorithm
  publication-title: Int. J. Eng. Res. Gen. Sci.
– ident: ref32
  doi: 10.1109/ICIP.2014.7026124
– ident: ref44
  doi: 10.1145/2733373.2806219
– ident: ref14
  doi: 10.1109/ICME.2006.262624
– volume-title: Draft of Final Report on SCC Verification Test
  year: 2017
  ident: ref4
– ident: ref41
  doi: 10.1109/CVPR.2018.00619
– volume-title: arXiv:2004.08079
  year: 2020
  ident: ref43
  article-title: Image processing based scene-text detection and recognition with tesseract
– volume-title: arXiv:1208.6109
  year: 2012
  ident: ref50
  article-title: Average word length dynamics as indicator of cultural changes in society
– ident: ref57
  doi: 10.1109/TIP.2017.2711279
– ident: ref23
  doi: 10.1109/TCSVT.2012.2221191
– ident: ref52
  doi: 10.1117/1.1469618
– ident: ref25
  doi: 10.1109/TBC.2016.2623241
– ident: ref21
  doi: 10.1145/103085.103089
– ident: ref12
  doi: 10.1109/ICIP.2019.8803389
– ident: ref37
  doi: 10.1109/ICASSP.2019.8683541
– ident: ref49
  doi: 10.1016/0196-6774(85)90036-7
– ident: ref8
  doi: 10.14209/sbrt.2007.31122
– ident: ref7
  doi: 10.1117/1.482609
– ident: ref34
  doi: 10.1109/TMM.2015.2512539
– ident: ref13
  doi: 10.1109/ICIP.2001.958148
– ident: ref33
  doi: 10.1109/APSIPA.2014.7041533
– ident: ref35
  doi: 10.1109/ICASSP.2019.8683285
– ident: ref42
  doi: 10.1109/ICDAR.2007.4376991
– ident: ref53
  doi: 10.1109/ICDAR.1999.791865
– ident: ref5
  doi: 10.1109/JETCAS.2016.2608971
– ident: ref38
  doi: 10.1109/ICIP.2019.8803805
– ident: ref2
  doi: 10.1109/ISPACS.2017.8266580
– ident: ref58
  doi: 10.1109/TIP.2017.2735192
– ident: ref36
  doi: 10.1109/PCS48520.2019.8954509
– ident: ref40
  doi: 10.1109/CVPR.2019.00959
– ident: ref55
  doi: 10.1109/TIP.2017.2718185
– ident: ref10
  doi: 10.1109/83.862619
– ident: ref15
  doi: 10.1109/ICIP.2007.4379161
– ident: ref3
  doi: 10.1109/TIP.2015.2465145
– ident: ref22
  doi: 10.1109/TCSVT.2003.815165
– ident: ref39
  doi: 10.1109/CVPR.2017.283
– ident: ref48
  doi: 10.1007/978-3-642-21458-5_6
– volume-title: The Document Image Compress Handbook
  year: 2005
  ident: ref9
  article-title: Compressing compound documents
– ident: ref24
  doi: 10.1109/TMM.2019.2900168
– volume: 10
  start-page: 707
  issue: 8
  year: 1966
  ident: ref61
  article-title: Binary codes capable of correcting deletions, insertions, and reversals
  publication-title: Sov. Phys.-Dokl.
– ident: ref30
  doi: 10.1109/PCS.2012.6213345
– ident: ref46
  doi: 10.1145/965105.807509
– ident: ref19
  doi: 10.1109/ICME.2014.6890229
– ident: ref59
  doi: 10.1109/TIP.2014.2355716
– volume-title: HEVC SCC Reference Software
  year: 2020
  ident: ref51
– ident: ref11
  doi: 10.1117/1.1344590
– ident: ref16
  doi: 10.1109/TIP.2009.2038636
– ident: ref27
  doi: 10.1117/12.641557
– ident: ref56
  doi: 10.1109/TIP.2018.2839890
– ident: ref31
  doi: 10.1109/ICASSP.2013.6637945
– ident: ref17
  doi: 10.1109/TMM.2014.2315782
SSID ssj0014516
Score 2.551853
Snippet Due to the rapid growth of web conferences, remote screen sharing, and online games, screen content has become an important type of internet media information...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2463
SubjectTerms Bit rate
Blurring
Coding
Computer & video games
Encoding
high efficiency video coding (HEVC)
Image coding
Image color analysis
low bitrate
Neural networks
Object recognition
Screen content coding (SCC)
Semantics
Text recognition
text semantics
Texts
Video compression
Title TSA-SCC: Text Semantic-Aware Screen Content Coding With Ultra Low Bitrate
URI https://ieeexplore.ieee.org/document/9720120
https://www.ncbi.nlm.nih.gov/pubmed/35196232
https://www.proquest.com/docview/2640429034
https://www.proquest.com/docview/2632812437
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9te4IHBhsfhYGMxAsSbmM7jhPeSrVpQwwhtRV7i-zkIqptKepSTeKvx-d8iCFAPCVS7MTxnX2_89m_A3hjPUQtjFTc-emfx85F3BqVcF0mKDEhAhJaGjj_nJwu448X-mIH3g1nYRAxbD7DMd2GWH65Lra0VDbJjKSznruw6x239qzWEDGghLMhsqkNNx729yHJKJsszr54R1BK758SyRClzqG0dN7wyzvWKKRX-TvSDBbnZB_O-7a2G00ux9vGjYsfv9E4_u_PPIQHHfRk01ZXHsEO1gew38FQ1g3ymwO4_wtH4SGcLeZTPp_N3rOFn8fZHK-9LFYFn97aDfpatG-HBY6ruvFXMoXs66r5xpZXzcayT-tb9mEVKHAfw_LkeDE75V3-BV6o2DQ8RmHjBCuTJlEVmcoWRhmiQio1OpcKm6ZCO51VTqeJsJl2UqdOiVKKwllZqCewV69rfAZMxA6FcNZlpYu1w6zKPNRIPViLkhIxHsGkl0NedOTklCPjKg9OSpTlXog5CTHvhDiCt0ON7y0xxz_KHlL_D-W6rh_BUS_qvBu5N7kHiGSjI-Xb9Hp47MccBVJsjestlVGSgJEyI3jaqsjw7l6znv_5my_gHrWsXcQ5gr1ms8WXHtY07lXQ558xg-0B
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8QA8MNgYKwwwEi9IuE3sOE54KxVTC-2E1FTsLbKTi6jYUtSlmsRfjy-_BAgQT4kUO7n4zr7PPvs7gFfGQdRMC8mtG_55YK3HjZYhV3mIAkMiIKGlgcV5OF0FHy7UxR686c_CIGK9-QyHdFvH8vNNtqOlslGsBZ31vAW3nd9Xojmt1ccMKOVsHdtUmmsH_LugpBePktknNxUUws1QiWaIkudQYjrn-sUv_qhOsPJ3rFn7nLMDWHTSNltNvg53lR1m338jcvzf33kA91vwycaNtTyEPSwP4aAFoqzt5teHcO8nlsIjmCXLMV9OJm9Z4kZytsQrp411xsc3ZouuFu3cYTXLVVm5KzlD9nldfWGry2pr2Hxzw96taxLcR7A6e59MprzNwMAzGeiKB-ibIMRCR6FXeLowmZaayJByhdZGvokiX1kVF1ZFoW9iZYWKrPRz4WfWiEwew365KfEEmB9Y9H1rbJzbQFmMi9iBjcjBNS_MEYMBjDo9pFlLT05ZMi7TeprixalTYkpKTFslDuB1X-NbQ83xj7JH1P59ubbpB3DaqTpt--516iAieWlPOple9o9dr6NQiilxs6MyUhA0knoAjxsT6d_dWdaTP3_zBdyZJot5Op-df3wKd0nKZknnFPar7Q6fOZBT2ee1bf8AvLrwSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TSA-SCC%3A+Text+Semantic-Aware+Screen+Content+Coding+With+Ultra+Low+Bitrate&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Tang%2C+Tong&rft.au=Li%2C+Ling&rft.au=Wu%2C+Xiaoyu&rft.au=Chen%2C+Ruizhi&rft.date=2022&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=31&rft.spage=2463&rft.epage=2477&rft_id=info:doi/10.1109%2FTIP.2022.3152003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2022_3152003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon