Multivariate Approach for Alzheimer's Disease Detection Using Stationary Wavelet Entropy and Predator-Prey Particle Swarm Optimization

The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an automatic diagnosis system. In this study, we developed a novel machine learning system that can make diagnoses automatically from brai...

Full description

Saved in:
Bibliographic Details
Published inJournal of Alzheimer's disease Vol. 65; no. 3; p. 855
Main Authors Zhang, Yudong, Wang, Shuihua, Sui, Yuxiu, Yang, Ming, Liu, Bin, Cheng, Hong, Sun, Junding, Jia, Wenjuan, Phillips, Preetha, Gorriz, Juan Manuel
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2018
Subjects
Online AccessGet more information
ISSN1875-8908
DOI10.3233/JAD-170069

Cover

Loading…
Abstract The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an automatic diagnosis system. In this study, we developed a novel machine learning system that can make diagnoses automatically from brain magnetic resonance images. First, the brain imaging was processed, including skull stripping and spatial normalization. Second, one axial slice was selected from the volumetric image, and stationary wavelet entropy (SWE) was done to extract the texture features. Third, a single-hidden-layer neural network was used as the classifier. Finally, a predator-prey particle swarm optimization was proposed to train the weights and biases of the classifier. Our method used 4-level decomposition and yielded 13 SWE features. The classification yielded an overall accuracy of 92.73±1.03%, a sensitivity of 92.69±1.29%, and a specificity of 92.78±1.51%. The area under the curve is 0.95±0.02. Additionally, this method only cost 0.88 s to identify a subject in online stage, after its volumetric image is preprocessed. In terms of classification performance, our method performs better than 10 state-of-the-art approaches and the performance of human observers. Therefore, this proposed method is effective in the detection of Alzheimer's disease.
AbstractList The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an automatic diagnosis system. In this study, we developed a novel machine learning system that can make diagnoses automatically from brain magnetic resonance images. First, the brain imaging was processed, including skull stripping and spatial normalization. Second, one axial slice was selected from the volumetric image, and stationary wavelet entropy (SWE) was done to extract the texture features. Third, a single-hidden-layer neural network was used as the classifier. Finally, a predator-prey particle swarm optimization was proposed to train the weights and biases of the classifier. Our method used 4-level decomposition and yielded 13 SWE features. The classification yielded an overall accuracy of 92.73±1.03%, a sensitivity of 92.69±1.29%, and a specificity of 92.78±1.51%. The area under the curve is 0.95±0.02. Additionally, this method only cost 0.88 s to identify a subject in online stage, after its volumetric image is preprocessed. In terms of classification performance, our method performs better than 10 state-of-the-art approaches and the performance of human observers. Therefore, this proposed method is effective in the detection of Alzheimer's disease.
Author Sui, Yuxiu
Liu, Bin
Cheng, Hong
Zhang, Yudong
Wang, Shuihua
Gorriz, Juan Manuel
Phillips, Preetha
Sun, Junding
Jia, Wenjuan
Yang, Ming
Author_xml – sequence: 1
  givenname: Yudong
  surname: Zhang
  fullname: Zhang, Yudong
  organization: School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, P. R. China
– sequence: 2
  givenname: Shuihua
  surname: Wang
  fullname: Wang, Shuihua
  organization: School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, P. R. China
– sequence: 3
  givenname: Yuxiu
  surname: Sui
  fullname: Sui, Yuxiu
  organization: Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, P. R.China
– sequence: 4
  givenname: Ming
  surname: Yang
  fullname: Yang, Ming
  organization: Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China
– sequence: 5
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: Department of Radiology, Zhong-Da Hospital of Southeast University, Nanjing, P. R. China
– sequence: 6
  givenname: Hong
  surname: Cheng
  fullname: Cheng, Hong
  organization: Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China
– sequence: 7
  givenname: Junding
  surname: Sun
  fullname: Sun, Junding
  organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, P. R. China
– sequence: 8
  givenname: Wenjuan
  surname: Jia
  fullname: Jia, Wenjuan
  organization: School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, P. R. China
– sequence: 9
  givenname: Preetha
  surname: Phillips
  fullname: Phillips, Preetha
  organization: West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
– sequence: 10
  givenname: Juan Manuel
  surname: Gorriz
  fullname: Gorriz, Juan Manuel
  organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28731432$$D View this record in MEDLINE/PubMed
BookMark eNo1kMtOAjEYhRujkYtufADTnavRXoZpZzkBvAUDCRKX5Kf9R2rmlk6BwAP43OJtdb6z-XJyeuS0qisk5IqzWymkvHvORhFXjCXpCelyrQaRTpnukF7bfjDGJEvVOekIrSSPpeiSz5dNEdwWvIOANGsaX4NZ07z2NCsOa3Ql-puWjlyL0CIdYUATXF3RReuqdzoP8N3A7-kbbLHAQMdV8HWzp1BZOvNoIdQ-OsKezsAHZwqk8x34kk6b4Ep3-BFckLMcihYv_7JPFvfj1-FjNJk-PA2zSWRkrEIUm8TESiMoa5lRQhnOTCKZ4TIxMOB6xeM4lzrPkeskTvOUg0JrrRQKBEtEn1z_epvNqkS7bLwrj-OX_4eIL8OfZDc
CitedBy_id crossref_primary_10_3390_app11199199
crossref_primary_10_1007_s12652_020_02620_9
crossref_primary_10_3389_fnins_2019_00422
crossref_primary_10_3233_JAD_180654
crossref_primary_10_1109_ACCESS_2020_3019577
crossref_primary_10_1109_ACCESS_2020_3021092
crossref_primary_10_1007_s42600_024_00394_z
crossref_primary_10_3390_e21060602
crossref_primary_10_3390_s24248148
crossref_primary_10_1080_21681163_2023_2187239
crossref_primary_10_1002_ima_23053
crossref_primary_10_1016_j_jocs_2018_11_007
crossref_primary_10_1166_jmihi_2021_3361
crossref_primary_10_3934_mbe_2023086
crossref_primary_10_3934_mbe_2024171
crossref_primary_10_1002_ima_22402
crossref_primary_10_1109_ACCESS_2020_3021660
crossref_primary_10_1007_s00521_021_05799_w
crossref_primary_10_1016_j_artmed_2020_101940
crossref_primary_10_1016_j_mri_2019_05_009
crossref_primary_10_1145_3492865
crossref_primary_10_1109_ACCESS_2025_3533638
crossref_primary_10_3390_cancers15194715
crossref_primary_10_1016_j_artmed_2019_101788
crossref_primary_10_1007_s00521_020_04955_y
crossref_primary_10_1016_j_compmedimag_2022_102057
crossref_primary_10_1080_23279095_2023_2169886
crossref_primary_10_1109_ACCESS_2020_3023332
crossref_primary_10_3389_fnagi_2022_834331
crossref_primary_10_1016_j_cmpb_2024_108348
crossref_primary_10_1166_jmihi_2021_3568
crossref_primary_10_1007_s10916_018_0932_7
crossref_primary_10_32604_cmes_2023_023544
crossref_primary_10_1109_ACCESS_2020_2997736
crossref_primary_10_1007_s00521_019_04197_7
crossref_primary_10_1016_j_asoc_2024_111749
crossref_primary_10_1109_ACCESS_2020_3038318
crossref_primary_10_1007_s40031_021_00571_z
crossref_primary_10_3390_app13137833
crossref_primary_10_3389_fnins_2022_967760
crossref_primary_10_3390_computation7010012
crossref_primary_10_1016_j_compbiomed_2019_103527
crossref_primary_10_1109_ACCESS_2020_3001212
crossref_primary_10_3389_fninf_2022_856295
crossref_primary_10_3390_bioengineering10080958
crossref_primary_10_3390_make5020035
crossref_primary_10_1007_s11036_024_02313_z
crossref_primary_10_1007_s10916_019_1343_0
crossref_primary_10_1016_j_ejrad_2022_110597
crossref_primary_10_1016_j_ibmed_2024_100159
crossref_primary_10_3390_math9182338
crossref_primary_10_1007_s13369_019_04064_6
crossref_primary_10_1016_j_bspc_2025_107583
crossref_primary_10_1016_j_cmpb_2023_107905
crossref_primary_10_1109_ACCESS_2020_3008000
crossref_primary_10_1016_j_jbi_2022_104030
crossref_primary_10_1016_j_knosys_2019_05_023
crossref_primary_10_1177_1550147719826048
crossref_primary_10_1016_j_inffus_2022_11_028
crossref_primary_10_3233_JAD_190704
crossref_primary_10_3390_info10010022
crossref_primary_10_3390_brainsci13081187
crossref_primary_10_1080_21681163_2021_1966650
crossref_primary_10_3934_mbe_2023664
crossref_primary_10_1016_j_neucom_2020_09_012
crossref_primary_10_1016_j_bspc_2022_103659
crossref_primary_10_1166_jmihi_2021_3829
crossref_primary_10_1016_j_future_2020_10_005
crossref_primary_10_1109_ACCESS_2024_3381956
crossref_primary_10_3390_app11041574
crossref_primary_10_1002_ima_22685
crossref_primary_10_1166_jmihi_2022_3845
crossref_primary_10_1002_ima_22967
crossref_primary_10_1007_s12652_019_01535_4
crossref_primary_10_4108_eetpht_9_711
crossref_primary_10_1038_s43856_022_00133_4
crossref_primary_10_1080_03772063_2019_1682076
crossref_primary_10_1109_ACCESS_2020_3016676
crossref_primary_10_3389_fnagi_2021_764272
crossref_primary_10_3389_fninf_2022_843566
crossref_primary_10_1002_ima_22393
crossref_primary_10_1109_TCBB_2021_3051177
crossref_primary_10_1016_j_bbe_2021_12_004
crossref_primary_10_1007_s10586_025_05102_9
crossref_primary_10_1177_09544119211060989
crossref_primary_10_1016_j_future_2019_07_064
crossref_primary_10_1155_2021_5990999
crossref_primary_10_1016_j_compbiomed_2023_107304
crossref_primary_10_1007_s11042_021_10928_7
crossref_primary_10_1007_s41060_024_00514_z
crossref_primary_10_1109_ACCESS_2019_2920978
crossref_primary_10_1016_j_engappai_2019_06_008
crossref_primary_10_1007_s10916_019_1428_9
crossref_primary_10_3233_JAD_200345
crossref_primary_10_3390_brainsci12010080
crossref_primary_10_1016_j_media_2020_101694
crossref_primary_10_1016_j_ijcce_2021_08_002
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.3233/JAD-170069
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1875-8908
ExternalDocumentID 28731432
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG021910
– fundername: NCRR NIH HHS
  grantid: U24 RR021382
– fundername: NIMH NIH HHS
  grantid: P50 MH071616
GroupedDBID ---
0R~
0VX
29J
36B
4.4
53G
5GY
AAFNC
AAWTL
ABDBF
ABIVO
ABJNI
ABUBZ
ABUJY
ACGFS
ACPQW
ACPRK
ACUHS
ADZMO
AELRD
AENEX
AFRAH
AFRHK
AGIAB
AHDMH
AIRSE
AJNRN
ALMA_UNASSIGNED_HOLDINGS
CAG
CGR
COF
CUY
CVF
DU5
EAD
EAP
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
HZ~
IL9
IOS
MET
MIO
MV1
NGNOM
NPM
O9-
P2P
Q1R
S70
SV3
TUS
VUG
ID FETCH-LOGICAL-c347t-4c6c478ea7dd0c727c10c630c136ca518b144f38ffe18649f91a7eddd327a2062
IngestDate Thu Apr 03 06:56:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords stationary wavelet entropy
predator-prey model
detection
particle swarm optimization
Alzheimer’s disease
single-hidden-layer neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-4c6c478ea7dd0c727c10c630c136ca518b144f38ffe18649f91a7eddd327a2062
PMID 28731432
ParticipantIDs pubmed_primary_28731432
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of Alzheimer's disease
PublicationTitleAlternate J Alzheimers Dis
PublicationYear 2018
SSID ssj0003097
Score 2.5379555
Snippet The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an...
SourceID pubmed
SourceType Index Database
StartPage 855
SubjectTerms Aged
Alzheimer Disease - classification
Alzheimer Disease - diagnostic imaging
Brain - diagnostic imaging
Entropy
Female
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Multivariate Analysis
Neural Networks (Computer)
Pattern Recognition, Automated - methods
Sensitivity and Specificity
Wavelet Analysis
Title Multivariate Approach for Alzheimer's Disease Detection Using Stationary Wavelet Entropy and Predator-Prey Particle Swarm Optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/28731432
Volume 65
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW9tJLVUTfBfmAxGHlNomNHR9XLQghUQ4LKj0hxw_tSt1lVRIo_ID-k_7Pjh_JhhWoj0sUxd7IyvfteGY8D4S2C15UVlpBjJOOsFxTooyQPsFHZoo7loWuJUef-cEpOzzbPRsMfvWilpq6eq9v780r-R9U4Rng6rNk_wHZ7qXwAO4BX7gCwnD9K4xD9uwVWLugMHp9MmZH-cDB0bfbiZ2Gziji0pfY9KcwIFxqG1uDx0iBcTyH94FzX5TvQFEP93zk-uImJRFY421yAjc3oGvGBQzH1-r7bHgMsmaWkjgf0nDvLGLlKKjzVH9tzEXaPoNjP_mvJ8100nR7xriZxrk_pk0nqNLUo3b3Tc6LvOw5L2wUuGAvkVJmZV8ix-4RiXm0J17LWNJ3VezTwrul9w9Hn4gvNxh7v_TwX8wCAcA4pKAeFn8eXSnB3Q6toTUwRnx3Ve8SSts9zaSIdW_9Mj4sF-HrTKcfrtgsQXc5eYaeJkjwKAK4jgZ2voF-9tmDW_ZgYA_ugNu5xIk7uOMODtzBS-7gxB2cuIOBO_gOd3DLHRy4g_vceY5O9_dOPh6Q1JWDaMpETZjmmonSKmFMpkH91XmmOc10TrlWu3lZgY3uaOmczUvOpJO5EtYYQwuhiowXL9Cj-cXcvkKYSmZhImNSWEa1lJopRa0zXFTw5uI1ehk_2_kill45bz_omwdH3qInS6K9Q48d_NftJiiOdbUVgPsNZDNz7Q
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Approach+for+Alzheimer%27s+Disease+Detection+Using+Stationary+Wavelet+Entropy+and+Predator-Prey+Particle+Swarm+Optimization&rft.jtitle=Journal+of+Alzheimer%27s+disease&rft.au=Zhang%2C+Yudong&rft.au=Wang%2C+Shuihua&rft.au=Sui%2C+Yuxiu&rft.au=Yang%2C+Ming&rft.date=2018-01-01&rft.eissn=1875-8908&rft.volume=65&rft.issue=3&rft.spage=855&rft_id=info:doi/10.3233%2FJAD-170069&rft_id=info%3Apmid%2F28731432&rft_id=info%3Apmid%2F28731432&rft.externalDocID=28731432