Multivariate Approach for Alzheimer's Disease Detection Using Stationary Wavelet Entropy and Predator-Prey Particle Swarm Optimization
The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an automatic diagnosis system. In this study, we developed a novel machine learning system that can make diagnoses automatically from brai...
Saved in:
Published in | Journal of Alzheimer's disease Vol. 65; no. 3; p. 855 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.01.2018
|
Subjects | |
Online Access | Get more information |
ISSN | 1875-8908 |
DOI | 10.3233/JAD-170069 |
Cover
Loading…
Abstract | The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an automatic diagnosis system.
In this study, we developed a novel machine learning system that can make diagnoses automatically from brain magnetic resonance images.
First, the brain imaging was processed, including skull stripping and spatial normalization. Second, one axial slice was selected from the volumetric image, and stationary wavelet entropy (SWE) was done to extract the texture features. Third, a single-hidden-layer neural network was used as the classifier. Finally, a predator-prey particle swarm optimization was proposed to train the weights and biases of the classifier.
Our method used 4-level decomposition and yielded 13 SWE features. The classification yielded an overall accuracy of 92.73±1.03%, a sensitivity of 92.69±1.29%, and a specificity of 92.78±1.51%. The area under the curve is 0.95±0.02. Additionally, this method only cost 0.88 s to identify a subject in online stage, after its volumetric image is preprocessed.
In terms of classification performance, our method performs better than 10 state-of-the-art approaches and the performance of human observers. Therefore, this proposed method is effective in the detection of Alzheimer's disease. |
---|---|
AbstractList | The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an automatic diagnosis system.
In this study, we developed a novel machine learning system that can make diagnoses automatically from brain magnetic resonance images.
First, the brain imaging was processed, including skull stripping and spatial normalization. Second, one axial slice was selected from the volumetric image, and stationary wavelet entropy (SWE) was done to extract the texture features. Third, a single-hidden-layer neural network was used as the classifier. Finally, a predator-prey particle swarm optimization was proposed to train the weights and biases of the classifier.
Our method used 4-level decomposition and yielded 13 SWE features. The classification yielded an overall accuracy of 92.73±1.03%, a sensitivity of 92.69±1.29%, and a specificity of 92.78±1.51%. The area under the curve is 0.95±0.02. Additionally, this method only cost 0.88 s to identify a subject in online stage, after its volumetric image is preprocessed.
In terms of classification performance, our method performs better than 10 state-of-the-art approaches and the performance of human observers. Therefore, this proposed method is effective in the detection of Alzheimer's disease. |
Author | Sui, Yuxiu Liu, Bin Cheng, Hong Zhang, Yudong Wang, Shuihua Gorriz, Juan Manuel Phillips, Preetha Sun, Junding Jia, Wenjuan Yang, Ming |
Author_xml | – sequence: 1 givenname: Yudong surname: Zhang fullname: Zhang, Yudong organization: School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, P. R. China – sequence: 2 givenname: Shuihua surname: Wang fullname: Wang, Shuihua organization: School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, P. R. China – sequence: 3 givenname: Yuxiu surname: Sui fullname: Sui, Yuxiu organization: Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, P. R.China – sequence: 4 givenname: Ming surname: Yang fullname: Yang, Ming organization: Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China – sequence: 5 givenname: Bin surname: Liu fullname: Liu, Bin organization: Department of Radiology, Zhong-Da Hospital of Southeast University, Nanjing, P. R. China – sequence: 6 givenname: Hong surname: Cheng fullname: Cheng, Hong organization: Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China – sequence: 7 givenname: Junding surname: Sun fullname: Sun, Junding organization: School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, P. R. China – sequence: 8 givenname: Wenjuan surname: Jia fullname: Jia, Wenjuan organization: School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, P. R. China – sequence: 9 givenname: Preetha surname: Phillips fullname: Phillips, Preetha organization: West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA – sequence: 10 givenname: Juan Manuel surname: Gorriz fullname: Gorriz, Juan Manuel organization: Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28731432$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kMtOAjEYhRujkYtufADTnavRXoZpZzkBvAUDCRKX5Kf9R2rmlk6BwAP43OJtdb6z-XJyeuS0qisk5IqzWymkvHvORhFXjCXpCelyrQaRTpnukF7bfjDGJEvVOekIrSSPpeiSz5dNEdwWvIOANGsaX4NZ07z2NCsOa3Ql-puWjlyL0CIdYUATXF3RReuqdzoP8N3A7-kbbLHAQMdV8HWzp1BZOvNoIdQ-OsKezsAHZwqk8x34kk6b4Ep3-BFckLMcihYv_7JPFvfj1-FjNJk-PA2zSWRkrEIUm8TESiMoa5lRQhnOTCKZ4TIxMOB6xeM4lzrPkeskTvOUg0JrrRQKBEtEn1z_epvNqkS7bLwrj-OX_4eIL8OfZDc |
CitedBy_id | crossref_primary_10_3390_app11199199 crossref_primary_10_1007_s12652_020_02620_9 crossref_primary_10_3389_fnins_2019_00422 crossref_primary_10_3233_JAD_180654 crossref_primary_10_1109_ACCESS_2020_3019577 crossref_primary_10_1109_ACCESS_2020_3021092 crossref_primary_10_1007_s42600_024_00394_z crossref_primary_10_3390_e21060602 crossref_primary_10_3390_s24248148 crossref_primary_10_1080_21681163_2023_2187239 crossref_primary_10_1002_ima_23053 crossref_primary_10_1016_j_jocs_2018_11_007 crossref_primary_10_1166_jmihi_2021_3361 crossref_primary_10_3934_mbe_2023086 crossref_primary_10_3934_mbe_2024171 crossref_primary_10_1002_ima_22402 crossref_primary_10_1109_ACCESS_2020_3021660 crossref_primary_10_1007_s00521_021_05799_w crossref_primary_10_1016_j_artmed_2020_101940 crossref_primary_10_1016_j_mri_2019_05_009 crossref_primary_10_1145_3492865 crossref_primary_10_1109_ACCESS_2025_3533638 crossref_primary_10_3390_cancers15194715 crossref_primary_10_1016_j_artmed_2019_101788 crossref_primary_10_1007_s00521_020_04955_y crossref_primary_10_1016_j_compmedimag_2022_102057 crossref_primary_10_1080_23279095_2023_2169886 crossref_primary_10_1109_ACCESS_2020_3023332 crossref_primary_10_3389_fnagi_2022_834331 crossref_primary_10_1016_j_cmpb_2024_108348 crossref_primary_10_1166_jmihi_2021_3568 crossref_primary_10_1007_s10916_018_0932_7 crossref_primary_10_32604_cmes_2023_023544 crossref_primary_10_1109_ACCESS_2020_2997736 crossref_primary_10_1007_s00521_019_04197_7 crossref_primary_10_1016_j_asoc_2024_111749 crossref_primary_10_1109_ACCESS_2020_3038318 crossref_primary_10_1007_s40031_021_00571_z crossref_primary_10_3390_app13137833 crossref_primary_10_3389_fnins_2022_967760 crossref_primary_10_3390_computation7010012 crossref_primary_10_1016_j_compbiomed_2019_103527 crossref_primary_10_1109_ACCESS_2020_3001212 crossref_primary_10_3389_fninf_2022_856295 crossref_primary_10_3390_bioengineering10080958 crossref_primary_10_3390_make5020035 crossref_primary_10_1007_s11036_024_02313_z crossref_primary_10_1007_s10916_019_1343_0 crossref_primary_10_1016_j_ejrad_2022_110597 crossref_primary_10_1016_j_ibmed_2024_100159 crossref_primary_10_3390_math9182338 crossref_primary_10_1007_s13369_019_04064_6 crossref_primary_10_1016_j_bspc_2025_107583 crossref_primary_10_1016_j_cmpb_2023_107905 crossref_primary_10_1109_ACCESS_2020_3008000 crossref_primary_10_1016_j_jbi_2022_104030 crossref_primary_10_1016_j_knosys_2019_05_023 crossref_primary_10_1177_1550147719826048 crossref_primary_10_1016_j_inffus_2022_11_028 crossref_primary_10_3233_JAD_190704 crossref_primary_10_3390_info10010022 crossref_primary_10_3390_brainsci13081187 crossref_primary_10_1080_21681163_2021_1966650 crossref_primary_10_3934_mbe_2023664 crossref_primary_10_1016_j_neucom_2020_09_012 crossref_primary_10_1016_j_bspc_2022_103659 crossref_primary_10_1166_jmihi_2021_3829 crossref_primary_10_1016_j_future_2020_10_005 crossref_primary_10_1109_ACCESS_2024_3381956 crossref_primary_10_3390_app11041574 crossref_primary_10_1002_ima_22685 crossref_primary_10_1166_jmihi_2022_3845 crossref_primary_10_1002_ima_22967 crossref_primary_10_1007_s12652_019_01535_4 crossref_primary_10_4108_eetpht_9_711 crossref_primary_10_1038_s43856_022_00133_4 crossref_primary_10_1080_03772063_2019_1682076 crossref_primary_10_1109_ACCESS_2020_3016676 crossref_primary_10_3389_fnagi_2021_764272 crossref_primary_10_3389_fninf_2022_843566 crossref_primary_10_1002_ima_22393 crossref_primary_10_1109_TCBB_2021_3051177 crossref_primary_10_1016_j_bbe_2021_12_004 crossref_primary_10_1007_s10586_025_05102_9 crossref_primary_10_1177_09544119211060989 crossref_primary_10_1016_j_future_2019_07_064 crossref_primary_10_1155_2021_5990999 crossref_primary_10_1016_j_compbiomed_2023_107304 crossref_primary_10_1007_s11042_021_10928_7 crossref_primary_10_1007_s41060_024_00514_z crossref_primary_10_1109_ACCESS_2019_2920978 crossref_primary_10_1016_j_engappai_2019_06_008 crossref_primary_10_1007_s10916_019_1428_9 crossref_primary_10_3233_JAD_200345 crossref_primary_10_3390_brainsci12010080 crossref_primary_10_1016_j_media_2020_101694 crossref_primary_10_1016_j_ijcce_2021_08_002 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.3233/JAD-170069 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
EISSN | 1875-8908 |
ExternalDocumentID | 28731432 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG021910 – fundername: NCRR NIH HHS grantid: U24 RR021382 – fundername: NIMH NIH HHS grantid: P50 MH071616 |
GroupedDBID | --- 0R~ 0VX 29J 36B 4.4 53G 5GY AAFNC AAWTL ABDBF ABIVO ABJNI ABUBZ ABUJY ACGFS ACPQW ACPRK ACUHS ADZMO AELRD AENEX AFRAH AFRHK AGIAB AHDMH AIRSE AJNRN ALMA_UNASSIGNED_HOLDINGS CAG CGR COF CUY CVF DU5 EAD EAP EBS ECM EIF EJD EMB EMK EMOBN ESX F5P HZ~ IL9 IOS MET MIO MV1 NGNOM NPM O9- P2P Q1R S70 SV3 TUS VUG |
ID | FETCH-LOGICAL-c347t-4c6c478ea7dd0c727c10c630c136ca518b144f38ffe18649f91a7eddd327a2062 |
IngestDate | Thu Apr 03 06:56:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | stationary wavelet entropy predator-prey model detection particle swarm optimization Alzheimer’s disease single-hidden-layer neural network |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-4c6c478ea7dd0c727c10c630c136ca518b144f38ffe18649f91a7eddd327a2062 |
PMID | 28731432 |
ParticipantIDs | pubmed_primary_28731432 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of Alzheimer's disease |
PublicationTitleAlternate | J Alzheimers Dis |
PublicationYear | 2018 |
SSID | ssj0003097 |
Score | 2.5379555 |
Snippet | The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 855 |
SubjectTerms | Aged Alzheimer Disease - classification Alzheimer Disease - diagnostic imaging Brain - diagnostic imaging Entropy Female Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Multivariate Analysis Neural Networks (Computer) Pattern Recognition, Automated - methods Sensitivity and Specificity Wavelet Analysis |
Title | Multivariate Approach for Alzheimer's Disease Detection Using Stationary Wavelet Entropy and Predator-Prey Particle Swarm Optimization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28731432 |
Volume | 65 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW9tJLVUTfBfmAxGHlNomNHR9XLQghUQ4LKj0hxw_tSt1lVRIo_ID-k_7Pjh_JhhWoj0sUxd7IyvfteGY8D4S2C15UVlpBjJOOsFxTooyQPsFHZoo7loWuJUef-cEpOzzbPRsMfvWilpq6eq9v780r-R9U4Rng6rNk_wHZ7qXwAO4BX7gCwnD9K4xD9uwVWLugMHp9MmZH-cDB0bfbiZ2Gziji0pfY9KcwIFxqG1uDx0iBcTyH94FzX5TvQFEP93zk-uImJRFY421yAjc3oGvGBQzH1-r7bHgMsmaWkjgf0nDvLGLlKKjzVH9tzEXaPoNjP_mvJ8100nR7xriZxrk_pk0nqNLUo3b3Tc6LvOw5L2wUuGAvkVJmZV8ix-4RiXm0J17LWNJ3VezTwrul9w9Hn4gvNxh7v_TwX8wCAcA4pKAeFn8eXSnB3Q6toTUwRnx3Ve8SSts9zaSIdW_9Mj4sF-HrTKcfrtgsQXc5eYaeJkjwKAK4jgZ2voF-9tmDW_ZgYA_ugNu5xIk7uOMODtzBS-7gxB2cuIOBO_gOd3DLHRy4g_vceY5O9_dOPh6Q1JWDaMpETZjmmonSKmFMpkH91XmmOc10TrlWu3lZgY3uaOmczUvOpJO5EtYYQwuhiowXL9Cj-cXcvkKYSmZhImNSWEa1lJopRa0zXFTw5uI1ehk_2_kill45bz_omwdH3qInS6K9Q48d_NftJiiOdbUVgPsNZDNz7Q |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Approach+for+Alzheimer%27s+Disease+Detection+Using+Stationary+Wavelet+Entropy+and+Predator-Prey+Particle+Swarm+Optimization&rft.jtitle=Journal+of+Alzheimer%27s+disease&rft.au=Zhang%2C+Yudong&rft.au=Wang%2C+Shuihua&rft.au=Sui%2C+Yuxiu&rft.au=Yang%2C+Ming&rft.date=2018-01-01&rft.eissn=1875-8908&rft.volume=65&rft.issue=3&rft.spage=855&rft_id=info:doi/10.3233%2FJAD-170069&rft_id=info%3Apmid%2F28731432&rft_id=info%3Apmid%2F28731432&rft.externalDocID=28731432 |