Fabric defect detection algorithm based on improved YOLOv5

Fabric defect detection is an important part of the textile industry, aiming at the problems of many types of fabric defects, small size defects and unbalanced samples, an improved YOLOv5 fabric defect detection algorithm, FD-YOLOv5, was proposed. First, the coordinate attention module is embedded i...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 40; no. 4; pp. 2309 - 2324
Main Authors Li, Feng, Xiao, Kang, Hu, Zhengpeng, Zhang, Guozheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-2789
1432-2315
DOI10.1007/s00371-023-02918-7

Cover

Loading…
Abstract Fabric defect detection is an important part of the textile industry, aiming at the problems of many types of fabric defects, small size defects and unbalanced samples, an improved YOLOv5 fabric defect detection algorithm, FD-YOLOv5, was proposed. First, the coordinate attention module is embedded in the YOLOv5 backbone network structure to replace the bottleneck structure in the original network model. While reducing the amount of parameters and calculation, it enhances the ability of the network to extract features and improves the model's ability to detect small target defects. Secondly, a smoother Mish activation function is used in the original model convolution structure for model training, which improves the nonlinear expression ability of the model; the SIoU loss function considering the direction of the anchor box is used to improve the convergence speed and detection accuracy of the model. Finally, combining the focal loss and GHM loss functions as the target confidence loss function to solve the problem of sample imbalance in the fabric defect dataset. The experimental results based on the public fabric defect dataset of Aliyun TianChi shows that the mAP@.5 and mAP@.5:.95 of the improved algorithm are 65.1% and 30.4%, respectively, which are 8.3% and 3.2% higher than the original model, respectively, and the parameter amount, calculation amount and weight of the model are reduced by 8.4%, 11.2% and 14.3%, respectively, compared with the original model. Even compared with the state-of-the-art YOLOv7 model, the mAP@.5 value of the proposed model is improved by 6.5%. Although the FPS value is lower than YOLOv7 model, it also achieves a detection speed of 79 frames per second, which can meet the real-time demand. The experimental results demonstrate the effectiveness of the method in this paper, which can provide a reference for the automatic detection method of fabric defects.
AbstractList Fabric defect detection is an important part of the textile industry, aiming at the problems of many types of fabric defects, small size defects and unbalanced samples, an improved YOLOv5 fabric defect detection algorithm, FD-YOLOv5, was proposed. First, the coordinate attention module is embedded in the YOLOv5 backbone network structure to replace the bottleneck structure in the original network model. While reducing the amount of parameters and calculation, it enhances the ability of the network to extract features and improves the model's ability to detect small target defects. Secondly, a smoother Mish activation function is used in the original model convolution structure for model training, which improves the nonlinear expression ability of the model; the SIoU loss function considering the direction of the anchor box is used to improve the convergence speed and detection accuracy of the model. Finally, combining the focal loss and GHM loss functions as the target confidence loss function to solve the problem of sample imbalance in the fabric defect dataset. The experimental results based on the public fabric defect dataset of Aliyun TianChi shows that the mAP@.5 and mAP@.5:.95 of the improved algorithm are 65.1% and 30.4%, respectively, which are 8.3% and 3.2% higher than the original model, respectively, and the parameter amount, calculation amount and weight of the model are reduced by 8.4%, 11.2% and 14.3%, respectively, compared with the original model. Even compared with the state-of-the-art YOLOv7 model, the mAP@.5 value of the proposed model is improved by 6.5%. Although the FPS value is lower than YOLOv7 model, it also achieves a detection speed of 79 frames per second, which can meet the real-time demand. The experimental results demonstrate the effectiveness of the method in this paper, which can provide a reference for the automatic detection method of fabric defects.
Fabric defect detection is an important part of the textile industry, aiming at the problems of many types of fabric defects, small size defects and unbalanced samples, an improved YOLOv5 fabric defect detection algorithm, FD-YOLOv5, was proposed. First, the coordinate attention module is embedded in the YOLOv5 backbone network structure to replace the bottleneck structure in the original network model. While reducing the amount of parameters and calculation, it enhances the ability of the network to extract features and improves the model's ability to detect small target defects. Secondly, a smoother Mish activation function is used in the original model convolution structure for model training, which improves the nonlinear expression ability of the model; the SIoU loss function considering the direction of the anchor box is used to improve the convergence speed and detection accuracy of the model. Finally, combining the focal loss and GHM loss functions as the target confidence loss function to solve the problem of sample imbalance in the fabric defect dataset. The experimental results based on the public fabric defect dataset of Aliyun TianChi shows that the mAP@.5 and mAP@.5:.95 of the improved algorithm are 65.1% and 30.4%, respectively, which are 8.3% and 3.2% higher than the original model, respectively, and the parameter amount, calculation amount and weight of the model are reduced by 8.4%, 11.2% and 14.3%, respectively, compared with the original model. Even compared with the state-of-the-art YOLOv7 model, the mAP@.5 value of the proposed model is improved by 6.5%. Although the FPS value is lower than YOLOv7 model, it also achieves a detection speed of 79 frames per second, which can meet the real-time demand. The experimental results demonstrate the effectiveness of the method in this paper, which can provide a reference for the automatic detection method of fabric defects.
Author Li, Feng
Zhang, Guozheng
Xiao, Kang
Hu, Zhengpeng
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0001-6128-3663
  surname: Li
  fullname: Li, Feng
  organization: School of Computer Science and Technology, Donghua University, National Innovation Center of Advanced Dyeing & Finishing Technology
– sequence: 2
  givenname: Kang
  orcidid: 0000-0002-4048-8392
  surname: Xiao
  fullname: Xiao, Kang
  email: xiao_kang99@163.com
  organization: School of Computer Science and Technology, Donghua University
– sequence: 3
  givenname: Zhengpeng
  surname: Hu
  fullname: Hu, Zhengpeng
  organization: National Innovation Center of Advanced Dyeing & Finishing Technology
– sequence: 4
  givenname: Guozheng
  surname: Zhang
  fullname: Zhang, Guozheng
  organization: National Innovation Center of Advanced Dyeing & Finishing Technology
BookMark eNqFkEtLAzEUhYNUsK3-AVcDrqN5dW7iToqtQqEbXbgKmUymprQzNUkL_ntTRxBc1EU4STjffZwRGrRd6xC6puSWEgJ3kRAOFBPG81FUYjhDQyo4w4zTyQANCQWJGUh1gUYxrkl-g1BDdD8zVfC2qF3jbMqSsviuLcxm1QWf3rdFZaKri_zlt7vQHfL9bblYHiaX6Lwxm-iufnSMXmePL9MnvFjOn6cPC2y5gISFETUtS0kbo4SUkoIrrWiqkhtuZUNFrQDKiTGOO2UJt5DnFiRvpSoCzvAxuunr5u4fexeTXnf70OaWmhPOpSSKyf9cwKgCkV2yd9nQxRhco61P5rhwCsZvNCX6mKfu89Q5T_2dp4aMsj_oLvitCZ-nId5DMZvblQu_U52gvgCrX4b2
CitedBy_id crossref_primary_10_1007_s11760_024_03146_9
crossref_primary_10_1080_1448837X_2023_2247605
crossref_primary_10_1007_s12204_025_2804_x
crossref_primary_10_1080_10589759_2025_2451768
crossref_primary_10_3390_su16187922
crossref_primary_10_3390_electronics13183728
crossref_primary_10_1007_s11042_024_20471_w
crossref_primary_10_1007_s12221_024_00809_9
crossref_primary_10_1088_1361_6501_ad60eb
crossref_primary_10_1088_1361_6501_ad5b7c
Cites_doi 10.1609/aaai.v34i07.6999
10.1109/tcyb.2021.3095305
10.1109/tpami.2016.2577031
10.1016/j.neucom.2022.07.042
10.1109/iccvw54120.2021.00312
10.1109/cvpr.2014.81
10.1109/tpami.2015.2389824
10.1109/ius54386.2022.9957216
10.1007/s00371-020-01831-7
10.1038/s41598-021-01084-x
10.3390/rs14225853
10.1109/cvpr42600.2020.01155
10.1007/978-3-319-46448-0_2
10.1109/cvprw50498.2020.00203
10.1145/2964284.2967274
10.1109/iccv.2019.00140
10.1109/CVPR.2017.106
10.1109/cvpr.2016.91
10.1109/cvpr46437.2021.01350
10.1109/iccv.2017.324
10.1609/aaai.v33i01.33018577
10.1007/978-3-030-01234-2_1
10.1109/iccv.2019.00853
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00371-023-02918-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Computer Science Collection
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 2324
ExternalDocumentID 10_1007_s00371_023_02918_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c347t-4a4d16681fa9488817e6c4fb63a3c8f14d97765aae3e9c03c7143400079b07ea3
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Fri Jul 25 22:56:51 EDT 2025
Fri Jul 25 21:11:17 EDT 2025
Thu Apr 24 22:54:51 EDT 2025
Tue Jul 01 01:05:53 EDT 2025
Fri Feb 21 02:41:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Computer vision
Fabric defect detection
GHM loss
YOLOv5
SIoU loss
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-4a4d16681fa9488817e6c4fb63a3c8f14d97765aae3e9c03c7143400079b07ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6128-3663
0000-0002-4048-8392
PQID 3033721974
PQPubID 2043737
PageCount 16
ParticipantIDs proquest_journals_3033880928
proquest_journals_3033721974
crossref_citationtrail_10_1007_s00371_023_02918_7
crossref_primary_10_1007_s00371_023_02918_7
springer_journals_10_1007_s00371_023_02918_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Girshick (CR2) 2015
Zheng, Wang, Ren, Liu, Ye, Hu, Zuo (CR21) 2021
Ren, He, Girshick (CR3) 2017; 39
CR19
CR18
CR17
CR16
CR15
CR13
CR12
CR10
Lu, Liu, He, Zhang, Liu, Karkee (CR6) 2022; 14
Zhu, Lyu, Wang, Zhao (CR8) 2021; 2021
Girshick (CR1) 2014
CR4
CR5
He, Zhang, Ren (CR11) 2015; 37
CR26
CR24
CR23
CR20
Zhang, Ren, Zhang, Jia, Wang, Tan (CR22) 2022; 506
Wang (CR25) 2020
Zheng, Wang, Liu (CR14) 2020; 34
Chen, Huang, Peng (CR9) 2021; 37
Zhao, Yang, Zhou, Sun, Ge, Liu (CR7) 2021; 11
2918_CR10
2918_CR4
2918_CR5
X Zhu (2918_CR8) 2021; 2021
Z Zheng (2918_CR14) 2020; 34
R Girshick (2918_CR2) 2015
Q Wang (2918_CR25) 2020
YF Zhang (2918_CR22) 2022; 506
2918_CR24
Z Zheng (2918_CR21) 2021
2918_CR23
2918_CR26
2918_CR20
W Chen (2918_CR9) 2021; 37
2918_CR19
Z Zhao (2918_CR7) 2021; 11
S Lu (2918_CR6) 2022; 14
R Girshick (2918_CR1) 2014
2918_CR13
S Ren (2918_CR3) 2017; 39
2918_CR12
2918_CR18
2918_CR17
K He (2918_CR11) 2015; 37
2918_CR16
2918_CR15
References_xml – ident: CR18
– volume: 34
  start-page: 12993
  issue: 07
  year: 2020
  end-page: 13000
  ident: CR14
  article-title: Distance-IoU loss: faster and better learning for bounding box regression
  publication-title: Proc. AAAI Conf. Artif. Intell.
  doi: 10.1609/aaai.v34i07.6999
– year: 2021
  ident: CR21
  article-title: Enhancing geometric factors in model learning and inference for object detection and instance segmentation
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/tcyb.2021.3095305
– ident: CR4
– ident: CR16
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  end-page: 1149
  ident: CR3
  article-title: Faster R-CNN:towards realtime objectdetection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2016.2577031
– ident: CR12
– ident: CR10
– volume: 506
  start-page: 146
  year: 2022
  end-page: 157
  ident: CR22
  article-title: Focal and efficient IOU loss for accurate bounding box regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.042
– volume: 2021
  start-page: 2778
  year: 2021
  end-page: 2788
  ident: CR8
  article-title: TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios
  publication-title: IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW)
  doi: 10.1109/iccvw54120.2021.00312
– year: 2014
  ident: CR1
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  doi: 10.1109/cvpr.2014.81
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  end-page: 1916
  ident: CR11
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2015.2389824
– year: 2015
  ident: CR2
  article-title: Fast r-cnn
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
  doi: 10.1109/ius54386.2022.9957216
– ident: CR23
– volume: 37
  start-page: 805
  year: 2021
  end-page: 813
  ident: CR9
  article-title: YOLO-face: a real-time face detector
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01831-7
– ident: CR19
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 15
  ident: CR7
  article-title: Real-time detection of particleboard surface defects based on improved YOLOV5 target detection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-01084-x
– ident: CR15
– ident: CR17
– volume: 14
  start-page: 5853
  issue: 22
  year: 2022
  ident: CR6
  article-title: Swin-transformer-YOLOv5 for real-time wine grape bunch detection
  publication-title: Remote Sens.
  doi: 10.3390/rs14225853
– ident: CR13
– year: 2020
  ident: CR25
  article-title: ECA-Net: efficient channel attention for deep convolutional neural networks
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
  doi: 10.1109/cvpr42600.2020.01155
– ident: CR5
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 2918_CR3
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2016.2577031
– year: 2015
  ident: 2918_CR2
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
  doi: 10.1109/ius54386.2022.9957216
– ident: 2918_CR5
  doi: 10.1007/978-3-319-46448-0_2
– ident: 2918_CR10
  doi: 10.1109/cvprw50498.2020.00203
– volume: 37
  start-page: 805
  year: 2021
  ident: 2918_CR9
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01831-7
– ident: 2918_CR20
  doi: 10.1145/2964284.2967274
– ident: 2918_CR26
  doi: 10.1109/iccv.2019.00140
– volume: 2021
  start-page: 2778
  year: 2021
  ident: 2918_CR8
  publication-title: IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW)
  doi: 10.1109/iccvw54120.2021.00312
– ident: 2918_CR12
  doi: 10.1109/CVPR.2017.106
– ident: 2918_CR17
– volume: 506
  start-page: 146
  year: 2022
  ident: 2918_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.042
– year: 2021
  ident: 2918_CR21
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/tcyb.2021.3095305
– year: 2020
  ident: 2918_CR25
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
  doi: 10.1109/cvpr42600.2020.01155
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 2918_CR11
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2015.2389824
– ident: 2918_CR4
  doi: 10.1109/cvpr.2016.91
– ident: 2918_CR16
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 2918_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-01084-x
– volume: 34
  start-page: 12993
  issue: 07
  year: 2020
  ident: 2918_CR14
  publication-title: Proc. AAAI Conf. Artif. Intell.
  doi: 10.1609/aaai.v34i07.6999
– year: 2014
  ident: 2918_CR1
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  doi: 10.1109/cvpr.2014.81
– ident: 2918_CR15
  doi: 10.1109/cvpr46437.2021.01350
– volume: 14
  start-page: 5853
  issue: 22
  year: 2022
  ident: 2918_CR6
  publication-title: Remote Sens.
  doi: 10.3390/rs14225853
– ident: 2918_CR18
  doi: 10.1109/iccv.2017.324
– ident: 2918_CR23
– ident: 2918_CR19
  doi: 10.1609/aaai.v33i01.33018577
– ident: 2918_CR24
  doi: 10.1007/978-3-030-01234-2_1
– ident: 2918_CR13
  doi: 10.1109/iccv.2019.00853
SSID ssj0017749
Score 2.4646165
Snippet Fabric defect detection is an important part of the textile industry, aiming at the problems of many types of fabric defects, small size defects and unbalanced...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2309
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Computer Graphics
Computer networks
Computer Science
Datasets
Deep learning
Defects
Frames per second
Image Processing and Computer Vision
Mathematical models
Model accuracy
Network management systems
Object recognition
Original Article
Parameters
Target detection
Teaching methods
Textile industry
Vision systems
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8MgFCc6L3owfsbpND14U-IolFIvxhjrYtRdXDJPDVCqS2Y3XfXv98HopibboWlT2hAe8Hs_4H0gdCoAeJkOKRZCcsyU4FhQKTGQZUkNV5TF1lH48Yl3euy-H_X9htvEm1XWmOiAOh9pu0d-AVBLYbUC9Pdq_IFt1ih7uupTaKyiNQKaxo5wkd7NThGA2jj6S2ClZD0-vdOMc51zseowaCy4EiJw_FcxzdnmvwNSp3fSLbTpCWNwPe3hbbRiyh208SuM4C66TKUCOAtyY20z4FY5-6oykMNXaEL19h5YZZUH8GrgNhHg-aX70P2O9lAvvX2-6WCfEwFrEFuFmWQ54VyQQiYw9wSJDdesUJxKqkVBWA6EjkdSGmoS3aba5jdnlgkkqh0bSfdRoxyV5gAFUaJlQanV4YqFTMmcA_IZHilJVUJZE5FaIJn2AcNt3ophNgt17ISYgRAzJ8QsbqKz2T_jabiMpV-3ajlnfupMsnlHLywGzElC0UTnddfMixdXdri8siO0HgJfmRrltFCj-vwyx8A3KnXiBtUPkcfMqA
  priority: 102
  providerName: ProQuest
Title Fabric defect detection algorithm based on improved YOLOv5
URI https://link.springer.com/article/10.1007/s00371-023-02918-7
https://www.proquest.com/docview/3033721974
https://www.proquest.com/docview/3033880928
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH84vejBb3E6Rw_eNLAuaZp622RV_JgiDvRUkjRVQTeZ1b_flyydH6jgoaQ0aQovyXu_1_cFsCuQ8TLdpkQIyQlTghNBpSQIliU1XFEW20Dh8z4_HrCTm-jGB4W9VN7ulUnSceppsJvLLkdQxuCVhILENZiLUHe3-3rQ7kxtBwhoHOgNUT-ycZ4-VObnOb6Kow-M-c0s6qRNugyLHiYGncm6rsCMGa7CUlWCIfAnchUWPuUTXIODVCrka0FurJMGNqVztBoG8vFuNH4o758CK7XyAB89uL8JeH97cXbxFq3DIO1dHx4TXxyBaKRfSZhkeci5CAuZ4CEUYWy4ZoXiVFItipDliOx4JKWhJtEtqm2hc2YhQaJasZF0A2aHo6HZhCBKtCwotcJcsTZTMufIAg2PlKQqoawOYUWjTPvM4baAxWM2zXns6JohXTNH1yyuw970nedJ3ow_Rzcq0mf-DL1kKFwp6qeo8PzajcwnaYs67Fer9dH9-8e2_jd8G-Zxk3lvnQbMluNXs4NApFRNqIn0qAlznbTb7dv26Pa0h22317-8arpd-Q6c7tVx
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhWFAjnACSxI7DgOEkIIKAW6XIoEp2A7LiBBWRpA_BTfyNhNWkCCG4coUZzE0vNk5tmeBWBNoOJlOqBECMkJU4ITQaUkSJYlNVxRFtlA4XqDV8_Z6UV4MQQfRSyMdassdKJT1OmDtmvkW6hqKc5WkP7uPT4RWzXK7q4WJTR6YnFm3t9wytbdPTnE8V0PgspR66BK8qoCRGPHGWGSpT7nwm_LGKVX-JHhmrUVp5Jq0fZZipSIh1IaamK9TbWtEM6sLY3VdmQkxe8OwyijNLYuhKJy3N-1QCrl6LaPMzMbYZoH6bhQPZcbj6CFxCP2BYm-G8IBu_2xIevsXGUKJnOC6u33JGoahkxnBia-pC2chZ2KVKg-vdRYXxA8Zc6fq-PJu2uELLu596xxTD28desWLfD6sllrvoZzcP4vaM3DSOehYxbAC2Mt25RazqBYwJRMOWpaw0MlqYopK4FfAJLoPEG5rZNxl_RTKzsQEwQxcSAmUQk2-u889tJz_Pl0ucA5yX_VbjIQrF-bUcfFgSjBZjE0g-bfO1v8u7NVGKu26rWkdtI4W4LxALlSzyGoDCPZ84tZRq6TqRUnYB5c_bdEfwLx5whX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaI8eyBG0TQJk1TbgiYBoyNA5PGqUraFJCgoFH4_TjpYwMBEoeqVZOmklPbn-sXwJ5AwctijxIhJCdMCU4ElZIgWJZUc0VZYBKFr3u8M2CXQ384kcVvo90rl2SR02CqNGX54WuSHtaJb7bSHEF9g0foChJMwwyKY9cEdQ28k9qPgODGAmAXbSWT81mmzfy8xlfVNMab31ykVvO0l2ChhIzOSbHHyzClsyYsVu0YnJI7mzA_UVtwBY7bUqGMcxJtAjbwlNugq8yRT_cvo8f84dkxGixx8Naj_bOA13f9bv_DX4VB-_z2tEPKRgkkRlrmhEmWuJwLN5UhMqRwA81jlipOJY1F6rIEUR73pdRUh_ERjU3Tc2bgQaiOAi3pGjSyl0yvg-OHsUwpNYpdMY8pmXAUh5r7SlIVUtYCt6JRFJdVxE0zi6eorn9s6RohXSNL1yhowX79zGtRQ-PP2VsV6aOSn94iVLQUbVU0fn4dRkEUeqIFB9VujYd_f9nG_6bvwuzNWTvqXvSuNmHOQ3xTBPFsQSMfvettxCe52rGf4Cd98tcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabric+defect+detection+algorithm+based+on+improved+YOLOv5&rft.jtitle=The+Visual+computer&rft.au=Li%2C+Feng&rft.au=Xiao%2C+Kang&rft.au=Hu%2C+Zhengpeng&rft.au=Zhang%2C+Guozheng&rft.date=2024-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=4&rft.spage=2309&rft.epage=2324&rft_id=info:doi/10.1007%2Fs00371-023-02918-7&rft.externalDocID=10_1007_s00371_023_02918_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon