Fabric defect detection algorithm based on improved YOLOv5
Fabric defect detection is an important part of the textile industry, aiming at the problems of many types of fabric defects, small size defects and unbalanced samples, an improved YOLOv5 fabric defect detection algorithm, FD-YOLOv5, was proposed. First, the coordinate attention module is embedded i...
Saved in:
Published in | The Visual computer Vol. 40; no. 4; pp. 2309 - 2324 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0178-2789 1432-2315 |
DOI | 10.1007/s00371-023-02918-7 |
Cover
Loading…
Abstract | Fabric defect detection is an important part of the textile industry, aiming at the problems of many types of fabric defects, small size defects and unbalanced samples, an improved YOLOv5 fabric defect detection algorithm, FD-YOLOv5, was proposed. First, the coordinate attention module is embedded in the YOLOv5 backbone network structure to replace the bottleneck structure in the original network model. While reducing the amount of parameters and calculation, it enhances the ability of the network to extract features and improves the model's ability to detect small target defects. Secondly, a smoother Mish activation function is used in the original model convolution structure for model training, which improves the nonlinear expression ability of the model; the SIoU loss function considering the direction of the anchor box is used to improve the convergence speed and detection accuracy of the model. Finally, combining the focal loss and GHM loss functions as the target confidence loss function to solve the problem of sample imbalance in the fabric defect dataset. The experimental results based on the public fabric defect dataset of Aliyun TianChi shows that the mAP@.5 and mAP@.5:.95 of the improved algorithm are 65.1% and 30.4%, respectively, which are 8.3% and 3.2% higher than the original model, respectively, and the parameter amount, calculation amount and weight of the model are reduced by 8.4%, 11.2% and 14.3%, respectively, compared with the original model. Even compared with the state-of-the-art YOLOv7 model, the mAP@.5 value of the proposed model is improved by 6.5%. Although the FPS value is lower than YOLOv7 model, it also achieves a detection speed of 79 frames per second, which can meet the real-time demand. The experimental results demonstrate the effectiveness of the method in this paper, which can provide a reference for the automatic detection method of fabric defects. |
---|---|
AbstractList | Fabric defect detection is an important part of the textile industry, aiming at the problems of many types of fabric defects, small size defects and unbalanced samples, an improved YOLOv5 fabric defect detection algorithm, FD-YOLOv5, was proposed. First, the coordinate attention module is embedded in the YOLOv5 backbone network structure to replace the bottleneck structure in the original network model. While reducing the amount of parameters and calculation, it enhances the ability of the network to extract features and improves the model's ability to detect small target defects. Secondly, a smoother Mish activation function is used in the original model convolution structure for model training, which improves the nonlinear expression ability of the model; the SIoU loss function considering the direction of the anchor box is used to improve the convergence speed and detection accuracy of the model. Finally, combining the focal loss and GHM loss functions as the target confidence loss function to solve the problem of sample imbalance in the fabric defect dataset. The experimental results based on the public fabric defect dataset of Aliyun TianChi shows that the mAP@.5 and mAP@.5:.95 of the improved algorithm are 65.1% and 30.4%, respectively, which are 8.3% and 3.2% higher than the original model, respectively, and the parameter amount, calculation amount and weight of the model are reduced by 8.4%, 11.2% and 14.3%, respectively, compared with the original model. Even compared with the state-of-the-art YOLOv7 model, the mAP@.5 value of the proposed model is improved by 6.5%. Although the FPS value is lower than YOLOv7 model, it also achieves a detection speed of 79 frames per second, which can meet the real-time demand. The experimental results demonstrate the effectiveness of the method in this paper, which can provide a reference for the automatic detection method of fabric defects. Fabric defect detection is an important part of the textile industry, aiming at the problems of many types of fabric defects, small size defects and unbalanced samples, an improved YOLOv5 fabric defect detection algorithm, FD-YOLOv5, was proposed. First, the coordinate attention module is embedded in the YOLOv5 backbone network structure to replace the bottleneck structure in the original network model. While reducing the amount of parameters and calculation, it enhances the ability of the network to extract features and improves the model's ability to detect small target defects. Secondly, a smoother Mish activation function is used in the original model convolution structure for model training, which improves the nonlinear expression ability of the model; the SIoU loss function considering the direction of the anchor box is used to improve the convergence speed and detection accuracy of the model. Finally, combining the focal loss and GHM loss functions as the target confidence loss function to solve the problem of sample imbalance in the fabric defect dataset. The experimental results based on the public fabric defect dataset of Aliyun TianChi shows that the mAP@.5 and mAP@.5:.95 of the improved algorithm are 65.1% and 30.4%, respectively, which are 8.3% and 3.2% higher than the original model, respectively, and the parameter amount, calculation amount and weight of the model are reduced by 8.4%, 11.2% and 14.3%, respectively, compared with the original model. Even compared with the state-of-the-art YOLOv7 model, the mAP@.5 value of the proposed model is improved by 6.5%. Although the FPS value is lower than YOLOv7 model, it also achieves a detection speed of 79 frames per second, which can meet the real-time demand. The experimental results demonstrate the effectiveness of the method in this paper, which can provide a reference for the automatic detection method of fabric defects. |
Author | Li, Feng Zhang, Guozheng Xiao, Kang Hu, Zhengpeng |
Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0001-6128-3663 surname: Li fullname: Li, Feng organization: School of Computer Science and Technology, Donghua University, National Innovation Center of Advanced Dyeing & Finishing Technology – sequence: 2 givenname: Kang orcidid: 0000-0002-4048-8392 surname: Xiao fullname: Xiao, Kang email: xiao_kang99@163.com organization: School of Computer Science and Technology, Donghua University – sequence: 3 givenname: Zhengpeng surname: Hu fullname: Hu, Zhengpeng organization: National Innovation Center of Advanced Dyeing & Finishing Technology – sequence: 4 givenname: Guozheng surname: Zhang fullname: Zhang, Guozheng organization: National Innovation Center of Advanced Dyeing & Finishing Technology |
BookMark | eNqFkEtLAzEUhYNUsK3-AVcDrqN5dW7iToqtQqEbXbgKmUymprQzNUkL_ntTRxBc1EU4STjffZwRGrRd6xC6puSWEgJ3kRAOFBPG81FUYjhDQyo4w4zTyQANCQWJGUh1gUYxrkl-g1BDdD8zVfC2qF3jbMqSsviuLcxm1QWf3rdFZaKri_zlt7vQHfL9bblYHiaX6Lwxm-iufnSMXmePL9MnvFjOn6cPC2y5gISFETUtS0kbo4SUkoIrrWiqkhtuZUNFrQDKiTGOO2UJt5DnFiRvpSoCzvAxuunr5u4fexeTXnf70OaWmhPOpSSKyf9cwKgCkV2yd9nQxRhco61P5rhwCsZvNCX6mKfu89Q5T_2dp4aMsj_oLvitCZ-nId5DMZvblQu_U52gvgCrX4b2 |
CitedBy_id | crossref_primary_10_1007_s11760_024_03146_9 crossref_primary_10_1080_1448837X_2023_2247605 crossref_primary_10_1007_s12204_025_2804_x crossref_primary_10_1080_10589759_2025_2451768 crossref_primary_10_3390_su16187922 crossref_primary_10_3390_electronics13183728 crossref_primary_10_1007_s11042_024_20471_w crossref_primary_10_1007_s12221_024_00809_9 crossref_primary_10_1088_1361_6501_ad60eb crossref_primary_10_1088_1361_6501_ad5b7c |
Cites_doi | 10.1609/aaai.v34i07.6999 10.1109/tcyb.2021.3095305 10.1109/tpami.2016.2577031 10.1016/j.neucom.2022.07.042 10.1109/iccvw54120.2021.00312 10.1109/cvpr.2014.81 10.1109/tpami.2015.2389824 10.1109/ius54386.2022.9957216 10.1007/s00371-020-01831-7 10.1038/s41598-021-01084-x 10.3390/rs14225853 10.1109/cvpr42600.2020.01155 10.1007/978-3-319-46448-0_2 10.1109/cvprw50498.2020.00203 10.1145/2964284.2967274 10.1109/iccv.2019.00140 10.1109/CVPR.2017.106 10.1109/cvpr.2016.91 10.1109/cvpr46437.2021.01350 10.1109/iccv.2017.324 10.1609/aaai.v33i01.33018577 10.1007/978-3-030-01234-2_1 10.1109/iccv.2019.00853 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00371-023-02918-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Computer Science Collection Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 2324 |
ExternalDocumentID | 10_1007_s00371_023_02918_7 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c347t-4a4d16681fa9488817e6c4fb63a3c8f14d97765aae3e9c03c7143400079b07ea3 |
IEDL.DBID | U2A |
ISSN | 0178-2789 |
IngestDate | Fri Jul 25 22:56:51 EDT 2025 Fri Jul 25 21:11:17 EDT 2025 Thu Apr 24 22:54:51 EDT 2025 Tue Jul 01 01:05:53 EDT 2025 Fri Feb 21 02:41:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Computer vision Fabric defect detection GHM loss YOLOv5 SIoU loss |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-4a4d16681fa9488817e6c4fb63a3c8f14d97765aae3e9c03c7143400079b07ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6128-3663 0000-0002-4048-8392 |
PQID | 3033721974 |
PQPubID | 2043737 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3033880928 proquest_journals_3033721974 crossref_citationtrail_10_1007_s00371_023_02918_7 crossref_primary_10_1007_s00371_023_02918_7 springer_journals_10_1007_s00371_023_02918_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Girshick (CR2) 2015 Zheng, Wang, Ren, Liu, Ye, Hu, Zuo (CR21) 2021 Ren, He, Girshick (CR3) 2017; 39 CR19 CR18 CR17 CR16 CR15 CR13 CR12 CR10 Lu, Liu, He, Zhang, Liu, Karkee (CR6) 2022; 14 Zhu, Lyu, Wang, Zhao (CR8) 2021; 2021 Girshick (CR1) 2014 CR4 CR5 He, Zhang, Ren (CR11) 2015; 37 CR26 CR24 CR23 CR20 Zhang, Ren, Zhang, Jia, Wang, Tan (CR22) 2022; 506 Wang (CR25) 2020 Zheng, Wang, Liu (CR14) 2020; 34 Chen, Huang, Peng (CR9) 2021; 37 Zhao, Yang, Zhou, Sun, Ge, Liu (CR7) 2021; 11 2918_CR10 2918_CR4 2918_CR5 X Zhu (2918_CR8) 2021; 2021 Z Zheng (2918_CR14) 2020; 34 R Girshick (2918_CR2) 2015 Q Wang (2918_CR25) 2020 YF Zhang (2918_CR22) 2022; 506 2918_CR24 Z Zheng (2918_CR21) 2021 2918_CR23 2918_CR26 2918_CR20 W Chen (2918_CR9) 2021; 37 2918_CR19 Z Zhao (2918_CR7) 2021; 11 S Lu (2918_CR6) 2022; 14 R Girshick (2918_CR1) 2014 2918_CR13 S Ren (2918_CR3) 2017; 39 2918_CR12 2918_CR18 2918_CR17 K He (2918_CR11) 2015; 37 2918_CR16 2918_CR15 |
References_xml | – ident: CR18 – volume: 34 start-page: 12993 issue: 07 year: 2020 end-page: 13000 ident: CR14 article-title: Distance-IoU loss: faster and better learning for bounding box regression publication-title: Proc. AAAI Conf. Artif. Intell. doi: 10.1609/aaai.v34i07.6999 – year: 2021 ident: CR21 article-title: Enhancing geometric factors in model learning and inference for object detection and instance segmentation publication-title: IEEE Trans. Cybernet. doi: 10.1109/tcyb.2021.3095305 – ident: CR4 – ident: CR16 – volume: 39 start-page: 1137 issue: 6 year: 2017 end-page: 1149 ident: CR3 article-title: Faster R-CNN:towards realtime objectdetection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2016.2577031 – ident: CR12 – ident: CR10 – volume: 506 start-page: 146 year: 2022 end-page: 157 ident: CR22 article-title: Focal and efficient IOU loss for accurate bounding box regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.042 – volume: 2021 start-page: 2778 year: 2021 end-page: 2788 ident: CR8 article-title: TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios publication-title: IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW) doi: 10.1109/iccvw54120.2021.00312 – year: 2014 ident: CR1 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. doi: 10.1109/cvpr.2014.81 – volume: 37 start-page: 1904 issue: 9 year: 2015 end-page: 1916 ident: CR11 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2015.2389824 – year: 2015 ident: CR2 article-title: Fast r-cnn publication-title: Proc. IEEE Int. Conf. Comput. Vis. doi: 10.1109/ius54386.2022.9957216 – ident: CR23 – volume: 37 start-page: 805 year: 2021 end-page: 813 ident: CR9 article-title: YOLO-face: a real-time face detector publication-title: Vis. Comput. doi: 10.1007/s00371-020-01831-7 – ident: CR19 – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 15 ident: CR7 article-title: Real-time detection of particleboard surface defects based on improved YOLOV5 target detection publication-title: Sci. Rep. doi: 10.1038/s41598-021-01084-x – ident: CR15 – ident: CR17 – volume: 14 start-page: 5853 issue: 22 year: 2022 ident: CR6 article-title: Swin-transformer-YOLOv5 for real-time wine grape bunch detection publication-title: Remote Sens. doi: 10.3390/rs14225853 – ident: CR13 – year: 2020 ident: CR25 article-title: ECA-Net: efficient channel attention for deep convolutional neural networks publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. doi: 10.1109/cvpr42600.2020.01155 – ident: CR5 – ident: CR26 – ident: CR24 – ident: CR20 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 2918_CR3 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2016.2577031 – year: 2015 ident: 2918_CR2 publication-title: Proc. IEEE Int. Conf. Comput. Vis. doi: 10.1109/ius54386.2022.9957216 – ident: 2918_CR5 doi: 10.1007/978-3-319-46448-0_2 – ident: 2918_CR10 doi: 10.1109/cvprw50498.2020.00203 – volume: 37 start-page: 805 year: 2021 ident: 2918_CR9 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01831-7 – ident: 2918_CR20 doi: 10.1145/2964284.2967274 – ident: 2918_CR26 doi: 10.1109/iccv.2019.00140 – volume: 2021 start-page: 2778 year: 2021 ident: 2918_CR8 publication-title: IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW) doi: 10.1109/iccvw54120.2021.00312 – ident: 2918_CR12 doi: 10.1109/CVPR.2017.106 – ident: 2918_CR17 – volume: 506 start-page: 146 year: 2022 ident: 2918_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.042 – year: 2021 ident: 2918_CR21 publication-title: IEEE Trans. Cybernet. doi: 10.1109/tcyb.2021.3095305 – year: 2020 ident: 2918_CR25 publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. doi: 10.1109/cvpr42600.2020.01155 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 2918_CR11 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2015.2389824 – ident: 2918_CR4 doi: 10.1109/cvpr.2016.91 – ident: 2918_CR16 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 2918_CR7 publication-title: Sci. Rep. doi: 10.1038/s41598-021-01084-x – volume: 34 start-page: 12993 issue: 07 year: 2020 ident: 2918_CR14 publication-title: Proc. AAAI Conf. Artif. Intell. doi: 10.1609/aaai.v34i07.6999 – year: 2014 ident: 2918_CR1 publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. doi: 10.1109/cvpr.2014.81 – ident: 2918_CR15 doi: 10.1109/cvpr46437.2021.01350 – volume: 14 start-page: 5853 issue: 22 year: 2022 ident: 2918_CR6 publication-title: Remote Sens. doi: 10.3390/rs14225853 – ident: 2918_CR18 doi: 10.1109/iccv.2017.324 – ident: 2918_CR23 – ident: 2918_CR19 doi: 10.1609/aaai.v33i01.33018577 – ident: 2918_CR24 doi: 10.1007/978-3-030-01234-2_1 – ident: 2918_CR13 doi: 10.1109/iccv.2019.00853 |
SSID | ssj0017749 |
Score | 2.4646165 |
Snippet | Fabric defect detection is an important part of the textile industry, aiming at the problems of many types of fabric defects, small size defects and unbalanced... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2309 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Computer Graphics Computer networks Computer Science Datasets Deep learning Defects Frames per second Image Processing and Computer Vision Mathematical models Model accuracy Network management systems Object recognition Original Article Parameters Target detection Teaching methods Textile industry Vision systems |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8MgFCc6L3owfsbpND14U-IolFIvxhjrYtRdXDJPDVCqS2Y3XfXv98HopibboWlT2hAe8Hs_4H0gdCoAeJkOKRZCcsyU4FhQKTGQZUkNV5TF1lH48Yl3euy-H_X9htvEm1XWmOiAOh9pu0d-AVBLYbUC9Pdq_IFt1ih7uupTaKyiNQKaxo5wkd7NThGA2jj6S2ClZD0-vdOMc51zseowaCy4EiJw_FcxzdnmvwNSp3fSLbTpCWNwPe3hbbRiyh208SuM4C66TKUCOAtyY20z4FY5-6oykMNXaEL19h5YZZUH8GrgNhHg-aX70P2O9lAvvX2-6WCfEwFrEFuFmWQ54VyQQiYw9wSJDdesUJxKqkVBWA6EjkdSGmoS3aba5jdnlgkkqh0bSfdRoxyV5gAFUaJlQanV4YqFTMmcA_IZHilJVUJZE5FaIJn2AcNt3ophNgt17ISYgRAzJ8QsbqKz2T_jabiMpV-3ajlnfupMsnlHLywGzElC0UTnddfMixdXdri8siO0HgJfmRrltFCj-vwyx8A3KnXiBtUPkcfMqA priority: 102 providerName: ProQuest |
Title | Fabric defect detection algorithm based on improved YOLOv5 |
URI | https://link.springer.com/article/10.1007/s00371-023-02918-7 https://www.proquest.com/docview/3033721974 https://www.proquest.com/docview/3033880928 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH84vejBb3E6Rw_eNLAuaZp622RV_JgiDvRUkjRVQTeZ1b_flyydH6jgoaQ0aQovyXu_1_cFsCuQ8TLdpkQIyQlTghNBpSQIliU1XFEW20Dh8z4_HrCTm-jGB4W9VN7ulUnSceppsJvLLkdQxuCVhILENZiLUHe3-3rQ7kxtBwhoHOgNUT-ycZ4-VObnOb6Kow-M-c0s6qRNugyLHiYGncm6rsCMGa7CUlWCIfAnchUWPuUTXIODVCrka0FurJMGNqVztBoG8vFuNH4o758CK7XyAB89uL8JeH97cXbxFq3DIO1dHx4TXxyBaKRfSZhkeci5CAuZ4CEUYWy4ZoXiVFItipDliOx4JKWhJtEtqm2hc2YhQaJasZF0A2aHo6HZhCBKtCwotcJcsTZTMufIAg2PlKQqoawOYUWjTPvM4baAxWM2zXns6JohXTNH1yyuw970nedJ3ow_Rzcq0mf-DL1kKFwp6qeo8PzajcwnaYs67Fer9dH9-8e2_jd8G-Zxk3lvnQbMluNXs4NApFRNqIn0qAlznbTb7dv26Pa0h22317-8arpd-Q6c7tVx |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhWFAjnACSxI7DgOEkIIKAW6XIoEp2A7LiBBWRpA_BTfyNhNWkCCG4coUZzE0vNk5tmeBWBNoOJlOqBECMkJU4ITQaUkSJYlNVxRFtlA4XqDV8_Z6UV4MQQfRSyMdassdKJT1OmDtmvkW6hqKc5WkP7uPT4RWzXK7q4WJTR6YnFm3t9wytbdPTnE8V0PgspR66BK8qoCRGPHGWGSpT7nwm_LGKVX-JHhmrUVp5Jq0fZZipSIh1IaamK9TbWtEM6sLY3VdmQkxe8OwyijNLYuhKJy3N-1QCrl6LaPMzMbYZoH6bhQPZcbj6CFxCP2BYm-G8IBu_2xIevsXGUKJnOC6u33JGoahkxnBia-pC2chZ2KVKg-vdRYXxA8Zc6fq-PJu2uELLu596xxTD28desWLfD6sllrvoZzcP4vaM3DSOehYxbAC2Mt25RazqBYwJRMOWpaw0MlqYopK4FfAJLoPEG5rZNxl_RTKzsQEwQxcSAmUQk2-u889tJz_Pl0ucA5yX_VbjIQrF-bUcfFgSjBZjE0g-bfO1v8u7NVGKu26rWkdtI4W4LxALlSzyGoDCPZ84tZRq6TqRUnYB5c_bdEfwLx5whX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaI8eyBG0TQJk1TbgiYBoyNA5PGqUraFJCgoFH4_TjpYwMBEoeqVZOmklPbn-sXwJ5AwctijxIhJCdMCU4ElZIgWJZUc0VZYBKFr3u8M2CXQ384kcVvo90rl2SR02CqNGX54WuSHtaJb7bSHEF9g0foChJMwwyKY9cEdQ28k9qPgODGAmAXbSWT81mmzfy8xlfVNMab31ykVvO0l2ChhIzOSbHHyzClsyYsVu0YnJI7mzA_UVtwBY7bUqGMcxJtAjbwlNugq8yRT_cvo8f84dkxGixx8Naj_bOA13f9bv_DX4VB-_z2tEPKRgkkRlrmhEmWuJwLN5UhMqRwA81jlipOJY1F6rIEUR73pdRUh_ERjU3Tc2bgQaiOAi3pGjSyl0yvg-OHsUwpNYpdMY8pmXAUh5r7SlIVUtYCt6JRFJdVxE0zi6eorn9s6RohXSNL1yhowX79zGtRQ-PP2VsV6aOSn94iVLQUbVU0fn4dRkEUeqIFB9VujYd_f9nG_6bvwuzNWTvqXvSuNmHOQ3xTBPFsQSMfvettxCe52rGf4Cd98tcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabric+defect+detection+algorithm+based+on+improved+YOLOv5&rft.jtitle=The+Visual+computer&rft.au=Li%2C+Feng&rft.au=Xiao%2C+Kang&rft.au=Hu%2C+Zhengpeng&rft.au=Zhang%2C+Guozheng&rft.date=2024-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=4&rft.spage=2309&rft.epage=2324&rft_id=info:doi/10.1007%2Fs00371-023-02918-7&rft.externalDocID=10_1007_s00371_023_02918_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |