ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction

Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 39; no. 3; pp. 634 - 643
Main Authors Liao, Haofu, Lin, Wei-An, Zhou, S. Kevin, Luo, Jiebo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2019.2933425

Cover

Loading…
Abstract Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications. To address this problem, we propose, to the best of our knowledge, the first unsupervised learning approach to MAR. Specifically, we introduce a novel artifact disentanglement network that disentangles the metal artifacts from CT images in the latent space. It supports different forms of generations (artifact reduction, artifact transfer, and self-reconstruction, etc.) with specialized loss functions to obviate the need for supervision with synthesized data. Extensive experiments show that when applied to a synthesized dataset, our method addresses metal artifacts significantly better than the existing unsupervised models designed for natural image-to-image translation problems, and achieves comparable performance to existing supervised models for MAR. When applied to clinical datasets, our method demonstrates better generalization ability over the supervised models. The source code of this paper is publicly available at https:// github.com/liaohaofu/adn.
AbstractList Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications. To address this problem, we propose, to the best of our knowledge, the first unsupervised learning approach to MAR. Specifically, we introduce a novel artifact disentanglement network that disentangles the metal artifacts from CT images in the latent space. It supports different forms of generations (artifact reduction, artifact transfer, and self-reconstruction, etc.) with specialized loss functions to obviate the need for supervision with synthesized data. Extensive experiments show that when applied to a synthesized dataset, our method addresses metal artifacts significantly better than the existing unsupervised models designed for natural image-to-image translation problems, and achieves comparable performance to existing supervised models for MAR. When applied to clinical datasets, our method demonstrates better generalization ability over the supervised models. The source code of this paper is publicly available at https:// github.com/liaohaofu/adn.Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications. To address this problem, we propose, to the best of our knowledge, the first unsupervised learning approach to MAR. Specifically, we introduce a novel artifact disentanglement network that disentangles the metal artifacts from CT images in the latent space. It supports different forms of generations (artifact reduction, artifact transfer, and self-reconstruction, etc.) with specialized loss functions to obviate the need for supervision with synthesized data. Extensive experiments show that when applied to a synthesized dataset, our method addresses metal artifacts significantly better than the existing unsupervised models designed for natural image-to-image translation problems, and achieves comparable performance to existing supervised models for MAR. When applied to clinical datasets, our method demonstrates better generalization ability over the supervised models. The source code of this paper is publicly available at https:// github.com/liaohaofu/adn.
Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications. To address this problem, we propose, to the best of our knowledge, the first unsupervised learning approach to MAR. Specifically, we introduce a novel artifact disentanglement network that disentangles the metal artifacts from CT images in the latent space. It supports different forms of generations (artifact reduction, artifact transfer, and self-reconstruction, etc.) with specialized loss functions to obviate the need for supervision with synthesized data. Extensive experiments show that when applied to a synthesized dataset, our method addresses metal artifacts significantly better than the existing unsupervised models designed for natural image-to-image translation problems, and achieves comparable performance to existing supervised models for MAR. When applied to clinical datasets, our method demonstrates better generalization ability over the supervised models. The source code of this paper is publicly available at https:// github.com/liaohaofu/adn .
Author Liao, Haofu
Lin, Wei-An
Luo, Jiebo
Zhou, S. Kevin
Author_xml – sequence: 1
  givenname: Haofu
  orcidid: 0000-0002-7430-2904
  surname: Liao
  fullname: Liao, Haofu
  email: hliao6@cs.rochester.edu
  organization: Department of Computer Science, University of Rochester, Rochester, NY, USA
– sequence: 2
  givenname: Wei-An
  surname: Lin
  fullname: Lin, Wei-An
  organization: Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, USA
– sequence: 3
  givenname: S. Kevin
  surname: Zhou
  fullname: Zhou, S. Kevin
  organization: Chinese Academy of Sciences, Institute of Computing Technology, Beijing, China
– sequence: 4
  givenname: Jiebo
  orcidid: 0000-0002-4516-9729
  surname: Luo
  fullname: Luo, Jiebo
  email: jluo@cs.rochester.edu
  organization: Department of Computer Science, University of Rochester, Rochester, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31395543$$D View this record in MEDLINE/PubMed
BookMark eNp9kctr3DAQh0VISTZp74VCMPTSi7ejt5TbklcDeUBJoDehlcfFqdfeSnJL_vtq2W0KOfQ0c_i-mWF-R2R_GAck5D2FOaVgPz_cXs8ZUDtnlnPB5B6ZUSlNzaT4tk9mwLSpARQ7JEcpPQFQIcEekENOuZVS8Bm5X5zfnVaLmLvWh1yddwmH7IfvPa5KU91h_j3GH1U7xupxSNMa46-CNNUtZt__875iM4XcjcNb8qb1fcJ3u3pMHi8vHs6-1Df3V9dni5s6cKFzLbTkDcqlp41SSiyDCdp6Jhl4tkSwmglGg-IG20YxE9qg2kZYphQPnGrDj8mn7dx1HH9OmLJbdSlg3_sBxyk5xjQAlCG2oB9foU_jFIdynWNcC2W0kqpQJztqWq6wcevYrXx8dn9fVQDYAiGOKUVsXxAKbpOGK2m4TRpul0ZR1CsldNlv3pSj7_r_iR-2YoeIL3uMNkaB5n8AP6OUrQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_compmedimag_2024_102351
crossref_primary_10_1109_JBHI_2023_3312292
crossref_primary_10_1245_s10434_022_12207_7
crossref_primary_10_1109_TCI_2024_3369408
crossref_primary_10_1109_TRPMS_2024_3424941
crossref_primary_10_1186_s42492_024_00165_8
crossref_primary_10_1002_mp_15621
crossref_primary_10_1016_j_pacs_2024_100613
crossref_primary_10_1002_mp_14931
crossref_primary_10_3390_s21248164
crossref_primary_10_1109_JBHI_2024_3439729
crossref_primary_10_1016_j_compmedimag_2023_102237
crossref_primary_10_3390_e26020101
crossref_primary_10_1016_j_radi_2024_10_009
crossref_primary_10_1088_1361_6560_ac1156
crossref_primary_10_1053_j_semnuclmed_2021_06_015
crossref_primary_10_1016_j_bspc_2023_105753
crossref_primary_10_1109_TMI_2024_3351201
crossref_primary_10_1109_TRPMS_2023_3316349
crossref_primary_10_1109_TRPMS_2021_3122071
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_1109_TNNLS_2023_3315307
crossref_primary_10_1109_TMI_2024_3351722
crossref_primary_10_1109_TMI_2021_3127074
crossref_primary_10_1002_mp_16331
crossref_primary_10_1109_TBME_2021_3108164
crossref_primary_10_1109_TMI_2021_3101363
crossref_primary_10_1109_TMI_2023_3325703
crossref_primary_10_1016_j_media_2024_103327
crossref_primary_10_1016_j_patcog_2024_111285
crossref_primary_10_1007_s11042_024_18561_w
crossref_primary_10_1016_j_compbiomed_2024_108331
crossref_primary_10_1007_s11517_022_02631_y
crossref_primary_10_1016_j_compmedimag_2022_102166
crossref_primary_10_1148_radiol_221257
crossref_primary_10_1088_1361_6560_ad5ef4
crossref_primary_10_1002_mp_16049
crossref_primary_10_1002_mp_16724
crossref_primary_10_1016_j_media_2024_103397
crossref_primary_10_1109_TRPMS_2022_3171440
crossref_primary_10_1088_1361_6560_ac195c
crossref_primary_10_1016_j_bspc_2024_106715
crossref_primary_10_1007_s11548_023_02986_z
crossref_primary_10_15701_kcgs_2021_27_5_45
crossref_primary_10_1109_TCI_2024_3485538
crossref_primary_10_1109_TMI_2021_3096142
crossref_primary_10_1088_1361_6560_ac6ebc
crossref_primary_10_1002_acm2_14304
crossref_primary_10_1088_2632_2153_ad1b8e
crossref_primary_10_1109_TMI_2023_3280217
crossref_primary_10_1016_j_ejrad_2023_111276
crossref_primary_10_1109_TMI_2023_3310987
crossref_primary_10_1109_TPAMI_2024_3383532
crossref_primary_10_1016_j_compbiomed_2023_106710
crossref_primary_10_3233_XST_221260
crossref_primary_10_1038_s42256_020_00273_z
crossref_primary_10_1007_s13246_023_01307_7
crossref_primary_10_1109_TMI_2020_3045207
crossref_primary_10_1016_j_media_2021_102106
crossref_primary_10_3390_s22093258
crossref_primary_10_1109_TMI_2020_3031617
crossref_primary_10_1016_j_media_2021_102227
crossref_primary_10_3390_app12010404
crossref_primary_10_1016_j_media_2022_102729
crossref_primary_10_1109_TMI_2022_3175529
crossref_primary_10_3389_fonc_2022_1024160
crossref_primary_10_1002_mp_15931
crossref_primary_10_1109_TIM_2022_3221772
crossref_primary_10_1109_TMI_2023_3244252
crossref_primary_10_1109_TMI_2023_3247759
crossref_primary_10_1109_TMI_2024_3431192
crossref_primary_10_1109_TMI_2021_3113365
crossref_primary_10_1145_3528172
crossref_primary_10_1109_ACCESS_2024_3439861
crossref_primary_10_1016_j_compbiomed_2023_107373
crossref_primary_10_1016_j_rcl_2024_01_002
crossref_primary_10_1109_TMI_2020_3005432
crossref_primary_10_1186_s41747_024_00427_3
crossref_primary_10_3389_fnins_2021_662005
crossref_primary_10_1007_s11042_022_12194_7
crossref_primary_10_1016_j_media_2022_102516
crossref_primary_10_1038_s44172_023_00121_z
crossref_primary_10_1109_TIM_2022_3227549
crossref_primary_10_1016_j_measurement_2022_112420
crossref_primary_10_1109_TMI_2020_3025064
crossref_primary_10_1002_mp_15840
crossref_primary_10_1007_s11263_024_02286_2
crossref_primary_10_1016_j_net_2023_05_016
crossref_primary_10_2174_1573405619666230217102534
crossref_primary_10_1364_OE_551682
crossref_primary_10_1088_1361_6560_acf8ac
crossref_primary_10_1088_1361_6560_acf9da
crossref_primary_10_1016_j_knosys_2025_113235
crossref_primary_10_1088_1361_6560_ad3c0a
crossref_primary_10_1109_JPROC_2021_3054390
crossref_primary_10_1109_TMI_2024_3354925
crossref_primary_10_1109_LSP_2024_3393355
crossref_primary_10_1088_1361_6560_acbddf
crossref_primary_10_1088_1361_6420_ad2694
crossref_primary_10_1088_1361_6560_acba74
crossref_primary_10_1109_TMI_2023_3261822
crossref_primary_10_1016_j_ejrad_2023_110844
crossref_primary_10_1002_mp_16405
crossref_primary_10_1016_j_dsp_2025_105092
crossref_primary_10_1186_s42492_020_00054_w
crossref_primary_10_3233_XST_221176
crossref_primary_10_1088_1361_6560_abe026
Cites_doi 10.1118/1.598853
10.1117/1.JMI.5.3.036501
10.1109/TMI.2015.2478905
10.1118/1.595032
10.1109/CVPR.2016.90
10.1109/ICCV.2017.244
10.1186/s12938-018-0609-y
10.1148/radiology.164.2.3602406
10.23915/distill.00003
10.1109/ACCESS.2016.2608621
10.1109/CVPR.2017.632
10.1118/1.3484090
10.1109/NSSMIC.2010.5874134
10.1007/978-3-642-40763-5_33
10.1007/978-3-030-01219-9_11
10.1109/CVPR.2017.106
10.1007/978-3-030-00928-1_1
10.1007/978-3-030-32226-7_23
10.1109/TMI.2018.2823083
10.1007/978-3-030-01246-5_3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2019.2933425
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 643
ExternalDocumentID 31395543
10_1109_TMI_2019_2933425
8788607
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Morris K. Udall Center of Excellence in Parkinson’s Disease Research by NIH
– fundername: National Science Foundation
  grantid: #1722847
  funderid: 10.13039/501100008982
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-4753de5ba1d6664bc8c79a2520a2be0972421c638efd628cfc6fd492663c31783
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Jul 11 07:43:50 EDT 2025
Sun Jun 29 14:48:19 EDT 2025
Thu Apr 03 07:08:03 EDT 2025
Tue Jul 01 03:16:02 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Wed Aug 27 02:30:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-4753de5ba1d6664bc8c79a2520a2be0972421c638efd628cfc6fd492663c31783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4516-9729
0000-0002-7430-2904
PMID 31395543
PQID 2374687656
PQPubID 85460
PageCount 10
ParticipantIDs pubmed_primary_31395543
ieee_primary_8788607
proquest_journals_2374687656
proquest_miscellaneous_2270004219
crossref_primary_10_1109_TMI_2019_2933425
crossref_citationtrail_10_1109_TMI_2019_2933425
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
gjesteby (ref7) 2018
ref2
ref1
ulyanov (ref29) 2017
ref16
ref19
ref18
ulyanov (ref17) 2018
goodfellow (ref13) 2014
ref24
ref23
ref25
ref20
radford (ref22) 2015
ref28
ref27
lee (ref30) 2018
ref9
ref4
ref3
ref6
ref5
locatello (ref8) 2018
ronneberger (ref26) 2015
huang (ref21) 2018
References_xml – ident: ref10
  doi: 10.1118/1.598853
– ident: ref27
  doi: 10.1117/1.JMI.5.3.036501
– ident: ref9
  doi: 10.1109/TMI.2015.2478905
– ident: ref12
  doi: 10.1118/1.595032
– start-page: 234
  year: 2015
  ident: ref26
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Int Conf Med Image Comput Comput Interv
– start-page: 2672
  year: 2014
  ident: ref13
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref23
  doi: 10.1109/CVPR.2016.90
– ident: ref20
  doi: 10.1109/ICCV.2017.244
– ident: ref6
  doi: 10.1186/s12938-018-0609-y
– year: 2015
  ident: ref22
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv 1511 06434
– start-page: 9446
  year: 2018
  ident: ref17
  article-title: Deep image prior
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref2
  doi: 10.1148/radiology.164.2.3602406
– ident: ref24
  doi: 10.23915/distill.00003
– ident: ref1
  doi: 10.1109/ACCESS.2016.2608621
– year: 2018
  ident: ref8
  article-title: Challenging common assumptions in the unsupervised learning of disentangled representations
  publication-title: arXiv 1811 12359
– year: 2018
  ident: ref30
  article-title: Diverse image-to-image translation via disentangled representations
  publication-title: arXiv 1808 00948
– ident: ref19
  doi: 10.1109/CVPR.2017.632
– ident: ref3
  doi: 10.1118/1.3484090
– ident: ref11
  doi: 10.1109/NSSMIC.2010.5874134
– ident: ref28
  doi: 10.1007/978-3-642-40763-5_33
– ident: ref15
  doi: 10.1007/978-3-030-01219-9_11
– ident: ref25
  doi: 10.1109/CVPR.2017.106
– ident: ref5
  doi: 10.1007/978-3-030-00928-1_1
– start-page: 1
  year: 2018
  ident: ref7
  article-title: Deep neural network for CT metal artifact reduction with a perceptual loss function
  publication-title: Proc 5th Int Conf Image Formation X-ray Comput Tomogr
– ident: ref18
  doi: 10.1007/978-3-030-32226-7_23
– year: 2018
  ident: ref21
  article-title: Multimodal unsupervised image-to-image translation
  publication-title: arXiv 1804 04732
– ident: ref4
  doi: 10.1109/TMI.2018.2823083
– ident: ref16
  doi: 10.1007/978-3-030-01246-5_3
– year: 2017
  ident: ref29
  article-title: Deep image prior
  publication-title: arXiv 1711 10925
– ident: ref14
  doi: 10.1109/ICCV.2017.244
SSID ssj0014509
Score 2.64341
Snippet Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 634
SubjectTerms Artificial neural networks
Computed tomography
Computer simulation
Datasets
Decoding
Humans
Image enhancement/restoration (noise and artifact reduction)
Image Processing, Computer-Assisted - methods
Image reconstruction
Machine Learning
Mars
Medical imaging
Metals
Metals - isolation & purification
neural network
Neural networks
Neural Networks, Computer
Reduction (metal working)
Source code
Synthesis
Therapeutic applications
Tomography, X-Ray Computed - methods
Training
X-ray imaging
Title ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction
URI https://ieeexplore.ieee.org/document/8788607
https://www.ncbi.nlm.nih.gov/pubmed/31395543
https://www.proquest.com/docview/2374687656
https://www.proquest.com/docview/2270004219
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qB9GDj9ZHfBHBi2D62OymWW9FLVVIBWnBW0g2GxElFZtc_PXObNJQRMVbILubx-zufLMz8w3AuRBRTJwujuQpGiioQx2ZclzuxCwjVYqIg847grE3mvL7J_HUgMs6F0ZrbYLPdJsujS8_mamCjso6PtprHqWOr-BFmatVewy4KMM5GDHGdj22cEl2ZWcS3FEMl2yjanM5FcVeUkGmpsrv8NKomeEWBIsXLKNLXttFHrfV5zfuxv9-wTZsVnjTHpQTZAcaOmvCxhILYRPWgsq_3oKHwc34yjSmhAf75sWkJmXPZYy5PS5jxm0EuvY0mxfvtNHMdWIHOq8eYvo9Eh8sSXwXpsPbyfXIqUouOMrl_dzhaL0kWsRRL0G7hsfKV30ZMcG6EYs1Uf1w1lO4ZnWaeMxXqfLShDgHPVchEvHdPVjNZpk-ANvjiok4JU9wnyOs8VONw6DB7QqZ9FhiQWchhVBVfORUFuMtNHZJV4Yot5DkFlZys-Ci7vFecnH80bZFf79uV_14C44Xgg6rxToPzQuiVhCeBWf1bVxm5DuJMj0rsA056HGD60kL9ssJUo_tIopGVOYe_vzMI1hnZKSbwLVjWM0_Cn2CSCaPT80U_gLIqesc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB5EwePB-6hnBV8Eu7tNk27jm3iwHl1BdsG30qapiNIVt33x1zuTdouIim-F5mgzSeabzMwXgCMh4oQ4XRzJMzRQUIc6MuO43IlZRqoMEQedd4R9vzfkN4_icQpOmlwYrbUJPtMtejS-_HSkSjoqawdor_mUOj6Del-4VbZW4zPgogroYMQZ2_HZxCnZke1BeE1RXLKFys3jdC32FyVkblX5HWAaRXO1BOHkE6v4kpdWWSQt9fGNvfG__7AMizXitM-qKbICUzpfhYUvPISrMBvWHvY1uD-76J-awpTyYF88m-Sk_KmKMrf7VdS4jVDXHubj8o22mrFO7VAXdSem3gMxwpLM12F4dTk47zn1pQuO8ni3cDjaL6kWSeymaNnwRAWqK2MmWCdmiSayH85chatWZ6nPApUpP0uJddD3FGKRwNuA6XyU6y2wfa6YSDLyBXc5Apsg09gMmtyekKnLUgvaEylEqmYkp4sxXiNjmXRkhHKLSG5RLTcLjpsabxUbxx9l12j0m3L1wFuwOxF0VC_XcWQ-EPWC8C04bF7jQiPvSZzrUYllyEWPW5wrLdisJkjTtoc4GnGZt_1znwcw1xuEd9Hddf92B-YZmewmjG0Xpov3Uu8hrimSfTOdPwE0ve5l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADN%3A+Artifact+Disentanglement+Network+for+Unsupervised+Metal+Artifact+Reduction&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Liao%2C+Haofu&rft.au=Lin%2C+Wei-An&rft.au=Zhou%2C+S.+Kevin&rft.au=Luo%2C+Jiebo&rft.date=2020-03-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=39&rft.issue=3&rft.spage=634&rft.epage=643&rft_id=info:doi/10.1109%2FTMI.2019.2933425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2019_2933425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon