ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction
Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervi...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 39; no. 3; pp. 634 - 643 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2019.2933425 |
Cover
Loading…
Abstract | Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications. To address this problem, we propose, to the best of our knowledge, the first unsupervised learning approach to MAR. Specifically, we introduce a novel artifact disentanglement network that disentangles the metal artifacts from CT images in the latent space. It supports different forms of generations (artifact reduction, artifact transfer, and self-reconstruction, etc.) with specialized loss functions to obviate the need for supervision with synthesized data. Extensive experiments show that when applied to a synthesized dataset, our method addresses metal artifacts significantly better than the existing unsupervised models designed for natural image-to-image translation problems, and achieves comparable performance to existing supervised models for MAR. When applied to clinical datasets, our method demonstrates better generalization ability over the supervised models. The source code of this paper is publicly available at https:// github.com/liaohaofu/adn. |
---|---|
AbstractList | Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications. To address this problem, we propose, to the best of our knowledge, the first unsupervised learning approach to MAR. Specifically, we introduce a novel artifact disentanglement network that disentangles the metal artifacts from CT images in the latent space. It supports different forms of generations (artifact reduction, artifact transfer, and self-reconstruction, etc.) with specialized loss functions to obviate the need for supervision with synthesized data. Extensive experiments show that when applied to a synthesized dataset, our method addresses metal artifacts significantly better than the existing unsupervised models designed for natural image-to-image translation problems, and achieves comparable performance to existing supervised models for MAR. When applied to clinical datasets, our method demonstrates better generalization ability over the supervised models. The source code of this paper is publicly available at https:// github.com/liaohaofu/adn.Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications. To address this problem, we propose, to the best of our knowledge, the first unsupervised learning approach to MAR. Specifically, we introduce a novel artifact disentanglement network that disentangles the metal artifacts from CT images in the latent space. It supports different forms of generations (artifact reduction, artifact transfer, and self-reconstruction, etc.) with specialized loss functions to obviate the need for supervision with synthesized data. Extensive experiments show that when applied to a synthesized dataset, our method addresses metal artifacts significantly better than the existing unsupervised models designed for natural image-to-image translation problems, and achieves comparable performance to existing supervised models for MAR. When applied to clinical datasets, our method demonstrates better generalization ability over the supervised models. The source code of this paper is publicly available at https:// github.com/liaohaofu/adn. Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications. To address this problem, we propose, to the best of our knowledge, the first unsupervised learning approach to MAR. Specifically, we introduce a novel artifact disentanglement network that disentangles the metal artifacts from CT images in the latent space. It supports different forms of generations (artifact reduction, artifact transfer, and self-reconstruction, etc.) with specialized loss functions to obviate the need for supervision with synthesized data. Extensive experiments show that when applied to a synthesized dataset, our method addresses metal artifacts significantly better than the existing unsupervised models designed for natural image-to-image translation problems, and achieves comparable performance to existing supervised models for MAR. When applied to clinical datasets, our method demonstrates better generalization ability over the supervised models. The source code of this paper is publicly available at https:// github.com/liaohaofu/adn . |
Author | Liao, Haofu Lin, Wei-An Luo, Jiebo Zhou, S. Kevin |
Author_xml | – sequence: 1 givenname: Haofu orcidid: 0000-0002-7430-2904 surname: Liao fullname: Liao, Haofu email: hliao6@cs.rochester.edu organization: Department of Computer Science, University of Rochester, Rochester, NY, USA – sequence: 2 givenname: Wei-An surname: Lin fullname: Lin, Wei-An organization: Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, USA – sequence: 3 givenname: S. Kevin surname: Zhou fullname: Zhou, S. Kevin organization: Chinese Academy of Sciences, Institute of Computing Technology, Beijing, China – sequence: 4 givenname: Jiebo orcidid: 0000-0002-4516-9729 surname: Luo fullname: Luo, Jiebo email: jluo@cs.rochester.edu organization: Department of Computer Science, University of Rochester, Rochester, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31395543$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctr3DAQh0VISTZp74VCMPTSi7ejt5TbklcDeUBJoDehlcfFqdfeSnJL_vtq2W0KOfQ0c_i-mWF-R2R_GAck5D2FOaVgPz_cXs8ZUDtnlnPB5B6ZUSlNzaT4tk9mwLSpARQ7JEcpPQFQIcEekENOuZVS8Bm5X5zfnVaLmLvWh1yddwmH7IfvPa5KU91h_j3GH1U7xupxSNMa46-CNNUtZt__875iM4XcjcNb8qb1fcJ3u3pMHi8vHs6-1Df3V9dni5s6cKFzLbTkDcqlp41SSiyDCdp6Jhl4tkSwmglGg-IG20YxE9qg2kZYphQPnGrDj8mn7dx1HH9OmLJbdSlg3_sBxyk5xjQAlCG2oB9foU_jFIdynWNcC2W0kqpQJztqWq6wcevYrXx8dn9fVQDYAiGOKUVsXxAKbpOGK2m4TRpul0ZR1CsldNlv3pSj7_r_iR-2YoeIL3uMNkaB5n8AP6OUrQ |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_compmedimag_2024_102351 crossref_primary_10_1109_JBHI_2023_3312292 crossref_primary_10_1245_s10434_022_12207_7 crossref_primary_10_1109_TCI_2024_3369408 crossref_primary_10_1109_TRPMS_2024_3424941 crossref_primary_10_1186_s42492_024_00165_8 crossref_primary_10_1002_mp_15621 crossref_primary_10_1016_j_pacs_2024_100613 crossref_primary_10_1002_mp_14931 crossref_primary_10_3390_s21248164 crossref_primary_10_1109_JBHI_2024_3439729 crossref_primary_10_1016_j_compmedimag_2023_102237 crossref_primary_10_3390_e26020101 crossref_primary_10_1016_j_radi_2024_10_009 crossref_primary_10_1088_1361_6560_ac1156 crossref_primary_10_1053_j_semnuclmed_2021_06_015 crossref_primary_10_1016_j_bspc_2023_105753 crossref_primary_10_1109_TMI_2024_3351201 crossref_primary_10_1109_TRPMS_2023_3316349 crossref_primary_10_1109_TRPMS_2021_3122071 crossref_primary_10_1007_s00530_021_00884_5 crossref_primary_10_1109_TNNLS_2023_3315307 crossref_primary_10_1109_TMI_2024_3351722 crossref_primary_10_1109_TMI_2021_3127074 crossref_primary_10_1002_mp_16331 crossref_primary_10_1109_TBME_2021_3108164 crossref_primary_10_1109_TMI_2021_3101363 crossref_primary_10_1109_TMI_2023_3325703 crossref_primary_10_1016_j_media_2024_103327 crossref_primary_10_1016_j_patcog_2024_111285 crossref_primary_10_1007_s11042_024_18561_w crossref_primary_10_1016_j_compbiomed_2024_108331 crossref_primary_10_1007_s11517_022_02631_y crossref_primary_10_1016_j_compmedimag_2022_102166 crossref_primary_10_1148_radiol_221257 crossref_primary_10_1088_1361_6560_ad5ef4 crossref_primary_10_1002_mp_16049 crossref_primary_10_1002_mp_16724 crossref_primary_10_1016_j_media_2024_103397 crossref_primary_10_1109_TRPMS_2022_3171440 crossref_primary_10_1088_1361_6560_ac195c crossref_primary_10_1016_j_bspc_2024_106715 crossref_primary_10_1007_s11548_023_02986_z crossref_primary_10_15701_kcgs_2021_27_5_45 crossref_primary_10_1109_TCI_2024_3485538 crossref_primary_10_1109_TMI_2021_3096142 crossref_primary_10_1088_1361_6560_ac6ebc crossref_primary_10_1002_acm2_14304 crossref_primary_10_1088_2632_2153_ad1b8e crossref_primary_10_1109_TMI_2023_3280217 crossref_primary_10_1016_j_ejrad_2023_111276 crossref_primary_10_1109_TMI_2023_3310987 crossref_primary_10_1109_TPAMI_2024_3383532 crossref_primary_10_1016_j_compbiomed_2023_106710 crossref_primary_10_3233_XST_221260 crossref_primary_10_1038_s42256_020_00273_z crossref_primary_10_1007_s13246_023_01307_7 crossref_primary_10_1109_TMI_2020_3045207 crossref_primary_10_1016_j_media_2021_102106 crossref_primary_10_3390_s22093258 crossref_primary_10_1109_TMI_2020_3031617 crossref_primary_10_1016_j_media_2021_102227 crossref_primary_10_3390_app12010404 crossref_primary_10_1016_j_media_2022_102729 crossref_primary_10_1109_TMI_2022_3175529 crossref_primary_10_3389_fonc_2022_1024160 crossref_primary_10_1002_mp_15931 crossref_primary_10_1109_TIM_2022_3221772 crossref_primary_10_1109_TMI_2023_3244252 crossref_primary_10_1109_TMI_2023_3247759 crossref_primary_10_1109_TMI_2024_3431192 crossref_primary_10_1109_TMI_2021_3113365 crossref_primary_10_1145_3528172 crossref_primary_10_1109_ACCESS_2024_3439861 crossref_primary_10_1016_j_compbiomed_2023_107373 crossref_primary_10_1016_j_rcl_2024_01_002 crossref_primary_10_1109_TMI_2020_3005432 crossref_primary_10_1186_s41747_024_00427_3 crossref_primary_10_3389_fnins_2021_662005 crossref_primary_10_1007_s11042_022_12194_7 crossref_primary_10_1016_j_media_2022_102516 crossref_primary_10_1038_s44172_023_00121_z crossref_primary_10_1109_TIM_2022_3227549 crossref_primary_10_1016_j_measurement_2022_112420 crossref_primary_10_1109_TMI_2020_3025064 crossref_primary_10_1002_mp_15840 crossref_primary_10_1007_s11263_024_02286_2 crossref_primary_10_1016_j_net_2023_05_016 crossref_primary_10_2174_1573405619666230217102534 crossref_primary_10_1364_OE_551682 crossref_primary_10_1088_1361_6560_acf8ac crossref_primary_10_1088_1361_6560_acf9da crossref_primary_10_1016_j_knosys_2025_113235 crossref_primary_10_1088_1361_6560_ad3c0a crossref_primary_10_1109_JPROC_2021_3054390 crossref_primary_10_1109_TMI_2024_3354925 crossref_primary_10_1109_LSP_2024_3393355 crossref_primary_10_1088_1361_6560_acbddf crossref_primary_10_1088_1361_6420_ad2694 crossref_primary_10_1088_1361_6560_acba74 crossref_primary_10_1109_TMI_2023_3261822 crossref_primary_10_1016_j_ejrad_2023_110844 crossref_primary_10_1002_mp_16405 crossref_primary_10_1016_j_dsp_2025_105092 crossref_primary_10_1186_s42492_020_00054_w crossref_primary_10_3233_XST_221176 crossref_primary_10_1088_1361_6560_abe026 |
Cites_doi | 10.1118/1.598853 10.1117/1.JMI.5.3.036501 10.1109/TMI.2015.2478905 10.1118/1.595032 10.1109/CVPR.2016.90 10.1109/ICCV.2017.244 10.1186/s12938-018-0609-y 10.1148/radiology.164.2.3602406 10.23915/distill.00003 10.1109/ACCESS.2016.2608621 10.1109/CVPR.2017.632 10.1118/1.3484090 10.1109/NSSMIC.2010.5874134 10.1007/978-3-642-40763-5_33 10.1007/978-3-030-01219-9_11 10.1109/CVPR.2017.106 10.1007/978-3-030-00928-1_1 10.1007/978-3-030-32226-7_23 10.1109/TMI.2018.2823083 10.1007/978-3-030-01246-5_3 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2019.2933425 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 643 |
ExternalDocumentID | 31395543 10_1109_TMI_2019_2933425 8788607 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Morris K. Udall Center of Excellence in Parkinson’s Disease Research by NIH – fundername: National Science Foundation grantid: #1722847 funderid: 10.13039/501100008982 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c347t-4753de5ba1d6664bc8c79a2520a2be0972421c638efd628cfc6fd492663c31783 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Fri Jul 11 07:43:50 EDT 2025 Sun Jun 29 14:48:19 EDT 2025 Thu Apr 03 07:08:03 EDT 2025 Tue Jul 01 03:16:02 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Wed Aug 27 02:30:47 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-4753de5ba1d6664bc8c79a2520a2be0972421c638efd628cfc6fd492663c31783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4516-9729 0000-0002-7430-2904 |
PMID | 31395543 |
PQID | 2374687656 |
PQPubID | 85460 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_31395543 ieee_primary_8788607 proquest_journals_2374687656 proquest_miscellaneous_2270004219 crossref_primary_10_1109_TMI_2019_2933425 crossref_citationtrail_10_1109_TMI_2019_2933425 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref11 ref10 gjesteby (ref7) 2018 ref2 ref1 ulyanov (ref29) 2017 ref16 ref19 ref18 ulyanov (ref17) 2018 goodfellow (ref13) 2014 ref24 ref23 ref25 ref20 radford (ref22) 2015 ref28 ref27 lee (ref30) 2018 ref9 ref4 ref3 ref6 ref5 locatello (ref8) 2018 ronneberger (ref26) 2015 huang (ref21) 2018 |
References_xml | – ident: ref10 doi: 10.1118/1.598853 – ident: ref27 doi: 10.1117/1.JMI.5.3.036501 – ident: ref9 doi: 10.1109/TMI.2015.2478905 – ident: ref12 doi: 10.1118/1.595032 – start-page: 234 year: 2015 ident: ref26 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Int Conf Med Image Comput Comput Interv – start-page: 2672 year: 2014 ident: ref13 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref23 doi: 10.1109/CVPR.2016.90 – ident: ref20 doi: 10.1109/ICCV.2017.244 – ident: ref6 doi: 10.1186/s12938-018-0609-y – year: 2015 ident: ref22 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv 1511 06434 – start-page: 9446 year: 2018 ident: ref17 article-title: Deep image prior publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref2 doi: 10.1148/radiology.164.2.3602406 – ident: ref24 doi: 10.23915/distill.00003 – ident: ref1 doi: 10.1109/ACCESS.2016.2608621 – year: 2018 ident: ref8 article-title: Challenging common assumptions in the unsupervised learning of disentangled representations publication-title: arXiv 1811 12359 – year: 2018 ident: ref30 article-title: Diverse image-to-image translation via disentangled representations publication-title: arXiv 1808 00948 – ident: ref19 doi: 10.1109/CVPR.2017.632 – ident: ref3 doi: 10.1118/1.3484090 – ident: ref11 doi: 10.1109/NSSMIC.2010.5874134 – ident: ref28 doi: 10.1007/978-3-642-40763-5_33 – ident: ref15 doi: 10.1007/978-3-030-01219-9_11 – ident: ref25 doi: 10.1109/CVPR.2017.106 – ident: ref5 doi: 10.1007/978-3-030-00928-1_1 – start-page: 1 year: 2018 ident: ref7 article-title: Deep neural network for CT metal artifact reduction with a perceptual loss function publication-title: Proc 5th Int Conf Image Formation X-ray Comput Tomogr – ident: ref18 doi: 10.1007/978-3-030-32226-7_23 – year: 2018 ident: ref21 article-title: Multimodal unsupervised image-to-image translation publication-title: arXiv 1804 04732 – ident: ref4 doi: 10.1109/TMI.2018.2823083 – ident: ref16 doi: 10.1007/978-3-030-01246-5_3 – year: 2017 ident: ref29 article-title: Deep image prior publication-title: arXiv 1711 10925 – ident: ref14 doi: 10.1109/ICCV.2017.244 |
SSID | ssj0014509 |
Score | 2.64341 |
Snippet | Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 634 |
SubjectTerms | Artificial neural networks Computed tomography Computer simulation Datasets Decoding Humans Image enhancement/restoration (noise and artifact reduction) Image Processing, Computer-Assisted - methods Image reconstruction Machine Learning Mars Medical imaging Metals Metals - isolation & purification neural network Neural networks Neural Networks, Computer Reduction (metal working) Source code Synthesis Therapeutic applications Tomography, X-Ray Computed - methods Training X-ray imaging |
Title | ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction |
URI | https://ieeexplore.ieee.org/document/8788607 https://www.ncbi.nlm.nih.gov/pubmed/31395543 https://www.proquest.com/docview/2374687656 https://www.proquest.com/docview/2270004219 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qB9GDj9ZHfBHBi2D62OymWW9FLVVIBWnBW0g2GxElFZtc_PXObNJQRMVbILubx-zufLMz8w3AuRBRTJwujuQpGiioQx2ZclzuxCwjVYqIg847grE3mvL7J_HUgMs6F0ZrbYLPdJsujS8_mamCjso6PtprHqWOr-BFmatVewy4KMM5GDHGdj22cEl2ZWcS3FEMl2yjanM5FcVeUkGmpsrv8NKomeEWBIsXLKNLXttFHrfV5zfuxv9-wTZsVnjTHpQTZAcaOmvCxhILYRPWgsq_3oKHwc34yjSmhAf75sWkJmXPZYy5PS5jxm0EuvY0mxfvtNHMdWIHOq8eYvo9Eh8sSXwXpsPbyfXIqUouOMrl_dzhaL0kWsRRL0G7hsfKV30ZMcG6EYs1Uf1w1lO4ZnWaeMxXqfLShDgHPVchEvHdPVjNZpk-ANvjiok4JU9wnyOs8VONw6DB7QqZ9FhiQWchhVBVfORUFuMtNHZJV4Yot5DkFlZys-Ci7vFecnH80bZFf79uV_14C44Xgg6rxToPzQuiVhCeBWf1bVxm5DuJMj0rsA056HGD60kL9ssJUo_tIopGVOYe_vzMI1hnZKSbwLVjWM0_Cn2CSCaPT80U_gLIqesc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB5EwePB-6hnBV8Eu7tNk27jm3iwHl1BdsG30qapiNIVt33x1zuTdouIim-F5mgzSeabzMwXgCMh4oQ4XRzJMzRQUIc6MuO43IlZRqoMEQedd4R9vzfkN4_icQpOmlwYrbUJPtMtejS-_HSkSjoqawdor_mUOj6Del-4VbZW4zPgogroYMQZ2_HZxCnZke1BeE1RXLKFys3jdC32FyVkblX5HWAaRXO1BOHkE6v4kpdWWSQt9fGNvfG__7AMizXitM-qKbICUzpfhYUvPISrMBvWHvY1uD-76J-awpTyYF88m-Sk_KmKMrf7VdS4jVDXHubj8o22mrFO7VAXdSem3gMxwpLM12F4dTk47zn1pQuO8ni3cDjaL6kWSeymaNnwRAWqK2MmWCdmiSayH85chatWZ6nPApUpP0uJddD3FGKRwNuA6XyU6y2wfa6YSDLyBXc5Apsg09gMmtyekKnLUgvaEylEqmYkp4sxXiNjmXRkhHKLSG5RLTcLjpsabxUbxx9l12j0m3L1wFuwOxF0VC_XcWQ-EPWC8C04bF7jQiPvSZzrUYllyEWPW5wrLdisJkjTtoc4GnGZt_1znwcw1xuEd9Hddf92B-YZmewmjG0Xpov3Uu8hrimSfTOdPwE0ve5l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADN%3A+Artifact+Disentanglement+Network+for+Unsupervised+Metal+Artifact+Reduction&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Liao%2C+Haofu&rft.au=Lin%2C+Wei-An&rft.au=Zhou%2C+S.+Kevin&rft.au=Luo%2C+Jiebo&rft.date=2020-03-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=39&rft.issue=3&rft.spage=634&rft.epage=643&rft_id=info:doi/10.1109%2FTMI.2019.2933425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2019_2933425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |