A Local and Global Feature Disentangled Network: Toward Classification of Benign-Malignant Thyroid Nodules From Ultrasound Image
Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the cancers with the highest incidence. As a non-invasive imaging modality, ultrasonography can identify benign and malignant thyroid nodules, and...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 41; no. 6; pp. 1497 - 1509 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the cancers with the highest incidence. As a non-invasive imaging modality, ultrasonography can identify benign and malignant thyroid nodules, and it can be used for large-scale screening. In this study, inspired by the domain knowledge of sonographers when diagnosing ultrasound images, a local and global feature disentangled network (LoGo-Net) is proposed to classify benign and malignant thyroid nodules. This model imitates the dual-pathway structure of human vision and establishes a new feature extraction method to improve the recognition performance of nodules. We use the tissue-anatomy disentangled (TAD) block to connect the dual pathways, which decouples the cues of local and global features based on the self-attention mechanism. To verify the effectiveness of the model, we constructed a large-scale dataset and conducted extensive experiments. The results show that our method achieves an accuracy of 89.33%, which has the potential to be used in the clinical practice of doctors, including early cancer screening procedures in remote or resource-poor areas. |
---|---|
AbstractList | Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the cancers with the highest incidence. As a non-invasive imaging modality, ultrasonography can identify benign and malignant thyroid nodules, and it can be used for large-scale screening. In this study, inspired by the domain knowledge of sonographers when diagnosing ultrasound images, a local and global feature disentangled network (LoGo-Net) is proposed to classify benign and malignant thyroid nodules. This model imitates the dual-pathway structure of human vision and establishes a new feature extraction method to improve the recognition performance of nodules. We use the tissue-anatomy disentangled (TAD) block to connect the dual pathways, which decouples the cues of local and global features based on the self-attention mechanism. To verify the effectiveness of the model, we constructed a large-scale dataset and conducted extensive experiments. The results show that our method achieves an accuracy of 89.33%, which has the potential to be used in the clinical practice of doctors, including early cancer screening procedures in remote or resource-poor areas. Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the cancers with the highest incidence. As a non-invasive imaging modality, ultrasonography can identify benign and malignant thyroid nodules, and it can be used for large-scale screening. In this study, inspired by the domain knowledge of sonographers when diagnosing ultrasound images, a local and global feature disentangled network (LoGo-Net) is proposed to classify benign and malignant thyroid nodules. This model imitates the dual-pathway structure of human vision and establishes a new feature extraction method to improve the recognition performance of nodules. We use the tissue-anatomy disentangled (TAD) block to connect the dual pathways, which decouples the cues of local and global features based on the self-attention mechanism. To verify the effectiveness of the model, we constructed a large-scale dataset and conducted extensive experiments. The results show that our method achieves an accuracy of 89.33%, which has the potential to be used in the clinical practice of doctors, including early cancer screening procedures in remote or resource-poor areas.Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the cancers with the highest incidence. As a non-invasive imaging modality, ultrasonography can identify benign and malignant thyroid nodules, and it can be used for large-scale screening. In this study, inspired by the domain knowledge of sonographers when diagnosing ultrasound images, a local and global feature disentangled network (LoGo-Net) is proposed to classify benign and malignant thyroid nodules. This model imitates the dual-pathway structure of human vision and establishes a new feature extraction method to improve the recognition performance of nodules. We use the tissue-anatomy disentangled (TAD) block to connect the dual pathways, which decouples the cues of local and global features based on the self-attention mechanism. To verify the effectiveness of the model, we constructed a large-scale dataset and conducted extensive experiments. The results show that our method achieves an accuracy of 89.33%, which has the potential to be used in the clinical practice of doctors, including early cancer screening procedures in remote or resource-poor areas. |
Author | Chen, Yang Yang, Kai-Fu Li, Yong-Jie Luo, Yan Ma, Bu-Yun Zhao, Shi-Xuan |
Author_xml | – sequence: 1 givenname: Shi-Xuan orcidid: 0000-0001-7387-2799 surname: Zhao fullname: Zhao, Shi-Xuan email: 975086188@qq.com organization: Radiation Oncology Key Laboratory of Sichuan Province, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Yang surname: Chen fullname: Chen, Yang email: ChenYang@scu.edu.cn organization: Department of Ultrasound and the West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China – sequence: 3 givenname: Kai-Fu orcidid: 0000-0002-3696-5889 surname: Yang fullname: Yang, Kai-Fu email: yangkf@uestc.edu.cn organization: Radiation Oncology Key Laboratory of Sichuan Province, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Yan surname: Luo fullname: Luo, Yan email: luoyan@wchscu.cn organization: Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China – sequence: 5 givenname: Bu-Yun surname: Ma fullname: Ma, Bu-Yun email: mabuyundoctor@163.com organization: Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China – sequence: 6 givenname: Yong-Jie orcidid: 0000-0002-7395-3131 surname: Li fullname: Li, Yong-Jie email: liyj@uestc.edu.cn organization: Radiation Oncology Key Laboratory of Sichuan Province, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34990353$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kr1vFDEQxS0URC6BHgkJWaKh2cNfu2vThSMXTrpAc5HoVt71-HDw2Ym9qygdfzpO7kKRgmqm-L2Z0Xtzgo5CDIDQW0rmlBL1aXO5mjPC2JxTQVrVvkAzWteyYrX4eYRmhLWyIqRhx-gk52tCqKiJeoWOuVCK8JrP0J8zvI6D9lgHgy987Eu7BD1OCfBXlyGMOmw9GPwdxruYfn_Gm3ink8ELr3N21g16dDHgaPEXCG4bqkvtS9FhxJtf9ym6Io1m8pDxMsUdvvJj0jlOZd1qp7fwGr202md4c6in6Gp5vll8q9Y_LlaLs3U1cNGOFe-FpAMBo_rGct4bI5VumOCtlKRmuuaNEVZJYxtluYSaWsms6OXQ07aGnp-ij_u5NyneTpDHbufyAN7rAHHKHWuoZKxRQhb0wzP0Ok4plOsK1TIiVbG8UO8P1NTvwHQ3ye10uu-evC1AsweGFHNOYLvBjY9uFQec7yjpHkLsSojdQ4jdIcQiJM-ET7P_I3m3lzgA-Iercm35B_4Xc1Smpw |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1177_01617346241271240 crossref_primary_10_1016_j_artmed_2023_102699 crossref_primary_10_1109_JBHI_2024_3472609 crossref_primary_10_1016_j_artmed_2023_102639 crossref_primary_10_1016_j_bspc_2024_105981 crossref_primary_10_1109_JBHI_2023_3271696 crossref_primary_10_1109_TCSVT_2024_3421988 crossref_primary_10_1148_radiol_221408 crossref_primary_10_3389_fonc_2024_1377366 crossref_primary_10_1016_j_compbiomed_2023_107069 crossref_primary_10_1007_s10044_024_01404_7 crossref_primary_10_1109_ACCESS_2024_3414675 crossref_primary_10_1038_s41598_024_77610_4 crossref_primary_10_1088_1361_6560_ada5a6 crossref_primary_10_1109_JBHI_2023_3348436 crossref_primary_10_1007_s10565_024_09961_7 crossref_primary_10_1016_j_medengphy_2025_104288 crossref_primary_10_1109_TMI_2024_3450682 crossref_primary_10_1109_TMI_2024_3400406 crossref_primary_10_1016_j_bspc_2024_106762 crossref_primary_10_1016_j_compmedimag_2024_102380 crossref_primary_10_1007_s11042_023_15068_8 crossref_primary_10_1016_j_ultrasmedbio_2023_12_011 crossref_primary_10_1109_TMI_2024_3405621 crossref_primary_10_1088_1361_6560_ad0c0f crossref_primary_10_1016_j_media_2024_103255 crossref_primary_10_1080_10255842_2024_2341969 crossref_primary_10_1186_s12880_024_01429_8 |
Cites_doi | 10.1148/radiol.2015151169 10.1109/CVPR.2017.243 10.1162/0898929053467514 10.1038/nature21056 10.1016/j.ultras.2017.02.003 10.1016/j.media.2021.101985 10.1109/TPAMI.2019.2938758 10.1109/SPCOM.2016.7746609 10.1210/jc.87.5.1941 10.1210/jc.2008-1724 10.1001/archsurg.136.3.334 10.1089/thy.2017.0500 10.1109/CVPR.2018.00813 10.1109/CVPR.2015.7298594 10.1049/iet-ipr.2016.0331 10.1109/ICASSP.2017.7952290 10.1016/j.media.2020.101918 10.1007/978-3-319-24574-4_28 10.1016/j.media.2019.101548 10.1007/s10278-017-9997-y 10.1109/TMI.2020.3036584 10.1016/S0042-6989(99)00163-7 10.1016/j.media.2020.101665 10.1162/neco.1989.1.4.541 10.1007/978-3-030-32248-9_51 10.1109/BMEI.2014.7002744 10.1109/CVPR.2016.308 10.1109/GlobalSIP.2018.8646599 10.1109/TMI.2021.3059956 10.1109/ELECSYM.2016.7861053 10.1016/j.media.2020.101753 10.1001/archinte.1994.00420160075010 10.1148/radiol.2020191145 10.1609/aaai.v34i07.6999 10.1109/TMI.2020.3035424 10.7326/0003-4819-126-3-199702010-00009 10.7863/ultra.15.14.10045 10.1109/TIP.2010.2069690 10.1109/ISBIWorkshops50223.2020.9153392 10.1089/thy.2018.0082 10.1002/hed.22985 10.1109/TMI.2018.2876510 10.1016/j.tics.2010.12.001 10.1007/978-3-319-46448-0_36 10.1210/jc.2013-2928 10.1109/TMI.2019.2905841 10.1016/j.ultras.2016.09.011 10.1016/j.media.2020.101839 10.1007/978-3-319-46723-8_55 10.1089/thy.2008.0021 10.1109/CVPR.2016.90 10.7863/ultra.15.05055 10.1016/j.media.2019.101555 10.1530/EJE-12-0936 10.1109/GlobalSIP.2018.8646671 10.1609/aaai.v34i08.7035 10.1016/j.media.2021.102078 10.1017/S0140525X0200002X 10.1007/978-3-030-58555-6_12 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2022.3140797 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 1509 |
ExternalDocumentID | 34990353 10_1109_TMI_2022_3140797 9672155 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61806041; 62076055 funderid: 10.13039/501100001809 – fundername: Department of Science and Technology of Sichuan Province grantid: 2021YJ0245 funderid: 10.13039/501100004829 – fundername: Key Area Research and Development Program of Guangdong Province grantid: 2018B030338001 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c347t-3b481c0ed9b6f33bdd89a6243788052a536d4f98df69f38e51f82f4b8cb175eb3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Jul 10 22:54:23 EDT 2025 Mon Jun 30 07:20:49 EDT 2025 Wed Feb 19 02:26:32 EST 2025 Tue Jul 01 03:16:05 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Wed Aug 27 02:24:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-3b481c0ed9b6f33bdd89a6243788052a536d4f98df69f38e51f82f4b8cb175eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7395-3131 0000-0001-7387-2799 0000-0002-3696-5889 |
PMID | 34990353 |
PQID | 2672089022 |
PQPubID | 85460 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_34990353 proquest_journals_2672089022 ieee_primary_9672155 crossref_citationtrail_10_1109_TMI_2022_3140797 crossref_primary_10_1109_TMI_2022_3140797 proquest_miscellaneous_2618226948 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref15 ref59 ref14 ref58 ref53 Institute (ref3) 2020 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 Vaswani (ref29) ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Simonyan (ref56) 2013 ref24 ref23 ref26 ref25 ref20 ref63 ref22 ref21 ref28 ref27 ref60 ref62 ref61 |
References_xml | – ident: ref14 doi: 10.1148/radiol.2015151169 – ident: ref54 doi: 10.1109/CVPR.2017.243 – ident: ref27 doi: 10.1162/0898929053467514 – ident: ref32 doi: 10.1038/nature21056 – ident: ref16 doi: 10.1016/j.ultras.2017.02.003 – ident: ref20 doi: 10.1016/j.media.2021.101985 – ident: ref53 doi: 10.1109/TPAMI.2019.2938758 – ident: ref59 doi: 10.1109/SPCOM.2016.7746609 – ident: ref4 doi: 10.1210/jc.87.5.1941 – ident: ref8 doi: 10.1210/jc.2008-1724 – ident: ref5 doi: 10.1001/archsurg.136.3.334 – ident: ref7 doi: 10.1089/thy.2017.0500 – ident: ref47 doi: 10.1109/CVPR.2018.00813 – ident: ref55 doi: 10.1109/CVPR.2015.7298594 – ident: ref62 doi: 10.1049/iet-ipr.2016.0331 – ident: ref35 doi: 10.1109/ICASSP.2017.7952290 – ident: ref43 doi: 10.1016/j.media.2020.101918 – ident: ref49 doi: 10.1007/978-3-319-24574-4_28 – ident: ref45 doi: 10.1016/j.media.2019.101548 – ident: ref17 doi: 10.1007/s10278-017-9997-y – ident: ref39 doi: 10.1109/TMI.2020.3036584 – year: 2013 ident: ref56 article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps publication-title: arXiv:1312.6034 – ident: ref28 doi: 10.1016/S0042-6989(99)00163-7 – ident: ref36 doi: 10.1016/j.media.2020.101665 – ident: ref23 doi: 10.1162/neco.1989.1.4.541 – ident: ref46 doi: 10.1007/978-3-030-32248-9_51 – ident: ref22 doi: 10.1109/BMEI.2014.7002744 – ident: ref52 doi: 10.1109/CVPR.2016.308 – ident: ref61 doi: 10.1109/GlobalSIP.2018.8646599 – ident: ref21 doi: 10.1109/TMI.2021.3059956 – ident: ref31 doi: 10.1109/ELECSYM.2016.7861053 – ident: ref33 doi: 10.1016/j.media.2020.101753 – ident: ref2 doi: 10.1001/archinte.1994.00420160075010 – ident: ref19 doi: 10.1148/radiol.2020191145 – ident: ref57 doi: 10.1609/aaai.v34i07.6999 – ident: ref40 doi: 10.1109/TMI.2020.3035424 – volume-title: Thyroid Cancer Screening year: 2020 ident: ref3 – ident: ref1 doi: 10.7326/0003-4819-126-3-199702010-00009 – ident: ref30 doi: 10.7863/ultra.15.14.10045 – ident: ref51 doi: 10.1109/TIP.2010.2069690 – ident: ref63 doi: 10.1109/ISBIWorkshops50223.2020.9153392 – ident: ref50 doi: 10.1089/thy.2018.0082 – ident: ref10 doi: 10.1002/hed.22985 – ident: ref12 doi: 10.1109/TMI.2018.2876510 – ident: ref26 doi: 10.1016/j.tics.2010.12.001 – ident: ref58 doi: 10.1007/978-3-319-46448-0_36 – ident: ref6 doi: 10.1210/jc.2013-2928 – ident: ref13 doi: 10.1109/TMI.2019.2905841 – ident: ref18 doi: 10.1016/j.ultras.2016.09.011 – start-page: 6000 volume-title: Proc. NIPS ident: ref29 article-title: Attention is all you need – ident: ref41 doi: 10.1016/j.media.2020.101839 – ident: ref42 doi: 10.1007/978-3-319-46723-8_55 – ident: ref9 doi: 10.1089/thy.2008.0021 – ident: ref24 doi: 10.1109/CVPR.2016.90 – ident: ref15 doi: 10.7863/ultra.15.05055 – ident: ref34 doi: 10.1016/j.media.2020.101918 – ident: ref37 doi: 10.1016/j.media.2019.101555 – ident: ref11 doi: 10.1530/EJE-12-0936 – ident: ref60 doi: 10.1109/GlobalSIP.2018.8646671 – ident: ref44 doi: 10.1609/aaai.v34i08.7035 – ident: ref38 doi: 10.1016/j.media.2021.102078 – ident: ref25 doi: 10.1017/S0140525X0200002X – ident: ref48 doi: 10.1007/978-3-030-58555-6_12 |
SSID | ssj0014509 |
Score | 2.537346 |
Snippet | Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1497 |
SubjectTerms | attention mechanism Cancer Cancer screening classification Deep learning deep neural network Feature extraction Humans Image classification Medical screening Nodules Physicians Radiomics Task analysis Thyroid Thyroid cancer Thyroid gland thyroid nodule Thyroid Nodule - diagnostic imaging Thyroid Nodule - pathology Ultrasonic imaging Ultrasonography - methods Ultrasound Ultrasound image |
Title | A Local and Global Feature Disentangled Network: Toward Classification of Benign-Malignant Thyroid Nodules From Ultrasound Image |
URI | https://ieeexplore.ieee.org/document/9672155 https://www.ncbi.nlm.nih.gov/pubmed/34990353 https://www.proquest.com/docview/2672089022 https://www.proquest.com/docview/2618226948 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaHhAceLQ8AgUZiQsS2U3iOGtzK49Vi0hPu1JvUfxaVmwTlE0OcOKnM-M8BAgQt0Sx89BM4u_LfDNDyAvJhQHuY0JrohQJShyWlpchNyy2LiljtcBE4fwyO1-nH6741QF5NeXCWGu9-MzOcNPH8k2tO_xVNpcZ8BXOD8khELc-V2uKGKS8l3MkWDE2ypIxJBnJ-Sq_ACKYJMBPgb5I7LvHAOhHjLNfViPfXuXvSNOvOMs7JB_vtReafJ51rZrpb7-Vcfzfh7lLbg_Qk571vnKPHNjqmNz6qSDhMbmRD6H2E_L9jH7EdY6WlaF9ZwCKeLFrLH239SlL1WZnDb3sheSv6corcKlvs4kCJG9zWjv6xlbbTRXmAPk3qLuhq09fm3oLU2vT7eyeLpv6mq53bVPuscsTvbiGr9x9sl6-X709D4d2DaFm6aINmUpFrCNrpMocY8oYIcsMCx4K7JtQcpaZ1ElhXCYdE5bHTiQuVUIrwDBA6h-Qo6qu7CNCXaY0IAsbKYBrOtZygXO1gx0tgNIFZD6ardBDLXNsqbErPKeJZAE2L9DmxWDzgLycZnzp63j8Y-wJmmsaN1gqIKejZxTDi74vEjgWYaw2Ccjz6TC8ohh3KStbdzgGSBxmDIuAPOw9ajr36IiP_3zNJ-Qm3lmvTTslR23T2aeAglr1zLv_D4x9ANU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj5RAEK6sa-Lj4GPXB7pqm3gxkRmgaYb2tj4mMzrMiUn2RqC7GSfOgmHgoCd_ulW8okaNNwjd0KSqqe-jXgAvpAg1ch9tG-34RFBcOzUitYXmrsm91M1mlCgcrYPFxv9wIS6O4NWYC2OMaYPPzIQOW1--LlVDv8qmMkC-IsQVuIp2X7hdttboM_BFF9DhUc1YJ_AGp6Qjp3G0RCroechQkcBI6rzHEeo7XPBf7FHbYOXvWLO1OfPbEA2r7UJNPk-aOpuob78Vcvzf17kDt3rwyc47bbkLR6Y4gZs_lSQ8gWtR72w_he_nbEWWjqWFZl1vAEaIsakMe7drk5aK7d5otu5CyV-zuI3BZW2jTQpBaqXOypy9McVuW9gRgv4tRd6w-NPXqtzh1FI3e3Ng86q8ZJt9XaUH6vPElpf4nbsHm_n7-O3C7hs22Ir7s9rmmR-6yjFaZkHOeaZ1KNOASh6G1DkhFTzQfi5DnQcy56ERbh56uZ-FKkMUg7T-PhwXZWEeAsuDTCG2ME6GgE25Ss5orsrxRIVI6iyYDmJLVF_NnJpq7JOW1TgyQZknJPOkl7kFL8cZX7pKHv8Ye0riGsf1krLgbNCMpN_qh8TDaw55az0Lno-XcZOS5yUtTNnQGKRxlDMcWvCg06jx3oMiPvrzM5_B9UUcrZLVcv3xMdygVXaRamdwXFeNeYKYqM6etlvhBxToBB4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Local+and+Global+Feature+Disentangled+Network%3A+Toward+Classification+of+Benign-Malignant+Thyroid+Nodules+From+Ultrasound+Image&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhao%2C+Shi-Xuan&rft.au=Chen%2C+Yang&rft.au=Yang%2C+Kai-Fu&rft.au=Luo%2C+Yan&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=41&rft.issue=6&rft.spage=1497&rft.epage=1509&rft_id=info:doi/10.1109%2FTMI.2022.3140797&rft_id=info%3Apmid%2F34990353&rft.externalDocID=9672155 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |