A Local and Global Feature Disentangled Network: Toward Classification of Benign-Malignant Thyroid Nodules From Ultrasound Image

Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the cancers with the highest incidence. As a non-invasive imaging modality, ultrasonography can identify benign and malignant thyroid nodules, and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 41; no. 6; pp. 1497 - 1509
Main Authors Zhao, Shi-Xuan, Chen, Yang, Yang, Kai-Fu, Luo, Yan, Ma, Bu-Yun, Li, Yong-Jie
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the cancers with the highest incidence. As a non-invasive imaging modality, ultrasonography can identify benign and malignant thyroid nodules, and it can be used for large-scale screening. In this study, inspired by the domain knowledge of sonographers when diagnosing ultrasound images, a local and global feature disentangled network (LoGo-Net) is proposed to classify benign and malignant thyroid nodules. This model imitates the dual-pathway structure of human vision and establishes a new feature extraction method to improve the recognition performance of nodules. We use the tissue-anatomy disentangled (TAD) block to connect the dual pathways, which decouples the cues of local and global features based on the self-attention mechanism. To verify the effectiveness of the model, we constructed a large-scale dataset and conducted extensive experiments. The results show that our method achieves an accuracy of 89.33%, which has the potential to be used in the clinical practice of doctors, including early cancer screening procedures in remote or resource-poor areas.
AbstractList Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the cancers with the highest incidence. As a non-invasive imaging modality, ultrasonography can identify benign and malignant thyroid nodules, and it can be used for large-scale screening. In this study, inspired by the domain knowledge of sonographers when diagnosing ultrasound images, a local and global feature disentangled network (LoGo-Net) is proposed to classify benign and malignant thyroid nodules. This model imitates the dual-pathway structure of human vision and establishes a new feature extraction method to improve the recognition performance of nodules. We use the tissue-anatomy disentangled (TAD) block to connect the dual pathways, which decouples the cues of local and global features based on the self-attention mechanism. To verify the effectiveness of the model, we constructed a large-scale dataset and conducted extensive experiments. The results show that our method achieves an accuracy of 89.33%, which has the potential to be used in the clinical practice of doctors, including early cancer screening procedures in remote or resource-poor areas.
Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the cancers with the highest incidence. As a non-invasive imaging modality, ultrasonography can identify benign and malignant thyroid nodules, and it can be used for large-scale screening. In this study, inspired by the domain knowledge of sonographers when diagnosing ultrasound images, a local and global feature disentangled network (LoGo-Net) is proposed to classify benign and malignant thyroid nodules. This model imitates the dual-pathway structure of human vision and establishes a new feature extraction method to improve the recognition performance of nodules. We use the tissue-anatomy disentangled (TAD) block to connect the dual pathways, which decouples the cues of local and global features based on the self-attention mechanism. To verify the effectiveness of the model, we constructed a large-scale dataset and conducted extensive experiments. The results show that our method achieves an accuracy of 89.33%, which has the potential to be used in the clinical practice of doctors, including early cancer screening procedures in remote or resource-poor areas.Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the cancers with the highest incidence. As a non-invasive imaging modality, ultrasonography can identify benign and malignant thyroid nodules, and it can be used for large-scale screening. In this study, inspired by the domain knowledge of sonographers when diagnosing ultrasound images, a local and global feature disentangled network (LoGo-Net) is proposed to classify benign and malignant thyroid nodules. This model imitates the dual-pathway structure of human vision and establishes a new feature extraction method to improve the recognition performance of nodules. We use the tissue-anatomy disentangled (TAD) block to connect the dual pathways, which decouples the cues of local and global features based on the self-attention mechanism. To verify the effectiveness of the model, we constructed a large-scale dataset and conducted extensive experiments. The results show that our method achieves an accuracy of 89.33%, which has the potential to be used in the clinical practice of doctors, including early cancer screening procedures in remote or resource-poor areas.
Author Chen, Yang
Yang, Kai-Fu
Li, Yong-Jie
Luo, Yan
Ma, Bu-Yun
Zhao, Shi-Xuan
Author_xml – sequence: 1
  givenname: Shi-Xuan
  orcidid: 0000-0001-7387-2799
  surname: Zhao
  fullname: Zhao, Shi-Xuan
  email: 975086188@qq.com
  organization: Radiation Oncology Key Laboratory of Sichuan Province, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
  email: ChenYang@scu.edu.cn
  organization: Department of Ultrasound and the West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
– sequence: 3
  givenname: Kai-Fu
  orcidid: 0000-0002-3696-5889
  surname: Yang
  fullname: Yang, Kai-Fu
  email: yangkf@uestc.edu.cn
  organization: Radiation Oncology Key Laboratory of Sichuan Province, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Yan
  surname: Luo
  fullname: Luo, Yan
  email: luoyan@wchscu.cn
  organization: Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
– sequence: 5
  givenname: Bu-Yun
  surname: Ma
  fullname: Ma, Bu-Yun
  email: mabuyundoctor@163.com
  organization: Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
– sequence: 6
  givenname: Yong-Jie
  orcidid: 0000-0002-7395-3131
  surname: Li
  fullname: Li, Yong-Jie
  email: liyj@uestc.edu.cn
  organization: Radiation Oncology Key Laboratory of Sichuan Province, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34990353$$D View this record in MEDLINE/PubMed
BookMark eNp9kr1vFDEQxS0URC6BHgkJWaKh2cNfu2vThSMXTrpAc5HoVt71-HDw2Ym9qygdfzpO7kKRgmqm-L2Z0Xtzgo5CDIDQW0rmlBL1aXO5mjPC2JxTQVrVvkAzWteyYrX4eYRmhLWyIqRhx-gk52tCqKiJeoWOuVCK8JrP0J8zvI6D9lgHgy987Eu7BD1OCfBXlyGMOmw9GPwdxruYfn_Gm3ink8ELr3N21g16dDHgaPEXCG4bqkvtS9FhxJtf9ym6Io1m8pDxMsUdvvJj0jlOZd1qp7fwGr202md4c6in6Gp5vll8q9Y_LlaLs3U1cNGOFe-FpAMBo_rGct4bI5VumOCtlKRmuuaNEVZJYxtluYSaWsms6OXQ07aGnp-ij_u5NyneTpDHbufyAN7rAHHKHWuoZKxRQhb0wzP0Ok4plOsK1TIiVbG8UO8P1NTvwHQ3ye10uu-evC1AsweGFHNOYLvBjY9uFQec7yjpHkLsSojdQ4jdIcQiJM-ET7P_I3m3lzgA-Iercm35B_4Xc1Smpw
CODEN ITMID4
CitedBy_id crossref_primary_10_1177_01617346241271240
crossref_primary_10_1016_j_artmed_2023_102699
crossref_primary_10_1109_JBHI_2024_3472609
crossref_primary_10_1016_j_artmed_2023_102639
crossref_primary_10_1016_j_bspc_2024_105981
crossref_primary_10_1109_JBHI_2023_3271696
crossref_primary_10_1109_TCSVT_2024_3421988
crossref_primary_10_1148_radiol_221408
crossref_primary_10_3389_fonc_2024_1377366
crossref_primary_10_1016_j_compbiomed_2023_107069
crossref_primary_10_1007_s10044_024_01404_7
crossref_primary_10_1109_ACCESS_2024_3414675
crossref_primary_10_1038_s41598_024_77610_4
crossref_primary_10_1088_1361_6560_ada5a6
crossref_primary_10_1109_JBHI_2023_3348436
crossref_primary_10_1007_s10565_024_09961_7
crossref_primary_10_1016_j_medengphy_2025_104288
crossref_primary_10_1109_TMI_2024_3450682
crossref_primary_10_1109_TMI_2024_3400406
crossref_primary_10_1016_j_bspc_2024_106762
crossref_primary_10_1016_j_compmedimag_2024_102380
crossref_primary_10_1007_s11042_023_15068_8
crossref_primary_10_1016_j_ultrasmedbio_2023_12_011
crossref_primary_10_1109_TMI_2024_3405621
crossref_primary_10_1088_1361_6560_ad0c0f
crossref_primary_10_1016_j_media_2024_103255
crossref_primary_10_1080_10255842_2024_2341969
crossref_primary_10_1186_s12880_024_01429_8
Cites_doi 10.1148/radiol.2015151169
10.1109/CVPR.2017.243
10.1162/0898929053467514
10.1038/nature21056
10.1016/j.ultras.2017.02.003
10.1016/j.media.2021.101985
10.1109/TPAMI.2019.2938758
10.1109/SPCOM.2016.7746609
10.1210/jc.87.5.1941
10.1210/jc.2008-1724
10.1001/archsurg.136.3.334
10.1089/thy.2017.0500
10.1109/CVPR.2018.00813
10.1109/CVPR.2015.7298594
10.1049/iet-ipr.2016.0331
10.1109/ICASSP.2017.7952290
10.1016/j.media.2020.101918
10.1007/978-3-319-24574-4_28
10.1016/j.media.2019.101548
10.1007/s10278-017-9997-y
10.1109/TMI.2020.3036584
10.1016/S0042-6989(99)00163-7
10.1016/j.media.2020.101665
10.1162/neco.1989.1.4.541
10.1007/978-3-030-32248-9_51
10.1109/BMEI.2014.7002744
10.1109/CVPR.2016.308
10.1109/GlobalSIP.2018.8646599
10.1109/TMI.2021.3059956
10.1109/ELECSYM.2016.7861053
10.1016/j.media.2020.101753
10.1001/archinte.1994.00420160075010
10.1148/radiol.2020191145
10.1609/aaai.v34i07.6999
10.1109/TMI.2020.3035424
10.7326/0003-4819-126-3-199702010-00009
10.7863/ultra.15.14.10045
10.1109/TIP.2010.2069690
10.1109/ISBIWorkshops50223.2020.9153392
10.1089/thy.2018.0082
10.1002/hed.22985
10.1109/TMI.2018.2876510
10.1016/j.tics.2010.12.001
10.1007/978-3-319-46448-0_36
10.1210/jc.2013-2928
10.1109/TMI.2019.2905841
10.1016/j.ultras.2016.09.011
10.1016/j.media.2020.101839
10.1007/978-3-319-46723-8_55
10.1089/thy.2008.0021
10.1109/CVPR.2016.90
10.7863/ultra.15.05055
10.1016/j.media.2019.101555
10.1530/EJE-12-0936
10.1109/GlobalSIP.2018.8646671
10.1609/aaai.v34i08.7035
10.1016/j.media.2021.102078
10.1017/S0140525X0200002X
10.1007/978-3-030-58555-6_12
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2022.3140797
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1509
ExternalDocumentID 34990353
10_1109_TMI_2022_3140797
9672155
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61806041; 62076055
  funderid: 10.13039/501100001809
– fundername: Department of Science and Technology of Sichuan Province
  grantid: 2021YJ0245
  funderid: 10.13039/501100004829
– fundername: Key Area Research and Development Program of Guangdong Province
  grantid: 2018B030338001
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-3b481c0ed9b6f33bdd89a6243788052a536d4f98df69f38e51f82f4b8cb175eb3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Jul 10 22:54:23 EDT 2025
Mon Jun 30 07:20:49 EDT 2025
Wed Feb 19 02:26:32 EST 2025
Tue Jul 01 03:16:05 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Wed Aug 27 02:24:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-3b481c0ed9b6f33bdd89a6243788052a536d4f98df69f38e51f82f4b8cb175eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7395-3131
0000-0001-7387-2799
0000-0002-3696-5889
PMID 34990353
PQID 2672089022
PQPubID 85460
PageCount 13
ParticipantIDs pubmed_primary_34990353
proquest_journals_2672089022
ieee_primary_9672155
crossref_citationtrail_10_1109_TMI_2022_3140797
crossref_primary_10_1109_TMI_2022_3140797
proquest_miscellaneous_2618226948
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
ref58
ref53
Institute (ref3) 2020
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
Vaswani (ref29)
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Simonyan (ref56) 2013
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref60
ref62
ref61
References_xml – ident: ref14
  doi: 10.1148/radiol.2015151169
– ident: ref54
  doi: 10.1109/CVPR.2017.243
– ident: ref27
  doi: 10.1162/0898929053467514
– ident: ref32
  doi: 10.1038/nature21056
– ident: ref16
  doi: 10.1016/j.ultras.2017.02.003
– ident: ref20
  doi: 10.1016/j.media.2021.101985
– ident: ref53
  doi: 10.1109/TPAMI.2019.2938758
– ident: ref59
  doi: 10.1109/SPCOM.2016.7746609
– ident: ref4
  doi: 10.1210/jc.87.5.1941
– ident: ref8
  doi: 10.1210/jc.2008-1724
– ident: ref5
  doi: 10.1001/archsurg.136.3.334
– ident: ref7
  doi: 10.1089/thy.2017.0500
– ident: ref47
  doi: 10.1109/CVPR.2018.00813
– ident: ref55
  doi: 10.1109/CVPR.2015.7298594
– ident: ref62
  doi: 10.1049/iet-ipr.2016.0331
– ident: ref35
  doi: 10.1109/ICASSP.2017.7952290
– ident: ref43
  doi: 10.1016/j.media.2020.101918
– ident: ref49
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref45
  doi: 10.1016/j.media.2019.101548
– ident: ref17
  doi: 10.1007/s10278-017-9997-y
– ident: ref39
  doi: 10.1109/TMI.2020.3036584
– year: 2013
  ident: ref56
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: arXiv:1312.6034
– ident: ref28
  doi: 10.1016/S0042-6989(99)00163-7
– ident: ref36
  doi: 10.1016/j.media.2020.101665
– ident: ref23
  doi: 10.1162/neco.1989.1.4.541
– ident: ref46
  doi: 10.1007/978-3-030-32248-9_51
– ident: ref22
  doi: 10.1109/BMEI.2014.7002744
– ident: ref52
  doi: 10.1109/CVPR.2016.308
– ident: ref61
  doi: 10.1109/GlobalSIP.2018.8646599
– ident: ref21
  doi: 10.1109/TMI.2021.3059956
– ident: ref31
  doi: 10.1109/ELECSYM.2016.7861053
– ident: ref33
  doi: 10.1016/j.media.2020.101753
– ident: ref2
  doi: 10.1001/archinte.1994.00420160075010
– ident: ref19
  doi: 10.1148/radiol.2020191145
– ident: ref57
  doi: 10.1609/aaai.v34i07.6999
– ident: ref40
  doi: 10.1109/TMI.2020.3035424
– volume-title: Thyroid Cancer Screening
  year: 2020
  ident: ref3
– ident: ref1
  doi: 10.7326/0003-4819-126-3-199702010-00009
– ident: ref30
  doi: 10.7863/ultra.15.14.10045
– ident: ref51
  doi: 10.1109/TIP.2010.2069690
– ident: ref63
  doi: 10.1109/ISBIWorkshops50223.2020.9153392
– ident: ref50
  doi: 10.1089/thy.2018.0082
– ident: ref10
  doi: 10.1002/hed.22985
– ident: ref12
  doi: 10.1109/TMI.2018.2876510
– ident: ref26
  doi: 10.1016/j.tics.2010.12.001
– ident: ref58
  doi: 10.1007/978-3-319-46448-0_36
– ident: ref6
  doi: 10.1210/jc.2013-2928
– ident: ref13
  doi: 10.1109/TMI.2019.2905841
– ident: ref18
  doi: 10.1016/j.ultras.2016.09.011
– start-page: 6000
  volume-title: Proc. NIPS
  ident: ref29
  article-title: Attention is all you need
– ident: ref41
  doi: 10.1016/j.media.2020.101839
– ident: ref42
  doi: 10.1007/978-3-319-46723-8_55
– ident: ref9
  doi: 10.1089/thy.2008.0021
– ident: ref24
  doi: 10.1109/CVPR.2016.90
– ident: ref15
  doi: 10.7863/ultra.15.05055
– ident: ref34
  doi: 10.1016/j.media.2020.101918
– ident: ref37
  doi: 10.1016/j.media.2019.101555
– ident: ref11
  doi: 10.1530/EJE-12-0936
– ident: ref60
  doi: 10.1109/GlobalSIP.2018.8646671
– ident: ref44
  doi: 10.1609/aaai.v34i08.7035
– ident: ref38
  doi: 10.1016/j.media.2021.102078
– ident: ref25
  doi: 10.1017/S0140525X0200002X
– ident: ref48
  doi: 10.1007/978-3-030-58555-6_12
SSID ssj0014509
Score 2.537346
Snippet Thyroid nodules are one of the most common nodular lesions. The incidence of thyroid cancer has increased rapidly in the past three decades and is one of the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1497
SubjectTerms attention mechanism
Cancer
Cancer screening
classification
Deep learning
deep neural network
Feature extraction
Humans
Image classification
Medical screening
Nodules
Physicians
Radiomics
Task analysis
Thyroid
Thyroid cancer
Thyroid gland
thyroid nodule
Thyroid Nodule - diagnostic imaging
Thyroid Nodule - pathology
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Ultrasound image
Title A Local and Global Feature Disentangled Network: Toward Classification of Benign-Malignant Thyroid Nodules From Ultrasound Image
URI https://ieeexplore.ieee.org/document/9672155
https://www.ncbi.nlm.nih.gov/pubmed/34990353
https://www.proquest.com/docview/2672089022
https://www.proquest.com/docview/2618226948
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaHhAceLQ8AgUZiQsS2U3iOGtzK49Vi0hPu1JvUfxaVmwTlE0OcOKnM-M8BAgQt0Sx89BM4u_LfDNDyAvJhQHuY0JrohQJShyWlpchNyy2LiljtcBE4fwyO1-nH6741QF5NeXCWGu9-MzOcNPH8k2tO_xVNpcZ8BXOD8khELc-V2uKGKS8l3MkWDE2ypIxJBnJ-Sq_ACKYJMBPgb5I7LvHAOhHjLNfViPfXuXvSNOvOMs7JB_vtReafJ51rZrpb7-Vcfzfh7lLbg_Qk571vnKPHNjqmNz6qSDhMbmRD6H2E_L9jH7EdY6WlaF9ZwCKeLFrLH239SlL1WZnDb3sheSv6corcKlvs4kCJG9zWjv6xlbbTRXmAPk3qLuhq09fm3oLU2vT7eyeLpv6mq53bVPuscsTvbiGr9x9sl6-X709D4d2DaFm6aINmUpFrCNrpMocY8oYIcsMCx4K7JtQcpaZ1ElhXCYdE5bHTiQuVUIrwDBA6h-Qo6qu7CNCXaY0IAsbKYBrOtZygXO1gx0tgNIFZD6ardBDLXNsqbErPKeJZAE2L9DmxWDzgLycZnzp63j8Y-wJmmsaN1gqIKejZxTDi74vEjgWYaw2Ccjz6TC8ohh3KStbdzgGSBxmDIuAPOw9ajr36IiP_3zNJ-Qm3lmvTTslR23T2aeAglr1zLv_D4x9ANU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj5RAEK6sa-Lj4GPXB7pqm3gxkRmgaYb2tj4mMzrMiUn2RqC7GSfOgmHgoCd_ulW8okaNNwjd0KSqqe-jXgAvpAg1ch9tG-34RFBcOzUitYXmrsm91M1mlCgcrYPFxv9wIS6O4NWYC2OMaYPPzIQOW1--LlVDv8qmMkC-IsQVuIp2X7hdttboM_BFF9DhUc1YJ_AGp6Qjp3G0RCroechQkcBI6rzHEeo7XPBf7FHbYOXvWLO1OfPbEA2r7UJNPk-aOpuob78Vcvzf17kDt3rwyc47bbkLR6Y4gZs_lSQ8gWtR72w_he_nbEWWjqWFZl1vAEaIsakMe7drk5aK7d5otu5CyV-zuI3BZW2jTQpBaqXOypy9McVuW9gRgv4tRd6w-NPXqtzh1FI3e3Ng86q8ZJt9XaUH6vPElpf4nbsHm_n7-O3C7hs22Ir7s9rmmR-6yjFaZkHOeaZ1KNOASh6G1DkhFTzQfi5DnQcy56ERbh56uZ-FKkMUg7T-PhwXZWEeAsuDTCG2ME6GgE25Ss5orsrxRIVI6iyYDmJLVF_NnJpq7JOW1TgyQZknJPOkl7kFL8cZX7pKHv8Ye0riGsf1krLgbNCMpN_qh8TDaw55az0Lno-XcZOS5yUtTNnQGKRxlDMcWvCg06jx3oMiPvrzM5_B9UUcrZLVcv3xMdygVXaRamdwXFeNeYKYqM6etlvhBxToBB4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Local+and+Global+Feature+Disentangled+Network%3A+Toward+Classification+of+Benign-Malignant+Thyroid+Nodules+From+Ultrasound+Image&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhao%2C+Shi-Xuan&rft.au=Chen%2C+Yang&rft.au=Yang%2C+Kai-Fu&rft.au=Luo%2C+Yan&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=41&rft.issue=6&rft.spage=1497&rft.epage=1509&rft_id=info:doi/10.1109%2FTMI.2022.3140797&rft_id=info%3Apmid%2F34990353&rft.externalDocID=9672155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon