Development of encapsulation strategies towards the commercialization of perovskite solar cells
After a decade of research and development on perovskite solar cells (PSCs), the achievements targeting device stability have fallen far behind the progress made in the photoelectric conversion efficiency, which is a major obstacle in their commercialization. Although an in-depth understanding of th...
Saved in:
Published in | Energy & environmental science Vol. 15; no. 1; pp. 13 - 55 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
19.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | After a decade of research and development on perovskite solar cells (PSCs), the achievements targeting device stability have fallen far behind the progress made in the photoelectric conversion efficiency, which is a major obstacle in their commercialization. Although an in-depth understanding of the origin of the intrinsic and extrinsic degradation mechanisms is being rapidly acquired for these materials, the device architecture and module, together with synthetic strategies developed to improve the stability of the functional layers within the device (to inhibit phase and crystal structure transition, ion migration, morphology degradation, and surface and bulk chemical reactions), a consensus is forming that systematic encapsulation is indispensable in the device and module architecture to effectively resist harsh outdoor ageing stressors. This review, by focusing on the fundamental and technological development in the encapsulation studies of PSCs, discusses the role of encapsulation in preventing moisture and oxygen intrusion, which relies mainly on the selection of encapsulation materials, optimization of the encapsulation architecture and a more broadened sense of encapsulation to avoid the leakage of lead and improve the intrinsic stabilities of various materials in the device. Therefore, this review firstly summarizes the current state-of-the-art encapsulation approaches in various optoelectronic devices (light-emitting diodes, organic photovoltaic cells, and silicon solar cells) for their possible implications on PSCs. Then, targeting the moisture and oxygen stability, photostability, thermal stability, damp-heat stability, and thermal cycling stability, this review highlights the impact of encapsulation on these stabilities specifically. Furthermore, the authors advocate the establishment of standard and consistent procedures for the assessment of encapsulation materials and the stability of encapsulated devices for a more quantificational investigation and comparison. Finally, the current encapsulation materials are summarized for diverse techniques, developing a systematic concept of encapsulation, namely internal encapsulation, such as grain boundary encapsulation, surface and interface encapsulation, and device-level external encapsulation. This review thus offers an outlook on future material design, which may hopefully inspire future development of encapsulation technologies for PSCs.
Systematic encapsulation of PVSK solar cells is comprehensively reviewed by considering external encapsulation against H
2
O/O
2
intrusion, along with internal encapsulation to improve the intrinsic stabilities of their constituting layers. |
---|---|
AbstractList | After a decade of research and development on perovskite solar cells (PSCs), the achievements targeting device stability have fallen far behind the progress made in the photoelectric conversion efficiency, which is a major obstacle in their commercialization. Although an in-depth understanding of the origin of the intrinsic and extrinsic degradation mechanisms is being rapidly acquired for these materials, the device architecture and module, together with synthetic strategies developed to improve the stability of the functional layers within the device (to inhibit phase and crystal structure transition, ion migration, morphology degradation, and surface and bulk chemical reactions), a consensus is forming that systematic encapsulation is indispensable in the device and module architecture to effectively resist harsh outdoor ageing stressors. This review, by focusing on the fundamental and technological development in the encapsulation studies of PSCs, discusses the role of encapsulation in preventing moisture and oxygen intrusion, which relies mainly on the selection of encapsulation materials, optimization of the encapsulation architecture and a more broadened sense of encapsulation to avoid the leakage of lead and improve the intrinsic stabilities of various materials in the device. Therefore, this review firstly summarizes the current state-of-the-art encapsulation approaches in various optoelectronic devices (light-emitting diodes, organic photovoltaic cells, and silicon solar cells) for their possible implications on PSCs. Then, targeting the moisture and oxygen stability, photostability, thermal stability, damp-heat stability, and thermal cycling stability, this review highlights the impact of encapsulation on these stabilities specifically. Furthermore, the authors advocate the establishment of standard and consistent procedures for the assessment of encapsulation materials and the stability of encapsulated devices for a more quantificational investigation and comparison. Finally, the current encapsulation materials are summarized for diverse techniques, developing a systematic concept of encapsulation, namely internal encapsulation, such as grain boundary encapsulation, surface and interface encapsulation, and device-level external encapsulation. This review thus offers an outlook on future material design, which may hopefully inspire future development of encapsulation technologies for PSCs. After a decade of research and development on perovskite solar cells (PSCs), the achievements targeting device stability have fallen far behind the progress made in the photoelectric conversion efficiency, which is a major obstacle in their commercialization. Although an in-depth understanding of the origin of the intrinsic and extrinsic degradation mechanisms is being rapidly acquired for these materials, the device architecture and module, together with synthetic strategies developed to improve the stability of the functional layers within the device (to inhibit phase and crystal structure transition, ion migration, morphology degradation, and surface and bulk chemical reactions), a consensus is forming that systematic encapsulation is indispensable in the device and module architecture to effectively resist harsh outdoor ageing stressors. This review, by focusing on the fundamental and technological development in the encapsulation studies of PSCs, discusses the role of encapsulation in preventing moisture and oxygen intrusion, which relies mainly on the selection of encapsulation materials, optimization of the encapsulation architecture and a more broadened sense of encapsulation to avoid the leakage of lead and improve the intrinsic stabilities of various materials in the device. Therefore, this review firstly summarizes the current state-of-the-art encapsulation approaches in various optoelectronic devices (light-emitting diodes, organic photovoltaic cells, and silicon solar cells) for their possible implications on PSCs. Then, targeting the moisture and oxygen stability, photostability, thermal stability, damp-heat stability, and thermal cycling stability, this review highlights the impact of encapsulation on these stabilities specifically. Furthermore, the authors advocate the establishment of standard and consistent procedures for the assessment of encapsulation materials and the stability of encapsulated devices for a more quantificational investigation and comparison. Finally, the current encapsulation materials are summarized for diverse techniques, developing a systematic concept of encapsulation, namely internal encapsulation, such as grain boundary encapsulation, surface and interface encapsulation, and device-level external encapsulation. This review thus offers an outlook on future material design, which may hopefully inspire future development of encapsulation technologies for PSCs. Systematic encapsulation of PVSK solar cells is comprehensively reviewed by considering external encapsulation against H 2 O/O 2 intrusion, along with internal encapsulation to improve the intrinsic stabilities of their constituting layers. |
Author | Chen, Qi Zhang, Ying Li, Yujing Ma, Sai Yuan, Guizhou Yang, Ning |
AuthorAffiliation | MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices School of Materials Science & Engineering Experimental Center of Advanced Materials Beijing Institute of Technology Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications |
AuthorAffiliation_xml | – name: MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices – name: Experimental Center of Advanced Materials – name: School of Materials Science & Engineering – name: Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications – name: Beijing Institute of Technology |
Author_xml | – sequence: 1 givenname: Sai surname: Ma fullname: Ma, Sai – sequence: 2 givenname: Guizhou surname: Yuan fullname: Yuan, Guizhou – sequence: 3 givenname: Ying surname: Zhang fullname: Zhang, Ying – sequence: 4 givenname: Ning surname: Yang fullname: Yang, Ning – sequence: 5 givenname: Yujing surname: Li fullname: Li, Yujing – sequence: 6 givenname: Qi surname: Chen fullname: Chen, Qi |
BookMark | eNptkUtPwzAQhC1UJNrChTtSJG5IgXUednJEbXmISlzgHDnOBtw6cbDdIvj1hIaHhDjNHr6Z1c5OyKg1LRJyTOGcQpxfVBQRoiyL1ntkTHmahCkHNvqeWR4dkIlzKwAWAc_HpJjjFrXpGmx9YOoAWyk6t9HCK9MGzlvh8UmhC7x5Fbbq9RkDaZoGrVRCq_cB7J0dWrN1a-UxcEYLG0jU2h2S_Vpoh0dfOiWPV4uH2U24vL--nV0uQxkn3IdRWSKvUgRWJ1QwyIGWWJe0pHVOMY1LGVPIRFZlwDCualZWkJQJ46LKJRUinpLTIbez5mWDzhcrs7Ftv7KIWEQh4ZxBT50NlLTGOYt10VnVCPtWUCg-CyzmdLHYFXjXw_AHlsrvzu1bUfp_y8lgsU7-RP_-JP4AJn6BSg |
CitedBy_id | crossref_primary_10_1002_adma_202409742 crossref_primary_10_1021_acsami_2c06699 crossref_primary_10_1021_acs_chemrev_3c00667 crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1016_j_jallcom_2024_175063 crossref_primary_10_1007_s11465_023_0749_z crossref_primary_10_1002_smtd_202300377 crossref_primary_10_1002_solr_202200168 crossref_primary_10_1002_admt_202401834 crossref_primary_10_1002_adts_202401283 crossref_primary_10_1002_aenm_202200361 crossref_primary_10_1002_eem2_12739 crossref_primary_10_1016_j_jpowsour_2023_232874 crossref_primary_10_1002_adma_202211257 crossref_primary_10_1007_s10854_022_09565_z crossref_primary_10_1021_acsami_3c16598 crossref_primary_10_1039_D4TA05429F crossref_primary_10_1002_solr_202400046 crossref_primary_10_1039_D3TC03183G crossref_primary_10_1002_aenm_202405370 crossref_primary_10_1016_j_solener_2024_112662 crossref_primary_10_1016_j_enganabound_2023_07_037 crossref_primary_10_1016_j_measen_2022_100640 crossref_primary_10_1002_adma_202313154 crossref_primary_10_3390_en16020598 crossref_primary_10_1007_s11998_024_00929_0 crossref_primary_10_1021_acsomega_3c02888 crossref_primary_10_35848_1347_4065_ac993e crossref_primary_10_1007_s40243_023_00239_2 crossref_primary_10_1021_acsnano_4c10135 crossref_primary_10_1002_ente_202402310 crossref_primary_10_1002_solr_202200609 crossref_primary_10_1016_j_mtener_2024_101556 crossref_primary_10_1016_j_mseb_2024_117367 crossref_primary_10_1021_acsenergylett_4c01536 crossref_primary_10_1002_adfm_202418792 crossref_primary_10_1002_advs_202204017 crossref_primary_10_1002_adma_202207656 crossref_primary_10_1002_appl_202300109 crossref_primary_10_1002_adma_202313860 crossref_primary_10_1038_s41467_023_36918_x crossref_primary_10_1016_j_solener_2024_112337 crossref_primary_10_1021_prechem_3c00018 crossref_primary_10_1039_D3TA02382F crossref_primary_10_1002_adma_202410395 crossref_primary_10_1088_2752_5724_ad37cf crossref_primary_10_1016_j_orgel_2024_107153 crossref_primary_10_1038_s41467_024_48877_y crossref_primary_10_1002_smll_202305732 crossref_primary_10_1002_sus2_233 crossref_primary_10_1021_acsenergylett_2c01602 crossref_primary_10_1016_j_mssp_2024_108940 crossref_primary_10_1021_acsaem_3c02972 crossref_primary_10_1039_D3CC02605A crossref_primary_10_3390_molecules30061292 crossref_primary_10_1073_pnas_2308804120 crossref_primary_10_1039_D4TC01688B crossref_primary_10_1039_D4EE06027J crossref_primary_10_1080_00268976_2023_2293230 crossref_primary_10_3390_foods12091788 crossref_primary_10_1088_2040_8986_ad9754 crossref_primary_10_1039_D2EE02162E crossref_primary_10_1002_solr_202300560 crossref_primary_10_1002_aenm_202201320 crossref_primary_10_1016_j_apmt_2022_101509 crossref_primary_10_1016_j_jallcom_2025_178884 crossref_primary_10_15251_DJNB_2024_193_1227 crossref_primary_10_1021_acsmaterialsau_1c00045 crossref_primary_10_1007_s11082_024_07800_x crossref_primary_10_1016_j_solener_2022_08_001 crossref_primary_10_1039_D3MA00828B crossref_primary_10_1002_smll_202404984 crossref_primary_10_1016_j_pmatsci_2023_101223 crossref_primary_10_1002_aenm_202400204 crossref_primary_10_1002_solr_202300650 crossref_primary_10_1063_5_0197154 crossref_primary_10_1002_solr_202300091 crossref_primary_10_1016_j_ijhydene_2023_08_299 crossref_primary_10_1002_adfm_202402394 crossref_primary_10_1021_acsami_4c06568 crossref_primary_10_1002_aenm_202201490 crossref_primary_10_1002_admi_202300849 crossref_primary_10_1016_j_cej_2025_161155 crossref_primary_10_1002_adma_202400218 crossref_primary_10_1002_smll_202501374 crossref_primary_10_1021_acs_jpclett_3c02636 crossref_primary_10_1021_acsenergylett_2c02035 crossref_primary_10_1039_D2TA08258F crossref_primary_10_1002_smtd_202300223 crossref_primary_10_3390_ma17123002 crossref_primary_10_1557_s43577_023_00585_6 crossref_primary_10_1016_j_esci_2025_100372 crossref_primary_10_1088_1674_1056_ad23d5 crossref_primary_10_1002_adfm_202206311 crossref_primary_10_1038_s43246_022_00281_z crossref_primary_10_1039_D4EE03956D crossref_primary_10_1002_aenm_202301555 crossref_primary_10_1002_aenm_202303859 crossref_primary_10_1016_j_matt_2023_10_013 crossref_primary_10_1016_j_jallcom_2022_163891 crossref_primary_10_3740_MRSK_2024_34_10_491 crossref_primary_10_1016_j_mtcomm_2024_108957 crossref_primary_10_1002_aenm_202202680 crossref_primary_10_1016_j_joule_2024_01_024 crossref_primary_10_1088_1402_4896_acff28 crossref_primary_10_1038_s43246_022_00291_x crossref_primary_10_1021_acs_chemmater_2c00929 crossref_primary_10_1002_adma_202300581 crossref_primary_10_1021_acsenergylett_3c01765 crossref_primary_10_1021_acsenergylett_2c02733 crossref_primary_10_1016_j_applthermaleng_2023_120589 crossref_primary_10_1038_s41570_023_00492_z crossref_primary_10_1016_j_nanoen_2024_110523 crossref_primary_10_1021_acsami_4c18413 crossref_primary_10_1016_j_matt_2023_08_016 crossref_primary_10_1038_s41928_023_01001_2 crossref_primary_10_3390_en17040871 crossref_primary_10_1016_j_cej_2022_141216 crossref_primary_10_1021_acs_jpclett_2c02635 crossref_primary_10_1016_j_cej_2022_136308 crossref_primary_10_1016_j_electacta_2022_140905 crossref_primary_10_1021_acsenergylett_2c01648 crossref_primary_10_1038_s41467_025_56068_6 crossref_primary_10_1039_D2CS00110A crossref_primary_10_1038_s41467_024_50018_4 crossref_primary_10_1002_aenm_202203471 crossref_primary_10_1039_D4RA00583J crossref_primary_10_1021_acsnano_3c11642 crossref_primary_10_3389_fmats_2022_892657 crossref_primary_10_1002_aenm_202302552 crossref_primary_10_1016_j_cej_2023_143120 crossref_primary_10_1021_acsenergylett_2c00698 crossref_primary_10_1155_2023_3801813 crossref_primary_10_1002_eem2_12696 crossref_primary_10_35848_1347_4065_acfa4b crossref_primary_10_1007_s10854_023_10477_9 crossref_primary_10_1016_j_solener_2024_112382 crossref_primary_10_1016_j_chphi_2023_100439 crossref_primary_10_1002_adma_202308655 crossref_primary_10_1007_s12596_023_01277_9 crossref_primary_10_1088_1402_4896_ad4a9a crossref_primary_10_3390_molecules28031288 crossref_primary_10_1007_s11426_022_1426_x crossref_primary_10_1016_j_matt_2024_08_007 crossref_primary_10_1016_j_matt_2023_11_022 crossref_primary_10_1016_j_rineng_2024_102809 crossref_primary_10_1016_j_egyr_2024_03_007 crossref_primary_10_1038_s41560_023_01288_7 crossref_primary_10_1016_j_materresbull_2025_113332 crossref_primary_10_1016_j_solener_2022_07_013 crossref_primary_10_1039_D2RA05692E crossref_primary_10_1021_acsami_2c10901 crossref_primary_10_1080_1448837X_2024_2308415 crossref_primary_10_1002_adfm_202300089 crossref_primary_10_1007_s12596_024_02270_6 crossref_primary_10_1103_PRXEnergy_3_023013 crossref_primary_10_1002_adom_202202809 crossref_primary_10_1002_inf2_12522 crossref_primary_10_1016_j_enchem_2024_100135 crossref_primary_10_1016_j_cej_2023_145077 crossref_primary_10_1002_smsc_202300188 crossref_primary_10_1016_j_decarb_2023_100020 crossref_primary_10_1021_jacs_4c09094 crossref_primary_10_3390_inorganics11030101 crossref_primary_10_1002_celc_202400008 crossref_primary_10_1038_s41578_025_00781_7 crossref_primary_10_1016_j_isci_2023_106079 crossref_primary_10_1016_j_matt_2023_12_003 crossref_primary_10_1063_5_0226632 crossref_primary_10_1002_solr_202200485 crossref_primary_10_1515_nanoph_2024_0112 crossref_primary_10_1016_j_heliyon_2024_e23985 crossref_primary_10_1002_aenm_202403326 crossref_primary_10_1002_solr_202300127 crossref_primary_10_3390_solar4010003 crossref_primary_10_1002_solr_202300801 crossref_primary_10_1002_anie_202421063 crossref_primary_10_1038_s43246_024_00515_2 crossref_primary_10_1007_s12274_022_4524_y crossref_primary_10_1002_cjoc_202300128 crossref_primary_10_56767_jfpe_2022_1_1_91 crossref_primary_10_1002_adfm_202201036 crossref_primary_10_1039_D3TC01370G crossref_primary_10_3390_en16010190 crossref_primary_10_1002_adfm_202208225 crossref_primary_10_1002_solr_202400243 crossref_primary_10_1016_j_est_2025_115362 crossref_primary_10_1002_aenm_202301706 crossref_primary_10_1016_j_matchemphys_2022_126811 crossref_primary_10_1016_j_synthmet_2024_117578 crossref_primary_10_1016_j_enrev_2022_100010 crossref_primary_10_1016_j_mset_2023_04_007 crossref_primary_10_1002_aenm_202404518 crossref_primary_10_3390_nano12040718 crossref_primary_10_1002_adfm_202206838 crossref_primary_10_1016_j_joule_2023_12_008 crossref_primary_10_1002_eem2_12649 crossref_primary_10_1016_j_enconman_2024_118991 crossref_primary_10_1002_ange_202421063 crossref_primary_10_1039_D4SE00914B crossref_primary_10_1002_adfm_202414423 crossref_primary_10_1016_j_nanoen_2024_109708 crossref_primary_10_1002_jnm_3164 crossref_primary_10_1002_solr_202300111 crossref_primary_10_1021_acsami_4c04762 crossref_primary_10_1088_2050_6120_ac896b crossref_primary_10_1021_acsenergylett_3c00275 crossref_primary_10_1002_sstr_202300448 crossref_primary_10_2139_ssrn_4097405 crossref_primary_10_1155_2024_9454136 crossref_primary_10_1016_j_solener_2024_113172 crossref_primary_10_1021_acs_jpclett_2c03452 crossref_primary_10_1016_j_surfin_2022_102187 crossref_primary_10_3390_polym15193911 crossref_primary_10_1002_solr_202201123 crossref_primary_10_1016_j_isci_2022_105807 crossref_primary_10_1002_solr_202300479 crossref_primary_10_1016_j_cej_2022_135295 crossref_primary_10_1016_j_cej_2023_141914 crossref_primary_10_1021_acsenergylett_4c00816 crossref_primary_10_1039_D2EE03539A crossref_primary_10_1088_2053_1591_acedf0 crossref_primary_10_1002_advs_202304811 crossref_primary_10_1007_s42114_023_00823_0 crossref_primary_10_1021_acsenergylett_2c02219 crossref_primary_10_1002_adfm_202209324 crossref_primary_10_1039_D4TC00718B |
Cites_doi | 10.1021/acsami.0c17652 10.1038/s41467-019-09167-0 10.1002/pip.3323 10.1039/C5EE02733K 10.1039/c3cp51070k 10.1016/j.joule.2019.06.014 10.1002/anie.201503038 10.1039/C8RA00063H 10.1002/adma.201706208 10.1021/acs.nanolett.6b04453 10.1021/acsami.5b07703 10.1016/0141-3910(93)90035-H 10.1021/acsami.7b10643 10.1002/aenm.201903013 10.1002/adma.201904408 10.1021/acs.energyfuels.0c03250 10.1016/S0022-3093(00)00150-2 10.1021/cm100903b 10.1002/aenm.201401442 10.1021/nl302509q 10.1007/s40820-019-0287-8 10.1016/j.solmat.2011.01.036 10.1039/C4TA03741C 10.1039/C6TA02851A 10.1002/aenm.201800232 10.3390/coatings9020065 10.1016/j.solmat.2003.09.003 10.1039/C4EE01223B 10.1002/ese3.180 10.1126/science.aah4046 10.1016/j.solmat.2021.111024 10.1002/adma.201806823 10.1016/j.joule.2017.08.005 10.1177/1091581809337630 10.1021/acsenergylett.8b01507 10.1039/C8TA06950F 10.3390/polym10091017 10.1021/acs.jpclett.5b00504 10.1038/s41560-017-0060-5 10.1039/C6EE02687G 10.1038/s41560-018-0220-2 10.1021/acs.jpcc.6b10865 10.1126/sciadv.aao5616 10.1016/j.solmat.2012.12.041 10.1016/S1452-3981(23)14409-9 10.1002/aenm.201701928 10.1126/science.aah5557 10.1021/acsami.9b20315 10.1016/j.ijadhadh.2005.07.004 10.1016/j.solener.2017.12.051 10.1038/s41467-019-08507-4 10.1021/nl400349b 10.1021/jacs.5b03796 10.1021/acs.chemrev.0c00107 10.1016/j.rser.2005.01.009 10.1039/C6RA28501E 10.1126/science.1144787 10.1039/C5NR01820J 10.1038/s41560-017-0067-y 10.1002/aenm.201501354 10.1038/s41467-018-05454-4 10.1126/science.aad1015 10.1038/ncomms11105 10.1002/aenm.201801954 10.1016/j.egypro.2012.02.046 10.1039/C4SC03141E 10.1021/jp500449z 10.1016/S1369-7021(12)70019-6 10.1016/j.solener.2019.11.018 10.1002/smll.202002628 10.1002/chem.201801441 10.1038/s41598-018-37229-8 10.1038/nenergy.2015.15 10.1002/aenm.201602512 10.1039/C8CS00853A 10.1038/ncomms12555 10.1038/nature12340 10.1038/s41598-017-04690-w 10.1016/j.solmat.2006.08.001 10.1002/adfm.201800305 10.1021/am402035r 10.1016/j.orgel.2010.08.020 10.1016/j.solener.2019.04.095 10.1021/acsami.7b07625 10.1016/0927-0248(95)00150-6 10.1063/1.2975185 10.1021/acs.jpclett.5b02597 10.1002/adma.201505279 10.1002/ente.201800572 10.1016/j.solener.2019.06.025 10.1126/science.aau5701 10.1039/C8EE00580J 10.1021/acsenergylett.9b00120 10.1021/jz502703p 10.1016/j.conbuildmat.2015.04.057 10.1016/j.solmat.2012.03.022 10.1007/s10965-009-9374-8 10.1016/j.solmat.2006.02.011 10.1016/j.matlet.2019.04.082 10.1038/nenergy.2017.135 10.1002/adem.201300172 10.1002/aenm.201802139 10.1002/anie.201503153 10.1021/acs.chemmater.5b00660 10.1149/1.2335592 10.1063/1.2903484 10.1016/j.nanoen.2015.10.006 10.1063/1.42901 10.1002/aenm.201902472 10.1002/cssc.201600957 10.1023/A:1008701903087 10.1002/pip.2465 10.1038/s41560-019-0529-5 10.1021/acs.nanolett.8b00541 10.1016/0927-0248(95)00128-X 10.1002/adma.201805702 10.1116/1.581519 10.1021/acsenergylett.8b00926 10.1155/2019/9876235 10.1038/nphoton.2013.80 10.1038/s41566-019-0398-2 10.1007/s40242-018-7228-9 10.1002/app.1991.070430918 10.1021/ja809598r 10.1021/ic401215x 10.1038/s41563-018-0038-0 10.1126/science.1254050 10.1016/j.apsusc.2012.07.117 10.1002/mren.201400065 10.1021/acsenergylett.8b00121 10.1126/science.1228604 10.1038/s41467-018-07255-1 10.1038/s41560-019-0406-2 10.1002/adma.202000186 10.1016/j.joule.2018.05.001 10.1002/app.39208 10.1021/acsnano.6b02613 10.3390/ma14102496 10.1016/j.joule.2019.07.030 10.1038/ncomms3885 10.1002/smm2.1025 10.1002/cnma.201800503 10.1016/j.mtener.2017.09.008 10.1002/aenm.201200169 10.1002/adma.201401641 10.1002/pip.994 10.1039/C5TA01221J 10.1002/adfm.201809129 10.1039/C5TA00358J 10.1038/ncomms11683 10.1038/ncomms15218 10.1002/pip.2947 10.1038/srep00591 10.1038/s41560-018-0192-2 10.1002/app.1991.070430917 10.1039/C7RA06002E 10.1038/s41586-019-1036-3 10.1021/acs.jpcc.6b11853 10.1039/D0EE01736A 10.1002/anie.201406466 10.1002/smtd.202000478 10.1021/acsami.7b07071 10.1002/aenm.201702116 10.1016/S0927-0248(99)00108-7 10.1038/nphoton.2016.41 10.3390/en13205391 10.1039/C8NR07022A 10.1038/nature18306 10.1126/science.aba2412 10.1016/j.synthmet.2015.08.005 10.1126/science.aap8671 10.1021/am101116b 10.1002/adma.201600626 10.1038/nenergy.2017.9 10.1002/aenm.201602599 10.1016/j.eml.2016.06.006 10.1002/aenm.201904054 10.1021/acs.jpclett.5b01747 10.1039/C7EE02564E 10.1002/cssc.201600868 10.1039/C6EE00409A 10.1002/cssc.201600933 10.1016/j.rser.2013.06.027 10.1038/s41467-020-15338-1 10.1016/j.nanoen.2016.09.041 10.1021/acs.chemmater.5b04107 10.1038/s41598-019-51945-9 10.1039/C8SC05284K 10.1002/adfm.201900417 10.1002/pip.1019 10.1039/D0CS00573H 10.1063/1.4901510 10.1039/C6TA06497C 10.1002/aenm.201703620 10.1016/j.solmat.2018.08.016 10.1016/j.solmat.2016.09.011 10.1002/pat.4614 10.1002/adfm.201302090 10.1117/12.662829 10.1002/adfm.202008052 10.1002/app.47948 10.1021/jacs.8b13392 10.1039/c2jm31104f 10.1088/2515-7655/ab8774 10.1016/j.matchemphys.2012.08.013 10.1002/adma.201305172 10.1039/C5EE03522H 10.1016/j.orgel.2017.06.023 10.1021/jacs.5b11740 10.1063/1.5046007 10.1002/adma.201703852 10.1039/C5CC00128E 10.1016/j.jiec.2015.03.026 10.1016/j.joule.2019.05.009 10.1002/adma.201604695 10.1021/jacs.9b07182 10.1016/j.solmat.2010.03.038 10.1002/app.49147 10.1002/adfm.201902600 10.1002/admi.201901469 10.1002/mame.201300349 10.1016/j.solmat.2017.08.015 10.1038/ncomms13938 10.1002/pi.5250 10.1007/s10973-019-09006-w 10.1021/acs.jpclett.7b02679 10.1039/C6EE00709K 10.1016/j.microrel.2011.07.063 10.1002/adfm.201908298 10.1002/aenm.201801234 10.1038/nmat4388 10.1002/adma.201805337 10.1016/j.solmat.2011.11.007 10.1039/C6CP04553G 10.1038/ncomms15684 10.1039/C9CS00711C |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d1ee02882k |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 55 |
ExternalDocumentID | 10_1039_D1EE02882K d1ee02882k |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c347t-2bbe7d5e06f41a60901befb1b1f91e53bc3108a8d806e3df6bd04b467ad9c1aa3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:44:36 EDT 2025 Tue Jul 01 01:45:50 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Mon Apr 18 07:58:19 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-2bbe7d5e06f41a60901befb1b1f91e53bc3108a8d806e3df6bd04b467ad9c1aa3 |
Notes | Guizhou Yuan received his Bachelor's degree in 2016 from the College of Chemistry & Molecular Engineering, Qingdao University of Science and Technology. Subsequently, he received his Master's degree in 2019 from the Department of Chemistry and Chemical Engineering, BIT. Currently, he is a PhD candidate in the School of Materials Science & Engineering, BIT, which he joined in 9/2019. His research interest is the long-term stability of perovskite solar cells. Prof. Yujing Li obtained his BS degree from the Department of Chemical Engineering at Tsinghua University, Beijing and PhD degree from the Department of Materials Science and Engineering at University of California, Los Angeles. He is currently working as professor at the School of Materials Science and Engineering at the Beijing Institute of Technology (BIT). He is interested in pursuing fundamental understanding of the degradation mechanism of materials and energy conversion devices. His research is mainly focused on the design of highly stable nanoscale structures and hybrid materials for photovoltaic, photocatalytic, and electrocatalytic applications. Prof. Qi Chen obtained both his BS and MS degrees from Tsinghua University, and received his PhD degree at University of California, Los Angeles (UCLA). From 2013-2016, he worked as a Postdoc Fellow at the California Nanosystems Institute (CNSI), UCLA. Currently, he is a Professor at the Beijing Institute of Technology. His research focuses on hybrid material design, processing and applications in optoelectronics for energy harvesting and storage. To date, he has published over 100 SCI papers with a total citation count of 20 000. Currently, he is working on fundamental research on perovskite solar cells and their commercialization. Ying Zhang received her Bachelor's degree from the School of Materials Science & Engineering, Beijing Institute of Technology, in 2019. She is currently a Master's student under the supervision of Professor Qi Chen at the Beijing Institute of Technology. She is devoted to exploring manufacturing processing for highly efficient and stable perovskite solar cells. Sai Ma received his BS degree from the Department of Materials Science and Engineering at Taiyuan University of Technology (TYUT), and MS degree from the Department of Materials Science and Engineering at the Beijing Institute of Technology (BIT). Currently, he is a PhD candidate at the Beijing Institute of Technology. His research focuses on the degradation mechanism of hybrid perovskite materials and photovoltaic devices under harsh outdoor ageing stressors. Currently, he is working on the development of perovskite-specific systematic encapsulation technology to address the stability issues of perovskite solar cells. Ning Yang received her Master's degree from the School of Chemistry and Chemical Engineering, Beijing Institute of Technology in 2019. Currently, she is a PhD candidate under the supervision of Prof. Qi Chen at the School of Materials Science & Technology, Beijing Institute of Technology. Her current research interest is developing high-efficiency and stable large-scale perovskite solar cells. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9647-5873 |
PQID | 2621047760 |
PQPubID | 2047494 |
PageCount | 43 |
ParticipantIDs | proquest_journals_2621047760 crossref_primary_10_1039_D1EE02882K rsc_primary_d1ee02882k crossref_citationtrail_10_1039_D1EE02882K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-19 |
PublicationDateYYYYMMDD | 2022-01-19 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Klampaftis (D1EE02882K/cit60/1) 2011; 19 Jung (D1EE02882K/cit8/1) 2019; 567 Wu (D1EE02882K/cit161/1) 2019; 10 Hu (D1EE02882K/cit186/1) 2014; 2 Cheacharoen (D1EE02882K/cit104/1) 2018; 2 Burschka (D1EE02882K/cit122/1) 2013; 499 Dong (D1EE02882K/cit92/1) 2016; 9 Kim (D1EE02882K/cit196/1) 2017; 7 Tian Wang (D1EE02882K/cit209/1) 2021; 37 Yamada (D1EE02882K/cit81/1) 2011; 19 Zhang (D1EE02882K/cit236/1) 2018; 10 Liu (D1EE02882K/cit128/1) 2019; 141 Sangermano (D1EE02882K/cit225/1) 2014; 299 Dechthummarong (D1EE02882K/cit251/1) 2010; 94 Qiu (D1EE02882K/cit38/1) 2018; 7 Noh (D1EE02882K/cit123/1) 2013; 13 Hösel (D1EE02882K/cit248/1) 2013; 15 Adothu (D1EE02882K/cit90/1) 2019; 194 Nowlan (D1EE02882K/cit250/1) Fu (D1EE02882K/cit31/1) 2019; 29 Pern (D1EE02882K/cit237/1) 1992; 268 Lee (D1EE02882K/cit149/1) 2018; 3 Wang (D1EE02882K/cit69/1) 2020; 30 Sultan (D1EE02882K/cit78/1) 1991; 43 Zhu (D1EE02882K/cit105/1) 2019; 10 Berhe (D1EE02882K/cit29/1) 2016; 9 You (D1EE02882K/cit119/1) 2014; 105 Schlothauer (D1EE02882K/cit217/1) 2017; 159 Brenes (D1EE02882K/cit130/1) 2018; 30 Matteocci (D1EE02882K/cit167/1) 2016; 30 Weerasinghe (D1EE02882K/cit163/1) 2015; 18 Kaltenbrunner (D1EE02882K/cit240/1) 2015; 14 Adothu (D1EE02882K/cit89/1) Huang (D1EE02882K/cit49/1) 2019; 30 Aristidou (D1EE02882K/cit136/1) 2015; 54 Li (D1EE02882K/cit16/1) 2018; 2 Shang (D1EE02882K/cit52/1) 2018; 8 Hauch (D1EE02882K/cit165/1) 2008; 93 D1EE02882K/cit46/1 Chang (D1EE02882K/cit51/1) 2012; 52 Adothu (D1EE02882K/cit87/1) 2021; 224 da Silva Sobrinho (D1EE02882K/cit58/1) 1998; 16 Hossain (D1EE02882K/cit70/1) 2019; 11 Xu (D1EE02882K/cit91/1) 2016; 18 Heo (D1EE02882K/cit127/1) 2013; 7 Choi (D1EE02882K/cit243/1) 2018; 188 Lin (D1EE02882K/cit88/1) 2019; 140 Jiang (D1EE02882K/cit10/1) 2019; 13 Yin (D1EE02882K/cit55/1) 2012; 259 Ma (D1EE02882K/cit183/1) 2020; 16 Turowec (D1EE02882K/cit224/1) 2017; 66 Li (D1EE02882K/cit170/1) 2017; 121 Zhang (D1EE02882K/cit26/1) 2015; 5 Bella (D1EE02882K/cit98/1) 2016; 354 Hu (D1EE02882K/cit155/1) 2018; 8 Liu (D1EE02882K/cit18/1) 2020; 49 Channa (D1EE02882K/cit62/1) 2021; 14 Zayed (D1EE02882K/cit111/1) 2009; 28 Li (D1EE02882K/cit23/1) 2020; 10 Liu (D1EE02882K/cit34/1) 2021; 2 Pern (D1EE02882K/cit47/1) Rolston (D1EE02882K/cit106/1) 2018; 8 Christians (D1EE02882K/cit158/1) 2018; 3 Hailegnaw (D1EE02882K/cit112/1) 2015; 6 Cao (D1EE02882K/cit145/1) 2015; 7 Bing-qian (D1EE02882K/cit235/1) 2019; 2019 Chen (D1EE02882K/cit82/1) 2013; 8 Jiang (D1EE02882K/cit140/1) 2015; 54 Boyd (D1EE02882K/cit200/1) 2018; 3 Domanski (D1EE02882K/cit222/1) 2018; 3 Jiang (D1EE02882K/cit116/1) 2019; 4 Khdary (D1EE02882K/cit64/1) 2012; 22 Bush (D1EE02882K/cit190/1) 2017; 2 Krauklis (D1EE02882K/cit231/1) 2018; 10 Ma (D1EE02882K/cit32/1) 2020; 10 Kim (D1EE02882K/cit239/1) 2019; 9 Zuo (D1EE02882K/cit114/1) 2014; 26 Zhang (D1EE02882K/cit146/1) 2015; 51 Pern (D1EE02882K/cit79/1) 1993; 41 Shao (D1EE02882K/cit37/1) 2020; 7 Lee (D1EE02882K/cit188/1) 2018; 9 Wang (D1EE02882K/cit191/1) 2018; 3 Christoph (D1EE02882K/cit241/1) 2006; 6197 Wang (D1EE02882K/cit150/1) 2017; 2 Wei (D1EE02882K/cit129/1) 2016; 10 Zhao (D1EE02882K/cit97/1) 2017; 7 Hoke (D1EE02882K/cit175/1) 2012; 2 Quan (D1EE02882K/cit143/1) 2016; 138 Holzhey (D1EE02882K/cit36/1) 2018; 6 Koushik (D1EE02882K/cit148/1) 2017; 10 Wen (D1EE02882K/cit234/1) 2017; 28 Zhang (D1EE02882K/cit24/1) 2019; 31 Li (D1EE02882K/cit35/1) 2018; 8 Khouri (D1EE02882K/cit84/1) 2020; 13 Li (D1EE02882K/cit179/1) 2016; 9 Tsai (D1EE02882K/cit168/1) 2018; 360 Crespo-Quesada (D1EE02882K/cit102/1) 2016; 7 Wang (D1EE02882K/cit184/1) 2019; 363 D1EE02882K/cit220/1 Park (D1EE02882K/cit27/1) 2019; 31 He (D1EE02882K/cit131/1) 2019; 141 Liu (D1EE02882K/cit157/1) 2016; 4 Svanström (D1EE02882K/cit39/1) 2020; 12 Chujo (D1EE02882K/cit68/1) 1992; 11 Pern (D1EE02882K/cit76/1) Huang (D1EE02882K/cit83/1) 2018; 161 Wang (D1EE02882K/cit151/1) 2019; 29 Bischak (D1EE02882K/cit174/1) 2017; 17 Rolston (D1EE02882K/cit204/1) 2018; 8 Brinkmann (D1EE02882K/cit159/1) 2017; 8 Chen (D1EE02882K/cit201/1) 2015; 350 Khenkin (D1EE02882K/cit218/1) 2020; 5 Sarkar (D1EE02882K/cit43/1) 2010; 11 Abdelmageed (D1EE02882K/cit147/1) 2018; 1 Leijtens (D1EE02882K/cit176/1) 2013; 4 Schlothauer (D1EE02882K/cit54/1) 2012; 102 Dunfield (D1EE02882K/cit28/1) 2020; 10 Pern (D1EE02882K/cit75/1) 2000; 61 Jin (D1EE02882K/cit229/1) 2015; 29 Bryant (D1EE02882K/cit139/1) 2016; 9 Visco (D1EE02882K/cit86/1) 2018; 1981 Tsai (D1EE02882K/cit185/1) 2016; 536 Guarnera (D1EE02882K/cit193/1) 2015; 6 Han (D1EE02882K/cit96/1) 2015; 3 Fang (D1EE02882K/cit108/1) 2018; 28 Li (D1EE02882K/cit223/1) 2013; 5 Liu (D1EE02882K/cit107/1) 2018; 8 Liow (D1EE02882K/cit214/1) 2020; 137 Kempe (D1EE02882K/cit164/1) 2015; 23 Domanski (D1EE02882K/cit192/1) 2016; 10 Wang (D1EE02882K/cit22/1) 2020; 32 Reese (D1EE02882K/cit219/1) 2011; 95 Kim (D1EE02882K/cit7/1) 2012; 2 Kim (D1EE02882K/cit152/1) 2016; 9 Kim (D1EE02882K/cit3/1) 2020; 120 Cappel (D1EE02882K/cit126/1) 2012; 12 Ramasamy (D1EE02882K/cit232/1) 2019; 250 McKenna (D1EE02882K/cit101/1) 2017; 7 Chiang (D1EE02882K/cit226/1) 2006; 26 Bae (D1EE02882K/cit110/1) 2019; 9 Cao (D1EE02882K/cit144/1) 2015; 137 Gao (D1EE02882K/cit181/1) 2020; 4 Baranwal (D1EE02882K/cit228/1) 2019; 7 Mackenzie (D1EE02882K/cit67/1) 2000; 19 Askar (D1EE02882K/cit124/1) 2017; 121 Aristidou (D1EE02882K/cit137/1) 2017; 8 Niu (D1EE02882K/cit197/1) 2017; 7 Rolston (D1EE02882K/cit207/1) 2016; 9 Kasparavicius (D1EE02882K/cit132/1) 2018; 24 Leguy (D1EE02882K/cit33/1) 2015; 27 Mansur (D1EE02882K/cit66/1) 2000; 273 Shi (D1EE02882K/cit208/1) 2020; 368 Oreski (D1EE02882K/cit85/1) 2020; 28 Andersen (D1EE02882K/cit247/1) 2014; 7 Tu (D1EE02882K/cit203/1) 2019; 4 Kim (D1EE02882K/cit11/1) 2019; 3 Sun (D1EE02882K/cit50/1) 2018; 34 Rosungnern (D1EE02882K/cit153/1) 2021; 4 Zhang (D1EE02882K/cit215/1) 2015; 93 Palmstrom (D1EE02882K/cit13/1) 2019; 3 Dross (D1EE02882K/cit73/1) 2006; 90 Lin (D1EE02882K/cit109/1) 2018; 9 Li (D1EE02882K/cit71/1) 2020; 49 Zhang (D1EE02882K/cit162/1) 2018; 11 deQuilettes (D1EE02882K/cit172/1) 2016; 7 Chen (D1EE02882K/cit21/1) 2019; 48 Ni (D1EE02882K/cit135/1) 2007; 11 Wong-Stringer (D1EE02882K/cit93/1) 2018; 8 Peike (D1EE02882K/cit245/1) 2013; 19 Lee (D1EE02882K/cit9/1) 2012; 338 Ito (D1EE02882K/cit180/1) 2014; 118 Jiang (D1EE02882K/cit74/1) 2015; 9 Li (D1EE02882K/cit189/1) 2016; 28 Zhang (D1EE02882K/cit25/1) 2017; 29 Bi (D1EE02882K/cit202/1) 2019; 3 Wang (D1EE02882K/cit115/1) 2016; 28 Bonomo (D1EE02882K/cit210/1) 2020; 12 Green (D1EE02882K/cit14/1) 2016; 1 Søndergaard (D1EE02882K/cit246/1) 2012; 15 Chung (D1EE02882K/cit40/1) 2012; 136 Prakash (D1EE02882K/cit213/1) 2020; 34 Saliba (D1EE02882K/cit182/1) 2016; 354 Xue (D1EE02882K/cit206/1) 2020; 11 Corsini (D1EE02882K/cit72/1) 2020; 2 Tan (D1EE02882K/cit211/1) 2017; 48 Eperon (D1EE02882K/cit118/1) 2014; 24 O'Mahony (D1EE02882K/cit138/1) 2015; 3 Sutter-Fella (D1EE02882K/cit19/1) 2018; 18 Bracher (D1EE02882K/cit233/1) 2018; 6 Jiang (D1EE02882K/cit1/1) 2017; 29 Kim (D1EE02882K/cit20/1) 2018; 17 Czanderna (D1EE02882K/cit59/1) 1996; 43 Zhao (D1EE02882K/cit103/1) 2017; 3 Wang (D1EE02882K/cit133/1) 2015; 7 Finn (D1EE02882K/cit242/1) 2018; 174 Sprenger (D1EE02882K/cit230/1) 2013; 130 Kempe (D1EE02882K/cit221/1) 2018; 26 Cappel (D1EE02882K/cit169/1) 2017; 9 Bush (D1EE02882K/cit160/1) 2016; 28 Shimpi (D1EE02882K/cit249/1) 2019; 187 Jin (D1EE02882K/cit238/1) 2010; 17 Ramos (D1EE02882K/cit244/1) 2018; 2 Chiang (D1EE02882K/cit227/1) 2019; 136 Meng (D1EE02882K/cit15/1) 2018; 9 Dulub (D1EE02882K/cit134/1) 2007; 317 He (D1EE02882K/cit212/1) 2019; 188 Kim (D1EE02882K/cit99/1) 2017; 9 Chen (D1EE02882K/cit45/1) 2006; 153 Ferrara (D1EE02882K/cit77/1) 2012; 15 Wang (D1EE02882K/cit154/1) 2021; 31 Ahmad (D1EE02882K/cit53/1) 2013; 27 Yang (D1EE02882K/cit178/1) 2019; 29 Kojima (D1EE02882K/cit216/1) 2004; 81 Cheacharoen (D1EE02882K/cit30/1) 2018; 11 Zhou (D1EE02882K/cit117/1) 2014; 345 Fabini (D1EE02882K/cit100/1) 2015; 6 Smith (D1EE02882K/cit187/1) 2014; 53 Sultan (D1EE02882K/cit48/1) 1991; 43 Chen (D1EE02882K/cit57/1) 2015; 5 van Dyk (D1EE02882K/cit61/1) 2007; 91 Hoke (D1EE02882K/cit173/1) 2015; 6 Zhao (D1EE02882K/cit177/1) 2018; 3 Matsui (D1EE02882K/cit194/1) 2019; 31 Yang (D1EE02882K/cit5/1) 2020; 13 Fan (D1EE02882K/cit195/1) 2017; 1 Lee (D1EE02882K/cit166/1) 2013; 111 Fu (D1EE02882K/cit17/1) 2019; 5 Kulbak (D1EE02882K/cit120/1) 2016; 7 Grancini (D1EE02882K/cit156/1) 2017; 8 Bonucci (D1EE02882K/cit63/1) 2012; 98 Mont (D1EE02882K/cit41/1) 2008; 103 Baranwal (D1EE02882K/cit199/1) 2016; 9 Lee (D1EE02882K/cit94/1) 2018; 8 Pern (D1EE02882K/cit80/1) 1996; 41 Uddin (D1EE02882K/cit56/1) 2019; 9 Lyu (D1EE02882K/cit113/1) 2017; 7 D1EE02882K/cit12/1 Tang (D1EE02882K/cit171/1) 2016; 4 Jung (D1EE02882K/cit198/1) 2016; 9 Tai (D1EE02882K/cit141/1) 2016; 7 Stoumpos (D1EE02882K/cit121/1) 2013; 52 Kim (D1EE02882K/cit42/1) 2010; 22 Abdel-Fattah (D1EE02882K/cit44/1) 2015; 209 Budunoglu (D1EE02882K/cit65/1) 2011; 3 Wang (D1EE02882K/cit205/1) 2019; 31 Wehrenfennig (D1EE02882K/cit4/1) 2014; 26 Shi (D1EE02882K/cit95/1) 2017; 9 Maharjan (D1EE02882K/cit125/1) 2013; 15 Schloemer (D1EE02882K/cit2/1) 2019; 10 Kojima (D1EE02882K/cit6/1) 2009; 131 Saidaminov (D1EE02882K/cit142/1) 2018; 3 |
References_xml | – doi: Nowlan Hogan Darkazalli Sutherland Breen Murach Patterson – doi: Pern Czanderna Emery Dhere – doi: Pern Glick – doi: Adothu Bhatt Kartikay Zele Costa Oderkerk Mallick – volume: 12 start-page: 54862 year: 2020 ident: D1EE02882K/cit210/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c17652 – volume: 10 start-page: 1161 year: 2019 ident: D1EE02882K/cit161/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09167-0 – volume: 28 start-page: 1277 year: 2020 ident: D1EE02882K/cit85/1 publication-title: Prog. Photovolt: Res. Appl. doi: 10.1002/pip.3323 – volume: 9 start-page: 323 year: 2016 ident: D1EE02882K/cit29/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02733K – volume: 15 start-page: 6856 year: 2013 ident: D1EE02882K/cit125/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51070k – volume: 4 start-page: 3169 year: 2021 ident: D1EE02882K/cit153/1 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 2179 year: 2019 ident: D1EE02882K/cit11/1 publication-title: Joule doi: 10.1016/j.joule.2019.06.014 – volume: 54 start-page: 7617 year: 2015 ident: D1EE02882K/cit140/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503038 – volume: 8 start-page: 9049 year: 2018 ident: D1EE02882K/cit52/1 publication-title: RSC Adv. doi: 10.1039/C8RA00063H – volume: 30 start-page: 1706208 year: 2018 ident: D1EE02882K/cit130/1 publication-title: Adv. Mater. doi: 10.1002/adma.201706208 – volume: 2 start-page: 2398 year: 2018 ident: D1EE02882K/cit104/1 publication-title: Renewable Sustainable Energy Rev. – volume: 17 start-page: 1028 year: 2017 ident: D1EE02882K/cit174/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04453 – volume: 7 start-page: 24791 year: 2015 ident: D1EE02882K/cit133/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07703 – volume: 41 start-page: 125 year: 1993 ident: D1EE02882K/cit79/1 publication-title: Polym. Degrad. Stab. doi: 10.1016/0141-3910(93)90035-H – volume: 9 start-page: 34970 year: 2017 ident: D1EE02882K/cit169/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10643 – volume: 10 start-page: 1903013 year: 2020 ident: D1EE02882K/cit23/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903013 – volume: 31 start-page: 1904408 year: 2019 ident: D1EE02882K/cit205/1 publication-title: Adv. Mater. doi: 10.1002/adma.201904408 – volume: 34 start-page: 16847 year: 2020 ident: D1EE02882K/cit213/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c03250 – volume: 273 start-page: 109 year: 2000 ident: D1EE02882K/cit66/1 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(00)00150-2 – volume: 22 start-page: 3549 year: 2010 ident: D1EE02882K/cit42/1 publication-title: Chem. Mater. doi: 10.1021/cm100903b – volume: 5 start-page: 1401442 year: 2015 ident: D1EE02882K/cit57/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401442 – volume: 12 start-page: 4925 year: 2012 ident: D1EE02882K/cit126/1 publication-title: Nano Lett. doi: 10.1021/nl302509q – volume: 11 start-page: 58 year: 2019 ident: D1EE02882K/cit70/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0287-8 – ident: D1EE02882K/cit12/1 – volume: 95 start-page: 1253 year: 2011 ident: D1EE02882K/cit219/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.01.036 – volume: 2 start-page: 17115 year: 2014 ident: D1EE02882K/cit186/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03741C – volume: 4 start-page: 10700 year: 2016 ident: D1EE02882K/cit157/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02851A – volume: 8 start-page: 1800232 year: 2018 ident: D1EE02882K/cit107/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800232 – volume: 9 start-page: 65 year: 2019 ident: D1EE02882K/cit56/1 publication-title: Coatings doi: 10.3390/coatings9020065 – volume: 81 start-page: 119 year: 2004 ident: D1EE02882K/cit216/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2003.09.003 – volume: 7 start-page: 2925 year: 2014 ident: D1EE02882K/cit247/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01223B – volume: 6 start-page: 35 year: 2018 ident: D1EE02882K/cit233/1 publication-title: Energy Sci. Eng. doi: 10.1002/ese3.180 – volume: 354 start-page: 203 year: 2016 ident: D1EE02882K/cit98/1 publication-title: Science doi: 10.1126/science.aah4046 – volume: 224 start-page: 111024 year: 2021 ident: D1EE02882K/cit87/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2021.111024 – volume: 31 start-page: 1806823 year: 2019 ident: D1EE02882K/cit194/1 publication-title: Adv. Mater. doi: 10.1002/adma.201806823 – volume: 1 start-page: 548 year: 2017 ident: D1EE02882K/cit195/1 publication-title: Joule doi: 10.1016/j.joule.2017.08.005 – volume: 28 start-page: 259 year: 2009 ident: D1EE02882K/cit111/1 publication-title: Int. J. Toxicol. doi: 10.1177/1091581809337630 – volume: 3 start-page: 2891 year: 2018 ident: D1EE02882K/cit177/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01507 – volume: 6 start-page: 21794 year: 2018 ident: D1EE02882K/cit36/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06950F – volume: 10 start-page: 1017 year: 2018 ident: D1EE02882K/cit231/1 publication-title: Polymers doi: 10.3390/polym10091017 – volume: 6 start-page: 1543 year: 2015 ident: D1EE02882K/cit112/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00504 – volume: 3 start-page: 61 year: 2018 ident: D1EE02882K/cit222/1 publication-title: Nat. Energy doi: 10.1038/s41560-017-0060-5 – volume: 19 start-page: 85 year: 2013 ident: D1EE02882K/cit245/1 publication-title: Photovoltaics Int. – volume: 10 start-page: 91 year: 2017 ident: D1EE02882K/cit148/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02687G – volume: 3 start-page: 855 year: 2018 ident: D1EE02882K/cit191/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0220-2 – volume: 121 start-page: 1013 year: 2017 ident: D1EE02882K/cit124/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10865 – volume: 3 start-page: eaao5616 year: 2017 ident: D1EE02882K/cit103/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao5616 – volume: 111 start-page: 97 year: 2013 ident: D1EE02882K/cit166/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2012.12.041 – volume: 8 start-page: 3524 year: 2013 ident: D1EE02882K/cit82/1 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)14409-9 – volume: 8 start-page: 1701928 year: 2018 ident: D1EE02882K/cit94/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701928 – volume: 354 start-page: 206 year: 2016 ident: D1EE02882K/cit182/1 publication-title: Science doi: 10.1126/science.aah5557 – volume: 12 start-page: 7212 year: 2020 ident: D1EE02882K/cit39/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20315 – volume: 26 start-page: 520 year: 2006 ident: D1EE02882K/cit226/1 publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2005.07.004 – volume: 161 start-page: 187 year: 2018 ident: D1EE02882K/cit83/1 publication-title: Sol. Energy doi: 10.1016/j.solener.2017.12.051 – volume: 10 start-page: 815 year: 2019 ident: D1EE02882K/cit105/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08507-4 – volume: 13 start-page: 1764 year: 2013 ident: D1EE02882K/cit123/1 publication-title: Nano Lett. doi: 10.1021/nl400349b – volume: 137 start-page: 7843 year: 2015 ident: D1EE02882K/cit144/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03796 – volume: 120 start-page: 7867 year: 2020 ident: D1EE02882K/cit3/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00107 – volume: 11 start-page: 401 year: 2007 ident: D1EE02882K/cit135/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2005.01.009 – volume: 7 start-page: 17473 year: 2017 ident: D1EE02882K/cit197/1 publication-title: RSC Adv. doi: 10.1039/C6RA28501E – volume: 317 start-page: 1052 year: 2007 ident: D1EE02882K/cit134/1 publication-title: Science doi: 10.1126/science.1144787 – volume: 7 start-page: 9443 year: 2015 ident: D1EE02882K/cit145/1 publication-title: Nanoscale doi: 10.1039/C5NR01820J – volume: 3 start-page: 68 year: 2018 ident: D1EE02882K/cit158/1 publication-title: Nat. Energy doi: 10.1038/s41560-017-0067-y – volume: 5 start-page: 1501354 year: 2015 ident: D1EE02882K/cit26/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501354 – volume: 9 start-page: 3021 year: 2018 ident: D1EE02882K/cit188/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05454-4 – volume: 350 start-page: 944 year: 2015 ident: D1EE02882K/cit201/1 publication-title: Science doi: 10.1126/science.aad1015 – volume: 7 start-page: 11105 year: 2016 ident: D1EE02882K/cit141/1 publication-title: Nat. Commun. doi: 10.1038/ncomms11105 – volume: 8 start-page: 1801954 year: 2018 ident: D1EE02882K/cit35/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801954 – volume: 15 start-page: 379 year: 2012 ident: D1EE02882K/cit77/1 publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.02.046 – volume: 6 start-page: 613 year: 2015 ident: D1EE02882K/cit173/1 publication-title: Chem. Sci. doi: 10.1039/C4SC03141E – volume: 118 start-page: 16995 year: 2014 ident: D1EE02882K/cit180/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp500449z – volume: 15 start-page: 36 year: 2012 ident: D1EE02882K/cit246/1 publication-title: Mater. Today doi: 10.1016/S1369-7021(12)70019-6 – volume: 194 start-page: 581 year: 2019 ident: D1EE02882K/cit90/1 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.11.018 – volume: 16 start-page: 2002628 year: 2020 ident: D1EE02882K/cit183/1 publication-title: Small doi: 10.1002/smll.202002628 – volume: 24 start-page: 9910 year: 2018 ident: D1EE02882K/cit132/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201801441 – volume: 9 start-page: 4242 year: 2019 ident: D1EE02882K/cit110/1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37229-8 – volume: 1 start-page: 15015 year: 2016 ident: D1EE02882K/cit14/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.15 – volume: 7 start-page: 1602512 year: 2017 ident: D1EE02882K/cit113/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602512 – volume: 2 start-page: 2468 year: 2018 ident: D1EE02882K/cit244/1 publication-title: Renewable Sustainable Energy Rev. – volume: 48 start-page: 3842 year: 2019 ident: D1EE02882K/cit21/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00853A – volume: 7 start-page: 12555 year: 2016 ident: D1EE02882K/cit102/1 publication-title: Nat. Commun. doi: 10.1038/ncomms12555 – volume: 499 start-page: 316 year: 2013 ident: D1EE02882K/cit122/1 publication-title: Nature doi: 10.1038/nature12340 – volume: 7 start-page: 4645 year: 2017 ident: D1EE02882K/cit196/1 publication-title: Sci. Rep. doi: 10.1038/s41598-017-04690-w – volume: 91 start-page: 167 year: 2007 ident: D1EE02882K/cit61/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2006.08.001 – volume: 28 start-page: 1800305 year: 2018 ident: D1EE02882K/cit108/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800305 – volume: 5 start-page: 8968 year: 2013 ident: D1EE02882K/cit223/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402035r – volume: 11 start-page: 1896 year: 2010 ident: D1EE02882K/cit43/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2010.08.020 – volume: 187 start-page: 226 year: 2019 ident: D1EE02882K/cit249/1 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.04.095 – ident: D1EE02882K/cit89/1 – volume: 9 start-page: 25073 year: 2017 ident: D1EE02882K/cit95/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07625 – volume: 43 start-page: 101 year: 1996 ident: D1EE02882K/cit59/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(95)00150-6 – volume: 93 start-page: 103306 year: 2008 ident: D1EE02882K/cit165/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2975185 – volume: 7 start-page: 167 year: 2016 ident: D1EE02882K/cit120/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02597 – volume: 28 start-page: 3937 year: 2016 ident: D1EE02882K/cit160/1 publication-title: Adv. Mater. doi: 10.1002/adma.201505279 – volume: 7 start-page: 245 year: 2019 ident: D1EE02882K/cit228/1 publication-title: Energy Technol. doi: 10.1002/ente.201800572 – volume: 188 start-page: 312 year: 2019 ident: D1EE02882K/cit212/1 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.06.025 – volume: 363 start-page: 265 year: 2019 ident: D1EE02882K/cit184/1 publication-title: Science doi: 10.1126/science.aau5701 – volume: 11 start-page: 2253 year: 2018 ident: D1EE02882K/cit162/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00580J – volume: 4 start-page: 796 year: 2019 ident: D1EE02882K/cit203/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00120 – volume: 6 start-page: 432 year: 2015 ident: D1EE02882K/cit193/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502703p – volume: 93 start-page: 404 year: 2015 ident: D1EE02882K/cit215/1 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.04.057 – volume: 102 start-page: 75 year: 2012 ident: D1EE02882K/cit54/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2012.03.022 – volume: 17 start-page: 827 year: 2010 ident: D1EE02882K/cit238/1 publication-title: J. Polym. Res. doi: 10.1007/s10965-009-9374-8 – volume: 90 start-page: 2159 year: 2006 ident: D1EE02882K/cit73/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2006.02.011 – volume: 250 start-page: 51 year: 2019 ident: D1EE02882K/cit232/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.04.082 – volume: 28 start-page: 14522 year: 2017 ident: D1EE02882K/cit234/1 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 2 start-page: 17135 year: 2017 ident: D1EE02882K/cit150/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.135 – volume: 15 start-page: 1068 year: 2013 ident: D1EE02882K/cit248/1 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201300172 – volume: 8 start-page: 1802139 year: 2018 ident: D1EE02882K/cit106/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802139 – volume: 54 start-page: 8208 year: 2015 ident: D1EE02882K/cit136/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503153 – volume: 27 start-page: 3397 year: 2015 ident: D1EE02882K/cit33/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00660 – volume: 153 start-page: F244 year: 2006 ident: D1EE02882K/cit45/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2335592 – volume: 103 start-page: 083120 year: 2008 ident: D1EE02882K/cit41/1 publication-title: J. Appl. Phys. doi: 10.1063/1.2903484 – volume: 18 start-page: 118 year: 2015 ident: D1EE02882K/cit163/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.10.006 – volume: 268 start-page: 445 year: 1992 ident: D1EE02882K/cit237/1 publication-title: AIP Conf. Proc. doi: 10.1063/1.42901 – volume: 10 start-page: 1902472 year: 2020 ident: D1EE02882K/cit32/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902472 – volume: 9 start-page: 2592 year: 2016 ident: D1EE02882K/cit198/1 publication-title: ChemSusChem doi: 10.1002/cssc.201600957 – volume: 19 start-page: 23 year: 2000 ident: D1EE02882K/cit67/1 publication-title: J. Sol-Gel Sci. Technol. doi: 10.1023/A:1008701903087 – volume: 23 start-page: 570 year: 2015 ident: D1EE02882K/cit164/1 publication-title: Prog. Photovolt: Res. Appl. doi: 10.1002/pip.2465 – volume: 5 start-page: 35 year: 2020 ident: D1EE02882K/cit218/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0529-5 – volume: 18 start-page: 3473 year: 2018 ident: D1EE02882K/cit19/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00541 – volume: 41 start-page: 587 year: 1996 ident: D1EE02882K/cit80/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(95)00128-X – volume: 31 start-page: 1805702 year: 2019 ident: D1EE02882K/cit24/1 publication-title: Adv. Mater. doi: 10.1002/adma.201805702 – volume: 16 start-page: 3190 year: 1998 ident: D1EE02882K/cit58/1 publication-title: J. Vac. Sci. Technol., A doi: 10.1116/1.581519 – volume: 3 start-page: 1772 year: 2018 ident: D1EE02882K/cit200/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00926 – volume: 2019 start-page: 9876235 year: 2019 ident: D1EE02882K/cit235/1 publication-title: Int. J. Photoenergy doi: 10.1155/2019/9876235 – volume: 7 start-page: 486 year: 2013 ident: D1EE02882K/cit127/1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.80 – volume: 13 start-page: 460 year: 2019 ident: D1EE02882K/cit10/1 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0398-2 – volume: 34 start-page: 326 year: 2018 ident: D1EE02882K/cit50/1 publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-018-7228-9 – volume: 43 start-page: 1747 year: 1991 ident: D1EE02882K/cit78/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1991.070430918 – volume: 131 start-page: 6050 year: 2009 ident: D1EE02882K/cit6/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 52 start-page: 9019 year: 2013 ident: D1EE02882K/cit121/1 publication-title: Inorg. Chem. doi: 10.1021/ic401215x – volume: 17 start-page: 445 year: 2018 ident: D1EE02882K/cit20/1 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0038-0 – volume: 345 start-page: 542 year: 2014 ident: D1EE02882K/cit117/1 publication-title: Science doi: 10.1126/science.1254050 – volume: 259 start-page: 758 year: 2012 ident: D1EE02882K/cit55/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.07.117 – volume: 9 start-page: 522 year: 2015 ident: D1EE02882K/cit74/1 publication-title: Macromol. React. Eng. doi: 10.1002/mren.201400065 – volume: 3 start-page: 647 year: 2018 ident: D1EE02882K/cit149/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00121 – volume: 338 start-page: 643 year: 2012 ident: D1EE02882K/cit9/1 publication-title: Science doi: 10.1126/science.1228604 – volume: 9 start-page: 5265 year: 2018 ident: D1EE02882K/cit15/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07255-1 – volume: 4 start-page: 585 year: 2019 ident: D1EE02882K/cit116/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0406-2 – volume: 32 start-page: 2000186 year: 2020 ident: D1EE02882K/cit22/1 publication-title: Adv. Mater. doi: 10.1002/adma.202000186 – volume: 2 start-page: 1559 year: 2018 ident: D1EE02882K/cit16/1 publication-title: Joule doi: 10.1016/j.joule.2018.05.001 – volume: 130 start-page: 1421 year: 2013 ident: D1EE02882K/cit230/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.39208 – volume: 10 start-page: 6306 year: 2016 ident: D1EE02882K/cit192/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b02613 – ident: D1EE02882K/cit76/1 – volume: 14 start-page: 2496 year: 2021 ident: D1EE02882K/cit62/1 publication-title: Materials doi: 10.3390/ma14102496 – volume: 3 start-page: 2748 year: 2019 ident: D1EE02882K/cit202/1 publication-title: Joule doi: 10.1016/j.joule.2019.07.030 – volume: 4 start-page: 2885 year: 2013 ident: D1EE02882K/cit176/1 publication-title: Nat. Commun. doi: 10.1038/ncomms3885 – ident: D1EE02882K/cit47/1 – volume: 2 start-page: 33 year: 2021 ident: D1EE02882K/cit34/1 publication-title: SmartMat doi: 10.1002/smm2.1025 – volume: 5 start-page: 253 year: 2019 ident: D1EE02882K/cit17/1 publication-title: ChemNanoMat doi: 10.1002/cnma.201800503 – volume: 7 start-page: 169 year: 2018 ident: D1EE02882K/cit38/1 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2017.09.008 – volume: 2 start-page: 1351 year: 2012 ident: D1EE02882K/cit175/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200169 – volume: 26 start-page: 6454 year: 2014 ident: D1EE02882K/cit114/1 publication-title: Adv. Mater. doi: 10.1002/adma.201401641 – volume: 19 start-page: 134 year: 2011 ident: D1EE02882K/cit81/1 publication-title: Prog. Photovolt: Res. Appl. doi: 10.1002/pip.994 – volume: 3 start-page: 7219 year: 2015 ident: D1EE02882K/cit138/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01221J – volume: 29 start-page: 1809129 year: 2019 ident: D1EE02882K/cit31/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201809129 – volume: 3 start-page: 8139 year: 2015 ident: D1EE02882K/cit96/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00358J – volume: 7 start-page: 11683 year: 2016 ident: D1EE02882K/cit172/1 publication-title: Nat. Commun. doi: 10.1038/ncomms11683 – volume: 8 start-page: 15218 year: 2017 ident: D1EE02882K/cit137/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15218 – volume: 26 start-page: 93 year: 2018 ident: D1EE02882K/cit221/1 publication-title: Prog. Photovolt: Res. Appl. doi: 10.1002/pip.2947 – volume: 2 start-page: 591 year: 2012 ident: D1EE02882K/cit7/1 publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 3 start-page: 648 year: 2018 ident: D1EE02882K/cit142/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0192-2 – volume: 43 start-page: 1737 year: 1991 ident: D1EE02882K/cit48/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1991.070430917 – volume: 7 start-page: 32942 year: 2017 ident: D1EE02882K/cit101/1 publication-title: RSC Adv. doi: 10.1039/C7RA06002E – volume: 567 start-page: 511 year: 2019 ident: D1EE02882K/cit8/1 publication-title: Nature doi: 10.1038/s41586-019-1036-3 – volume: 121 start-page: 3904 year: 2017 ident: D1EE02882K/cit170/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b11853 – volume: 13 start-page: 4344 year: 2020 ident: D1EE02882K/cit5/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01736A – volume: 53 start-page: 11232 year: 2014 ident: D1EE02882K/cit187/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201406466 – volume: 4 start-page: 2000478 year: 2020 ident: D1EE02882K/cit181/1 publication-title: Small Methods doi: 10.1002/smtd.202000478 – volume: 9 start-page: 27720 year: 2017 ident: D1EE02882K/cit99/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07071 – volume: 8 start-page: 1702116 year: 2018 ident: D1EE02882K/cit204/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702116 – volume: 61 start-page: 153 year: 2000 ident: D1EE02882K/cit75/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(99)00108-7 – volume: 10 start-page: 333 year: 2016 ident: D1EE02882K/cit129/1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.41 – volume: 13 start-page: 5391 year: 2020 ident: D1EE02882K/cit84/1 publication-title: Energies doi: 10.3390/en13205391 – volume: 10 start-page: 20131 year: 2018 ident: D1EE02882K/cit236/1 publication-title: Nanoscale doi: 10.1039/C8NR07022A – volume: 536 start-page: 312 year: 2016 ident: D1EE02882K/cit185/1 publication-title: Nature doi: 10.1038/nature18306 – volume: 368 start-page: eaba2412 year: 2020 ident: D1EE02882K/cit208/1 publication-title: Science doi: 10.1126/science.aba2412 – volume: 209 start-page: 348 year: 2015 ident: D1EE02882K/cit44/1 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2015.08.005 – volume: 360 start-page: 67 year: 2018 ident: D1EE02882K/cit168/1 publication-title: Science doi: 10.1126/science.aap8671 – volume: 3 start-page: 539 year: 2011 ident: D1EE02882K/cit65/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am101116b – volume: 28 start-page: 6695 year: 2016 ident: D1EE02882K/cit115/1 publication-title: Adv. Mater. doi: 10.1002/adma.201600626 – volume: 2 start-page: 17009 year: 2017 ident: D1EE02882K/cit190/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.9 – volume: 7 start-page: 1602599 year: 2017 ident: D1EE02882K/cit97/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602599 – volume: 9 start-page: 353 year: 2016 ident: D1EE02882K/cit207/1 publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2016.06.006 – volume: 10 start-page: 1904054 year: 2020 ident: D1EE02882K/cit28/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904054 – volume: 6 start-page: 3546 year: 2015 ident: D1EE02882K/cit100/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01747 – volume: 11 start-page: 144 year: 2018 ident: D1EE02882K/cit30/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02564E – volume: 9 start-page: 2597 year: 2016 ident: D1EE02882K/cit92/1 publication-title: ChemSusChem doi: 10.1002/cssc.201600868 – volume: 9 start-page: 1655 year: 2016 ident: D1EE02882K/cit139/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00409A – volume: 9 start-page: 2604 year: 2016 ident: D1EE02882K/cit199/1 publication-title: ChemSusChem doi: 10.1002/cssc.201600933 – volume: 27 start-page: 104 year: 2013 ident: D1EE02882K/cit53/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2013.06.027 – volume: 11 start-page: 1514 year: 2020 ident: D1EE02882K/cit206/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15338-1 – volume: 30 start-page: 162 year: 2016 ident: D1EE02882K/cit167/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.041 – volume: 28 start-page: 284 year: 2016 ident: D1EE02882K/cit189/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04107 – ident: D1EE02882K/cit220/1 – volume: 9 start-page: 15461 year: 2019 ident: D1EE02882K/cit239/1 publication-title: Sci. Rep. doi: 10.1038/s41598-019-51945-9 – volume: 11 start-page: 100 year: 1992 ident: D1EE02882K/cit68/1 publication-title: Adv. Polym. Sci. – volume: 10 start-page: 1904 year: 2019 ident: D1EE02882K/cit2/1 publication-title: Chem. Sci. doi: 10.1039/C8SC05284K – volume: 29 start-page: 1900417 year: 2019 ident: D1EE02882K/cit151/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900417 – volume: 19 start-page: 345 year: 2011 ident: D1EE02882K/cit60/1 publication-title: Prog. Photovolt: Res. Appl. doi: 10.1002/pip.1019 – volume: 49 start-page: 8235 year: 2020 ident: D1EE02882K/cit71/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00573H – volume: 105 start-page: 183902 year: 2014 ident: D1EE02882K/cit119/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4901510 – ident: D1EE02882K/cit250/1 – volume: 4 start-page: 15896 year: 2016 ident: D1EE02882K/cit171/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06497C – volume: 8 start-page: 1703620 year: 2018 ident: D1EE02882K/cit155/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703620 – volume: 188 start-page: 37 year: 2018 ident: D1EE02882K/cit243/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.08.016 – volume: 159 start-page: 307 year: 2017 ident: D1EE02882K/cit217/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.09.011 – volume: 30 start-page: 1818 year: 2019 ident: D1EE02882K/cit49/1 publication-title: Polym. Adv. Technol. doi: 10.1002/pat.4614 – volume: 24 start-page: 151 year: 2014 ident: D1EE02882K/cit118/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302090 – volume: 6197 start-page: 619712 year: 2006 ident: D1EE02882K/cit241/1 publication-title: Proc. SPIE doi: 10.1117/12.662829 – volume: 31 start-page: 2008052 year: 2021 ident: D1EE02882K/cit154/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008052 – volume: 136 start-page: 47948 year: 2019 ident: D1EE02882K/cit227/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47948 – volume: 141 start-page: 5798 year: 2019 ident: D1EE02882K/cit131/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13392 – volume: 22 start-page: 12032 year: 2012 ident: D1EE02882K/cit64/1 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31104f – volume: 2 start-page: 031002 year: 2020 ident: D1EE02882K/cit72/1 publication-title: J. Phys. Energy doi: 10.1088/2515-7655/ab8774 – volume: 136 start-page: 868 year: 2012 ident: D1EE02882K/cit40/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2012.08.013 – volume: 37 start-page: 2007021 year: 2021 ident: D1EE02882K/cit209/1 publication-title: Acta Phys. -Chim. Sin. – volume: 26 start-page: 1584 year: 2014 ident: D1EE02882K/cit4/1 publication-title: Adv. Mater. doi: 10.1002/adma.201305172 – volume: 9 start-page: 490 year: 2016 ident: D1EE02882K/cit179/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03522H – volume: 48 start-page: 308 year: 2017 ident: D1EE02882K/cit211/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.06.023 – volume: 138 start-page: 2649 year: 2016 ident: D1EE02882K/cit143/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11740 – volume: 1981 start-page: 020145 year: 2018 ident: D1EE02882K/cit86/1 publication-title: AIP Conf. Proc. doi: 10.1063/1.5046007 – volume: 29 start-page: 1703852 year: 2017 ident: D1EE02882K/cit1/1 publication-title: Adv. Mater. doi: 10.1002/adma.201703852 – volume: 51 start-page: 7047 year: 2015 ident: D1EE02882K/cit146/1 publication-title: Chem. Commun. doi: 10.1039/C5CC00128E – volume: 29 start-page: 1 year: 2015 ident: D1EE02882K/cit229/1 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.03.026 – volume: 3 start-page: 2193 year: 2019 ident: D1EE02882K/cit13/1 publication-title: Joule doi: 10.1016/j.joule.2019.05.009 – volume: 29 start-page: 1604695 year: 2017 ident: D1EE02882K/cit25/1 publication-title: Adv. Mater. doi: 10.1002/adma.201604695 – volume: 141 start-page: 18075 year: 2019 ident: D1EE02882K/cit128/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07182 – volume: 94 start-page: 1437 year: 2010 ident: D1EE02882K/cit251/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.03.038 – volume: 137 start-page: 49147 year: 2020 ident: D1EE02882K/cit214/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.49147 – volume: 29 start-page: 1902600 year: 2019 ident: D1EE02882K/cit178/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902600 – volume: 7 start-page: 1901469 year: 2020 ident: D1EE02882K/cit37/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901469 – volume: 299 start-page: 775 year: 2014 ident: D1EE02882K/cit225/1 publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201300349 – ident: D1EE02882K/cit46/1 – volume: 174 start-page: 7 year: 2018 ident: D1EE02882K/cit242/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.08.015 – volume: 8 start-page: 13938 year: 2017 ident: D1EE02882K/cit159/1 publication-title: Nat. Commun. doi: 10.1038/ncomms13938 – volume: 66 start-page: 42 year: 2017 ident: D1EE02882K/cit224/1 publication-title: Polym. Int. doi: 10.1002/pi.5250 – volume: 140 start-page: 2259 year: 2019 ident: D1EE02882K/cit88/1 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-09006-w – volume: 9 start-page: 654 year: 2018 ident: D1EE02882K/cit109/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02679 – volume: 9 start-page: 2326 year: 2016 ident: D1EE02882K/cit152/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00709K – volume: 52 start-page: 762 year: 2012 ident: D1EE02882K/cit51/1 publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2011.07.063 – volume: 30 start-page: 1908298 year: 2020 ident: D1EE02882K/cit69/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908298 – volume: 8 start-page: 1801234 year: 2018 ident: D1EE02882K/cit93/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801234 – volume: 14 start-page: 1032 year: 2015 ident: D1EE02882K/cit240/1 publication-title: Nat. Mater. doi: 10.1038/nmat4388 – volume: 31 start-page: 1805337 year: 2019 ident: D1EE02882K/cit27/1 publication-title: Adv. Mater. doi: 10.1002/adma.201805337 – volume: 98 start-page: 398 year: 2012 ident: D1EE02882K/cit63/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.11.007 – volume: 18 start-page: 27026 year: 2016 ident: D1EE02882K/cit91/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04553G – volume: 1 start-page: 387 year: 2018 ident: D1EE02882K/cit147/1 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 15684 year: 2017 ident: D1EE02882K/cit156/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15684 – volume: 49 start-page: 1653 year: 2020 ident: D1EE02882K/cit18/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00711C |
SSID | ssj0062079 |
Score | 2.6975162 |
SecondaryResourceType | review_article |
Snippet | After a decade of research and development on perovskite solar cells (PSCs), the achievements targeting device stability have fallen far behind the progress... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13 |
SubjectTerms | Aging Chemical reactions Commercialization Computer architecture Crystal structure Degradation Encapsulation Grain boundaries Ion migration Light emitting diodes Materials selection Modules Moisture Optimization Optoelectronic devices Oxygen Perovskites Photoelectricity Photovoltaic cells Photovoltaics R&D Research & development Solar cells Stability analysis Thermal cycling Thermal stability |
Title | Development of encapsulation strategies towards the commercialization of perovskite solar cells |
URI | https://www.proquest.com/docview/2621047760 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOFa-KpQVZggtapThO4jjHAksrKnpqRTlFduyoFWUXbbIcyp9n_EqypIfCJYosO0oyX-aVmc8IvUliRQzvXJSoikfg_1dRwSsZUa4EGCiwIJa34MsZO7lIP19ml5PJ72F3SSsPq9s7-0r-R6owBnI1XbL_INnuojAA5yBfOIKE4XgvGQ8qfozTB7cmIOh11W2zpg0sEOBfmtrYxjqZcB8_zC5L4sZ3YNqaZ71a_mpMInfWmFh3ZvL5zUbW3vUIGqAMeuNCR2U1qKB1eebrTp2sXYr1eH19e7VcjxLV34LtNHP92FkY8-kIauo6Iq_0nAbNszTKmNvg7lAPxnLCNtRuNoKX06GuN9VbY8fhO9LzJDE0qR_j-Rz8I05Pe2sW_uD_ZeS60kP70z0pyn7tFtqhEGOAktw5On1__DUYckaJpWrsniiw2ybFu371pj_TBylbq7CDjPVUzh-hXR9i4COHl8doohdP0MMB8eRTVA6Qg5c13kAO7pGDPXIwIAePkGNW9sjBFjnYIucZuvg0P_9wEvmtNqIqSfM2olLqXGWasDqNBSPgJUpdy1jGdRHrLJEVhAFccMUJ04mqmVQklWBkhSqqWIhkD20vlgv9HGHwQWUuUk51rdNM1QVlQnNSZ1ykOWfxFL0NL6ysPA-92Q7lphyLZoped3N_OvaVO2cdhPde-q-zKSmjhoUkZ2SK9kAW3XoVa23XfX9xr6vvowc9zg_Qdrta65fgiLbylQfMH7iAizM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+encapsulation+strategies+towards+the+commercialization+of+perovskite+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Ma%2C+Sai&rft.au=Yuan%2C+Guizhou&rft.au=Zhang%2C+Ying&rft.au=Yang%2C+Ning&rft.date=2022-01-19&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=15&rft.issue=1&rft.spage=13&rft.epage=55&rft_id=info:doi/10.1039%2FD1EE02882K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1EE02882K |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |