Development of encapsulation strategies towards the commercialization of perovskite solar cells

After a decade of research and development on perovskite solar cells (PSCs), the achievements targeting device stability have fallen far behind the progress made in the photoelectric conversion efficiency, which is a major obstacle in their commercialization. Although an in-depth understanding of th...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 15; no. 1; pp. 13 - 55
Main Authors Ma, Sai, Yuan, Guizhou, Zhang, Ying, Yang, Ning, Li, Yujing, Chen, Qi
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 19.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract After a decade of research and development on perovskite solar cells (PSCs), the achievements targeting device stability have fallen far behind the progress made in the photoelectric conversion efficiency, which is a major obstacle in their commercialization. Although an in-depth understanding of the origin of the intrinsic and extrinsic degradation mechanisms is being rapidly acquired for these materials, the device architecture and module, together with synthetic strategies developed to improve the stability of the functional layers within the device (to inhibit phase and crystal structure transition, ion migration, morphology degradation, and surface and bulk chemical reactions), a consensus is forming that systematic encapsulation is indispensable in the device and module architecture to effectively resist harsh outdoor ageing stressors. This review, by focusing on the fundamental and technological development in the encapsulation studies of PSCs, discusses the role of encapsulation in preventing moisture and oxygen intrusion, which relies mainly on the selection of encapsulation materials, optimization of the encapsulation architecture and a more broadened sense of encapsulation to avoid the leakage of lead and improve the intrinsic stabilities of various materials in the device. Therefore, this review firstly summarizes the current state-of-the-art encapsulation approaches in various optoelectronic devices (light-emitting diodes, organic photovoltaic cells, and silicon solar cells) for their possible implications on PSCs. Then, targeting the moisture and oxygen stability, photostability, thermal stability, damp-heat stability, and thermal cycling stability, this review highlights the impact of encapsulation on these stabilities specifically. Furthermore, the authors advocate the establishment of standard and consistent procedures for the assessment of encapsulation materials and the stability of encapsulated devices for a more quantificational investigation and comparison. Finally, the current encapsulation materials are summarized for diverse techniques, developing a systematic concept of encapsulation, namely internal encapsulation, such as grain boundary encapsulation, surface and interface encapsulation, and device-level external encapsulation. This review thus offers an outlook on future material design, which may hopefully inspire future development of encapsulation technologies for PSCs. Systematic encapsulation of PVSK solar cells is comprehensively reviewed by considering external encapsulation against H 2 O/O 2 intrusion, along with internal encapsulation to improve the intrinsic stabilities of their constituting layers.
AbstractList After a decade of research and development on perovskite solar cells (PSCs), the achievements targeting device stability have fallen far behind the progress made in the photoelectric conversion efficiency, which is a major obstacle in their commercialization. Although an in-depth understanding of the origin of the intrinsic and extrinsic degradation mechanisms is being rapidly acquired for these materials, the device architecture and module, together with synthetic strategies developed to improve the stability of the functional layers within the device (to inhibit phase and crystal structure transition, ion migration, morphology degradation, and surface and bulk chemical reactions), a consensus is forming that systematic encapsulation is indispensable in the device and module architecture to effectively resist harsh outdoor ageing stressors. This review, by focusing on the fundamental and technological development in the encapsulation studies of PSCs, discusses the role of encapsulation in preventing moisture and oxygen intrusion, which relies mainly on the selection of encapsulation materials, optimization of the encapsulation architecture and a more broadened sense of encapsulation to avoid the leakage of lead and improve the intrinsic stabilities of various materials in the device. Therefore, this review firstly summarizes the current state-of-the-art encapsulation approaches in various optoelectronic devices (light-emitting diodes, organic photovoltaic cells, and silicon solar cells) for their possible implications on PSCs. Then, targeting the moisture and oxygen stability, photostability, thermal stability, damp-heat stability, and thermal cycling stability, this review highlights the impact of encapsulation on these stabilities specifically. Furthermore, the authors advocate the establishment of standard and consistent procedures for the assessment of encapsulation materials and the stability of encapsulated devices for a more quantificational investigation and comparison. Finally, the current encapsulation materials are summarized for diverse techniques, developing a systematic concept of encapsulation, namely internal encapsulation, such as grain boundary encapsulation, surface and interface encapsulation, and device-level external encapsulation. This review thus offers an outlook on future material design, which may hopefully inspire future development of encapsulation technologies for PSCs.
After a decade of research and development on perovskite solar cells (PSCs), the achievements targeting device stability have fallen far behind the progress made in the photoelectric conversion efficiency, which is a major obstacle in their commercialization. Although an in-depth understanding of the origin of the intrinsic and extrinsic degradation mechanisms is being rapidly acquired for these materials, the device architecture and module, together with synthetic strategies developed to improve the stability of the functional layers within the device (to inhibit phase and crystal structure transition, ion migration, morphology degradation, and surface and bulk chemical reactions), a consensus is forming that systematic encapsulation is indispensable in the device and module architecture to effectively resist harsh outdoor ageing stressors. This review, by focusing on the fundamental and technological development in the encapsulation studies of PSCs, discusses the role of encapsulation in preventing moisture and oxygen intrusion, which relies mainly on the selection of encapsulation materials, optimization of the encapsulation architecture and a more broadened sense of encapsulation to avoid the leakage of lead and improve the intrinsic stabilities of various materials in the device. Therefore, this review firstly summarizes the current state-of-the-art encapsulation approaches in various optoelectronic devices (light-emitting diodes, organic photovoltaic cells, and silicon solar cells) for their possible implications on PSCs. Then, targeting the moisture and oxygen stability, photostability, thermal stability, damp-heat stability, and thermal cycling stability, this review highlights the impact of encapsulation on these stabilities specifically. Furthermore, the authors advocate the establishment of standard and consistent procedures for the assessment of encapsulation materials and the stability of encapsulated devices for a more quantificational investigation and comparison. Finally, the current encapsulation materials are summarized for diverse techniques, developing a systematic concept of encapsulation, namely internal encapsulation, such as grain boundary encapsulation, surface and interface encapsulation, and device-level external encapsulation. This review thus offers an outlook on future material design, which may hopefully inspire future development of encapsulation technologies for PSCs. Systematic encapsulation of PVSK solar cells is comprehensively reviewed by considering external encapsulation against H 2 O/O 2 intrusion, along with internal encapsulation to improve the intrinsic stabilities of their constituting layers.
Author Chen, Qi
Zhang, Ying
Li, Yujing
Ma, Sai
Yuan, Guizhou
Yang, Ning
AuthorAffiliation MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices
School of Materials Science & Engineering
Experimental Center of Advanced Materials
Beijing Institute of Technology
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
AuthorAffiliation_xml – name: MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices
– name: Experimental Center of Advanced Materials
– name: School of Materials Science & Engineering
– name: Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
– name: Beijing Institute of Technology
Author_xml – sequence: 1
  givenname: Sai
  surname: Ma
  fullname: Ma, Sai
– sequence: 2
  givenname: Guizhou
  surname: Yuan
  fullname: Yuan, Guizhou
– sequence: 3
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
– sequence: 4
  givenname: Ning
  surname: Yang
  fullname: Yang, Ning
– sequence: 5
  givenname: Yujing
  surname: Li
  fullname: Li, Yujing
– sequence: 6
  givenname: Qi
  surname: Chen
  fullname: Chen, Qi
BookMark eNptkUtPwzAQhC1UJNrChTtSJG5IgXUednJEbXmISlzgHDnOBtw6cbDdIvj1hIaHhDjNHr6Z1c5OyKg1LRJyTOGcQpxfVBQRoiyL1ntkTHmahCkHNvqeWR4dkIlzKwAWAc_HpJjjFrXpGmx9YOoAWyk6t9HCK9MGzlvh8UmhC7x5Fbbq9RkDaZoGrVRCq_cB7J0dWrN1a-UxcEYLG0jU2h2S_Vpoh0dfOiWPV4uH2U24vL--nV0uQxkn3IdRWSKvUgRWJ1QwyIGWWJe0pHVOMY1LGVPIRFZlwDCualZWkJQJ46LKJRUinpLTIbez5mWDzhcrs7Ftv7KIWEQh4ZxBT50NlLTGOYt10VnVCPtWUCg-CyzmdLHYFXjXw_AHlsrvzu1bUfp_y8lgsU7-RP_-JP4AJn6BSg
CitedBy_id crossref_primary_10_1002_adma_202409742
crossref_primary_10_1021_acsami_2c06699
crossref_primary_10_1021_acs_chemrev_3c00667
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_1016_j_jallcom_2024_175063
crossref_primary_10_1007_s11465_023_0749_z
crossref_primary_10_1002_smtd_202300377
crossref_primary_10_1002_solr_202200168
crossref_primary_10_1002_admt_202401834
crossref_primary_10_1002_adts_202401283
crossref_primary_10_1002_aenm_202200361
crossref_primary_10_1002_eem2_12739
crossref_primary_10_1016_j_jpowsour_2023_232874
crossref_primary_10_1002_adma_202211257
crossref_primary_10_1007_s10854_022_09565_z
crossref_primary_10_1021_acsami_3c16598
crossref_primary_10_1039_D4TA05429F
crossref_primary_10_1002_solr_202400046
crossref_primary_10_1039_D3TC03183G
crossref_primary_10_1002_aenm_202405370
crossref_primary_10_1016_j_solener_2024_112662
crossref_primary_10_1016_j_enganabound_2023_07_037
crossref_primary_10_1016_j_measen_2022_100640
crossref_primary_10_1002_adma_202313154
crossref_primary_10_3390_en16020598
crossref_primary_10_1007_s11998_024_00929_0
crossref_primary_10_1021_acsomega_3c02888
crossref_primary_10_35848_1347_4065_ac993e
crossref_primary_10_1007_s40243_023_00239_2
crossref_primary_10_1021_acsnano_4c10135
crossref_primary_10_1002_ente_202402310
crossref_primary_10_1002_solr_202200609
crossref_primary_10_1016_j_mtener_2024_101556
crossref_primary_10_1016_j_mseb_2024_117367
crossref_primary_10_1021_acsenergylett_4c01536
crossref_primary_10_1002_adfm_202418792
crossref_primary_10_1002_advs_202204017
crossref_primary_10_1002_adma_202207656
crossref_primary_10_1002_appl_202300109
crossref_primary_10_1002_adma_202313860
crossref_primary_10_1038_s41467_023_36918_x
crossref_primary_10_1016_j_solener_2024_112337
crossref_primary_10_1021_prechem_3c00018
crossref_primary_10_1039_D3TA02382F
crossref_primary_10_1002_adma_202410395
crossref_primary_10_1088_2752_5724_ad37cf
crossref_primary_10_1016_j_orgel_2024_107153
crossref_primary_10_1038_s41467_024_48877_y
crossref_primary_10_1002_smll_202305732
crossref_primary_10_1002_sus2_233
crossref_primary_10_1021_acsenergylett_2c01602
crossref_primary_10_1016_j_mssp_2024_108940
crossref_primary_10_1021_acsaem_3c02972
crossref_primary_10_1039_D3CC02605A
crossref_primary_10_3390_molecules30061292
crossref_primary_10_1073_pnas_2308804120
crossref_primary_10_1039_D4TC01688B
crossref_primary_10_1039_D4EE06027J
crossref_primary_10_1080_00268976_2023_2293230
crossref_primary_10_3390_foods12091788
crossref_primary_10_1088_2040_8986_ad9754
crossref_primary_10_1039_D2EE02162E
crossref_primary_10_1002_solr_202300560
crossref_primary_10_1002_aenm_202201320
crossref_primary_10_1016_j_apmt_2022_101509
crossref_primary_10_1016_j_jallcom_2025_178884
crossref_primary_10_15251_DJNB_2024_193_1227
crossref_primary_10_1021_acsmaterialsau_1c00045
crossref_primary_10_1007_s11082_024_07800_x
crossref_primary_10_1016_j_solener_2022_08_001
crossref_primary_10_1039_D3MA00828B
crossref_primary_10_1002_smll_202404984
crossref_primary_10_1016_j_pmatsci_2023_101223
crossref_primary_10_1002_aenm_202400204
crossref_primary_10_1002_solr_202300650
crossref_primary_10_1063_5_0197154
crossref_primary_10_1002_solr_202300091
crossref_primary_10_1016_j_ijhydene_2023_08_299
crossref_primary_10_1002_adfm_202402394
crossref_primary_10_1021_acsami_4c06568
crossref_primary_10_1002_aenm_202201490
crossref_primary_10_1002_admi_202300849
crossref_primary_10_1016_j_cej_2025_161155
crossref_primary_10_1002_adma_202400218
crossref_primary_10_1002_smll_202501374
crossref_primary_10_1021_acs_jpclett_3c02636
crossref_primary_10_1021_acsenergylett_2c02035
crossref_primary_10_1039_D2TA08258F
crossref_primary_10_1002_smtd_202300223
crossref_primary_10_3390_ma17123002
crossref_primary_10_1557_s43577_023_00585_6
crossref_primary_10_1016_j_esci_2025_100372
crossref_primary_10_1088_1674_1056_ad23d5
crossref_primary_10_1002_adfm_202206311
crossref_primary_10_1038_s43246_022_00281_z
crossref_primary_10_1039_D4EE03956D
crossref_primary_10_1002_aenm_202301555
crossref_primary_10_1002_aenm_202303859
crossref_primary_10_1016_j_matt_2023_10_013
crossref_primary_10_1016_j_jallcom_2022_163891
crossref_primary_10_3740_MRSK_2024_34_10_491
crossref_primary_10_1016_j_mtcomm_2024_108957
crossref_primary_10_1002_aenm_202202680
crossref_primary_10_1016_j_joule_2024_01_024
crossref_primary_10_1088_1402_4896_acff28
crossref_primary_10_1038_s43246_022_00291_x
crossref_primary_10_1021_acs_chemmater_2c00929
crossref_primary_10_1002_adma_202300581
crossref_primary_10_1021_acsenergylett_3c01765
crossref_primary_10_1021_acsenergylett_2c02733
crossref_primary_10_1016_j_applthermaleng_2023_120589
crossref_primary_10_1038_s41570_023_00492_z
crossref_primary_10_1016_j_nanoen_2024_110523
crossref_primary_10_1021_acsami_4c18413
crossref_primary_10_1016_j_matt_2023_08_016
crossref_primary_10_1038_s41928_023_01001_2
crossref_primary_10_3390_en17040871
crossref_primary_10_1016_j_cej_2022_141216
crossref_primary_10_1021_acs_jpclett_2c02635
crossref_primary_10_1016_j_cej_2022_136308
crossref_primary_10_1016_j_electacta_2022_140905
crossref_primary_10_1021_acsenergylett_2c01648
crossref_primary_10_1038_s41467_025_56068_6
crossref_primary_10_1039_D2CS00110A
crossref_primary_10_1038_s41467_024_50018_4
crossref_primary_10_1002_aenm_202203471
crossref_primary_10_1039_D4RA00583J
crossref_primary_10_1021_acsnano_3c11642
crossref_primary_10_3389_fmats_2022_892657
crossref_primary_10_1002_aenm_202302552
crossref_primary_10_1016_j_cej_2023_143120
crossref_primary_10_1021_acsenergylett_2c00698
crossref_primary_10_1155_2023_3801813
crossref_primary_10_1002_eem2_12696
crossref_primary_10_35848_1347_4065_acfa4b
crossref_primary_10_1007_s10854_023_10477_9
crossref_primary_10_1016_j_solener_2024_112382
crossref_primary_10_1016_j_chphi_2023_100439
crossref_primary_10_1002_adma_202308655
crossref_primary_10_1007_s12596_023_01277_9
crossref_primary_10_1088_1402_4896_ad4a9a
crossref_primary_10_3390_molecules28031288
crossref_primary_10_1007_s11426_022_1426_x
crossref_primary_10_1016_j_matt_2024_08_007
crossref_primary_10_1016_j_matt_2023_11_022
crossref_primary_10_1016_j_rineng_2024_102809
crossref_primary_10_1016_j_egyr_2024_03_007
crossref_primary_10_1038_s41560_023_01288_7
crossref_primary_10_1016_j_materresbull_2025_113332
crossref_primary_10_1016_j_solener_2022_07_013
crossref_primary_10_1039_D2RA05692E
crossref_primary_10_1021_acsami_2c10901
crossref_primary_10_1080_1448837X_2024_2308415
crossref_primary_10_1002_adfm_202300089
crossref_primary_10_1007_s12596_024_02270_6
crossref_primary_10_1103_PRXEnergy_3_023013
crossref_primary_10_1002_adom_202202809
crossref_primary_10_1002_inf2_12522
crossref_primary_10_1016_j_enchem_2024_100135
crossref_primary_10_1016_j_cej_2023_145077
crossref_primary_10_1002_smsc_202300188
crossref_primary_10_1016_j_decarb_2023_100020
crossref_primary_10_1021_jacs_4c09094
crossref_primary_10_3390_inorganics11030101
crossref_primary_10_1002_celc_202400008
crossref_primary_10_1038_s41578_025_00781_7
crossref_primary_10_1016_j_isci_2023_106079
crossref_primary_10_1016_j_matt_2023_12_003
crossref_primary_10_1063_5_0226632
crossref_primary_10_1002_solr_202200485
crossref_primary_10_1515_nanoph_2024_0112
crossref_primary_10_1016_j_heliyon_2024_e23985
crossref_primary_10_1002_aenm_202403326
crossref_primary_10_1002_solr_202300127
crossref_primary_10_3390_solar4010003
crossref_primary_10_1002_solr_202300801
crossref_primary_10_1002_anie_202421063
crossref_primary_10_1038_s43246_024_00515_2
crossref_primary_10_1007_s12274_022_4524_y
crossref_primary_10_1002_cjoc_202300128
crossref_primary_10_56767_jfpe_2022_1_1_91
crossref_primary_10_1002_adfm_202201036
crossref_primary_10_1039_D3TC01370G
crossref_primary_10_3390_en16010190
crossref_primary_10_1002_adfm_202208225
crossref_primary_10_1002_solr_202400243
crossref_primary_10_1016_j_est_2025_115362
crossref_primary_10_1002_aenm_202301706
crossref_primary_10_1016_j_matchemphys_2022_126811
crossref_primary_10_1016_j_synthmet_2024_117578
crossref_primary_10_1016_j_enrev_2022_100010
crossref_primary_10_1016_j_mset_2023_04_007
crossref_primary_10_1002_aenm_202404518
crossref_primary_10_3390_nano12040718
crossref_primary_10_1002_adfm_202206838
crossref_primary_10_1016_j_joule_2023_12_008
crossref_primary_10_1002_eem2_12649
crossref_primary_10_1016_j_enconman_2024_118991
crossref_primary_10_1002_ange_202421063
crossref_primary_10_1039_D4SE00914B
crossref_primary_10_1002_adfm_202414423
crossref_primary_10_1016_j_nanoen_2024_109708
crossref_primary_10_1002_jnm_3164
crossref_primary_10_1002_solr_202300111
crossref_primary_10_1021_acsami_4c04762
crossref_primary_10_1088_2050_6120_ac896b
crossref_primary_10_1021_acsenergylett_3c00275
crossref_primary_10_1002_sstr_202300448
crossref_primary_10_2139_ssrn_4097405
crossref_primary_10_1155_2024_9454136
crossref_primary_10_1016_j_solener_2024_113172
crossref_primary_10_1021_acs_jpclett_2c03452
crossref_primary_10_1016_j_surfin_2022_102187
crossref_primary_10_3390_polym15193911
crossref_primary_10_1002_solr_202201123
crossref_primary_10_1016_j_isci_2022_105807
crossref_primary_10_1002_solr_202300479
crossref_primary_10_1016_j_cej_2022_135295
crossref_primary_10_1016_j_cej_2023_141914
crossref_primary_10_1021_acsenergylett_4c00816
crossref_primary_10_1039_D2EE03539A
crossref_primary_10_1088_2053_1591_acedf0
crossref_primary_10_1002_advs_202304811
crossref_primary_10_1007_s42114_023_00823_0
crossref_primary_10_1021_acsenergylett_2c02219
crossref_primary_10_1002_adfm_202209324
crossref_primary_10_1039_D4TC00718B
Cites_doi 10.1021/acsami.0c17652
10.1038/s41467-019-09167-0
10.1002/pip.3323
10.1039/C5EE02733K
10.1039/c3cp51070k
10.1016/j.joule.2019.06.014
10.1002/anie.201503038
10.1039/C8RA00063H
10.1002/adma.201706208
10.1021/acs.nanolett.6b04453
10.1021/acsami.5b07703
10.1016/0141-3910(93)90035-H
10.1021/acsami.7b10643
10.1002/aenm.201903013
10.1002/adma.201904408
10.1021/acs.energyfuels.0c03250
10.1016/S0022-3093(00)00150-2
10.1021/cm100903b
10.1002/aenm.201401442
10.1021/nl302509q
10.1007/s40820-019-0287-8
10.1016/j.solmat.2011.01.036
10.1039/C4TA03741C
10.1039/C6TA02851A
10.1002/aenm.201800232
10.3390/coatings9020065
10.1016/j.solmat.2003.09.003
10.1039/C4EE01223B
10.1002/ese3.180
10.1126/science.aah4046
10.1016/j.solmat.2021.111024
10.1002/adma.201806823
10.1016/j.joule.2017.08.005
10.1177/1091581809337630
10.1021/acsenergylett.8b01507
10.1039/C8TA06950F
10.3390/polym10091017
10.1021/acs.jpclett.5b00504
10.1038/s41560-017-0060-5
10.1039/C6EE02687G
10.1038/s41560-018-0220-2
10.1021/acs.jpcc.6b10865
10.1126/sciadv.aao5616
10.1016/j.solmat.2012.12.041
10.1016/S1452-3981(23)14409-9
10.1002/aenm.201701928
10.1126/science.aah5557
10.1021/acsami.9b20315
10.1016/j.ijadhadh.2005.07.004
10.1016/j.solener.2017.12.051
10.1038/s41467-019-08507-4
10.1021/nl400349b
10.1021/jacs.5b03796
10.1021/acs.chemrev.0c00107
10.1016/j.rser.2005.01.009
10.1039/C6RA28501E
10.1126/science.1144787
10.1039/C5NR01820J
10.1038/s41560-017-0067-y
10.1002/aenm.201501354
10.1038/s41467-018-05454-4
10.1126/science.aad1015
10.1038/ncomms11105
10.1002/aenm.201801954
10.1016/j.egypro.2012.02.046
10.1039/C4SC03141E
10.1021/jp500449z
10.1016/S1369-7021(12)70019-6
10.1016/j.solener.2019.11.018
10.1002/smll.202002628
10.1002/chem.201801441
10.1038/s41598-018-37229-8
10.1038/nenergy.2015.15
10.1002/aenm.201602512
10.1039/C8CS00853A
10.1038/ncomms12555
10.1038/nature12340
10.1038/s41598-017-04690-w
10.1016/j.solmat.2006.08.001
10.1002/adfm.201800305
10.1021/am402035r
10.1016/j.orgel.2010.08.020
10.1016/j.solener.2019.04.095
10.1021/acsami.7b07625
10.1016/0927-0248(95)00150-6
10.1063/1.2975185
10.1021/acs.jpclett.5b02597
10.1002/adma.201505279
10.1002/ente.201800572
10.1016/j.solener.2019.06.025
10.1126/science.aau5701
10.1039/C8EE00580J
10.1021/acsenergylett.9b00120
10.1021/jz502703p
10.1016/j.conbuildmat.2015.04.057
10.1016/j.solmat.2012.03.022
10.1007/s10965-009-9374-8
10.1016/j.solmat.2006.02.011
10.1016/j.matlet.2019.04.082
10.1038/nenergy.2017.135
10.1002/adem.201300172
10.1002/aenm.201802139
10.1002/anie.201503153
10.1021/acs.chemmater.5b00660
10.1149/1.2335592
10.1063/1.2903484
10.1016/j.nanoen.2015.10.006
10.1063/1.42901
10.1002/aenm.201902472
10.1002/cssc.201600957
10.1023/A:1008701903087
10.1002/pip.2465
10.1038/s41560-019-0529-5
10.1021/acs.nanolett.8b00541
10.1016/0927-0248(95)00128-X
10.1002/adma.201805702
10.1116/1.581519
10.1021/acsenergylett.8b00926
10.1155/2019/9876235
10.1038/nphoton.2013.80
10.1038/s41566-019-0398-2
10.1007/s40242-018-7228-9
10.1002/app.1991.070430918
10.1021/ja809598r
10.1021/ic401215x
10.1038/s41563-018-0038-0
10.1126/science.1254050
10.1016/j.apsusc.2012.07.117
10.1002/mren.201400065
10.1021/acsenergylett.8b00121
10.1126/science.1228604
10.1038/s41467-018-07255-1
10.1038/s41560-019-0406-2
10.1002/adma.202000186
10.1016/j.joule.2018.05.001
10.1002/app.39208
10.1021/acsnano.6b02613
10.3390/ma14102496
10.1016/j.joule.2019.07.030
10.1038/ncomms3885
10.1002/smm2.1025
10.1002/cnma.201800503
10.1016/j.mtener.2017.09.008
10.1002/aenm.201200169
10.1002/adma.201401641
10.1002/pip.994
10.1039/C5TA01221J
10.1002/adfm.201809129
10.1039/C5TA00358J
10.1038/ncomms11683
10.1038/ncomms15218
10.1002/pip.2947
10.1038/srep00591
10.1038/s41560-018-0192-2
10.1002/app.1991.070430917
10.1039/C7RA06002E
10.1038/s41586-019-1036-3
10.1021/acs.jpcc.6b11853
10.1039/D0EE01736A
10.1002/anie.201406466
10.1002/smtd.202000478
10.1021/acsami.7b07071
10.1002/aenm.201702116
10.1016/S0927-0248(99)00108-7
10.1038/nphoton.2016.41
10.3390/en13205391
10.1039/C8NR07022A
10.1038/nature18306
10.1126/science.aba2412
10.1016/j.synthmet.2015.08.005
10.1126/science.aap8671
10.1021/am101116b
10.1002/adma.201600626
10.1038/nenergy.2017.9
10.1002/aenm.201602599
10.1016/j.eml.2016.06.006
10.1002/aenm.201904054
10.1021/acs.jpclett.5b01747
10.1039/C7EE02564E
10.1002/cssc.201600868
10.1039/C6EE00409A
10.1002/cssc.201600933
10.1016/j.rser.2013.06.027
10.1038/s41467-020-15338-1
10.1016/j.nanoen.2016.09.041
10.1021/acs.chemmater.5b04107
10.1038/s41598-019-51945-9
10.1039/C8SC05284K
10.1002/adfm.201900417
10.1002/pip.1019
10.1039/D0CS00573H
10.1063/1.4901510
10.1039/C6TA06497C
10.1002/aenm.201703620
10.1016/j.solmat.2018.08.016
10.1016/j.solmat.2016.09.011
10.1002/pat.4614
10.1002/adfm.201302090
10.1117/12.662829
10.1002/adfm.202008052
10.1002/app.47948
10.1021/jacs.8b13392
10.1039/c2jm31104f
10.1088/2515-7655/ab8774
10.1016/j.matchemphys.2012.08.013
10.1002/adma.201305172
10.1039/C5EE03522H
10.1016/j.orgel.2017.06.023
10.1021/jacs.5b11740
10.1063/1.5046007
10.1002/adma.201703852
10.1039/C5CC00128E
10.1016/j.jiec.2015.03.026
10.1016/j.joule.2019.05.009
10.1002/adma.201604695
10.1021/jacs.9b07182
10.1016/j.solmat.2010.03.038
10.1002/app.49147
10.1002/adfm.201902600
10.1002/admi.201901469
10.1002/mame.201300349
10.1016/j.solmat.2017.08.015
10.1038/ncomms13938
10.1002/pi.5250
10.1007/s10973-019-09006-w
10.1021/acs.jpclett.7b02679
10.1039/C6EE00709K
10.1016/j.microrel.2011.07.063
10.1002/adfm.201908298
10.1002/aenm.201801234
10.1038/nmat4388
10.1002/adma.201805337
10.1016/j.solmat.2011.11.007
10.1039/C6CP04553G
10.1038/ncomms15684
10.1039/C9CS00711C
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d1ee02882k
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 55
ExternalDocumentID 10_1039_D1EE02882K
d1ee02882k
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c347t-2bbe7d5e06f41a60901befb1b1f91e53bc3108a8d806e3df6bd04b467ad9c1aa3
ISSN 1754-5692
IngestDate Mon Jun 30 11:44:36 EDT 2025
Tue Jul 01 01:45:50 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Mon Apr 18 07:58:19 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-2bbe7d5e06f41a60901befb1b1f91e53bc3108a8d806e3df6bd04b467ad9c1aa3
Notes Guizhou Yuan received his Bachelor's degree in 2016 from the College of Chemistry & Molecular Engineering, Qingdao University of Science and Technology. Subsequently, he received his Master's degree in 2019 from the Department of Chemistry and Chemical Engineering, BIT. Currently, he is a PhD candidate in the School of Materials Science & Engineering, BIT, which he joined in 9/2019. His research interest is the long-term stability of perovskite solar cells.
Prof. Yujing Li obtained his BS degree from the Department of Chemical Engineering at Tsinghua University, Beijing and PhD degree from the Department of Materials Science and Engineering at University of California, Los Angeles. He is currently working as professor at the School of Materials Science and Engineering at the Beijing Institute of Technology (BIT). He is interested in pursuing fundamental understanding of the degradation mechanism of materials and energy conversion devices. His research is mainly focused on the design of highly stable nanoscale structures and hybrid materials for photovoltaic, photocatalytic, and electrocatalytic applications.
Prof. Qi Chen obtained both his BS and MS degrees from Tsinghua University, and received his PhD degree at University of California, Los Angeles (UCLA). From 2013-2016, he worked as a Postdoc Fellow at the California Nanosystems Institute (CNSI), UCLA. Currently, he is a Professor at the Beijing Institute of Technology. His research focuses on hybrid material design, processing and applications in optoelectronics for energy harvesting and storage. To date, he has published over 100 SCI papers with a total citation count of 20 000. Currently, he is working on fundamental research on perovskite solar cells and their commercialization.
Ying Zhang received her Bachelor's degree from the School of Materials Science & Engineering, Beijing Institute of Technology, in 2019. She is currently a Master's student under the supervision of Professor Qi Chen at the Beijing Institute of Technology. She is devoted to exploring manufacturing processing for highly efficient and stable perovskite solar cells.
Sai Ma received his BS degree from the Department of Materials Science and Engineering at Taiyuan University of Technology (TYUT), and MS degree from the Department of Materials Science and Engineering at the Beijing Institute of Technology (BIT). Currently, he is a PhD candidate at the Beijing Institute of Technology. His research focuses on the degradation mechanism of hybrid perovskite materials and photovoltaic devices under harsh outdoor ageing stressors. Currently, he is working on the development of perovskite-specific systematic encapsulation technology to address the stability issues of perovskite solar cells.
Ning Yang received her Master's degree from the School of Chemistry and Chemical Engineering, Beijing Institute of Technology in 2019. Currently, she is a PhD candidate under the supervision of Prof. Qi Chen at the School of Materials Science & Technology, Beijing Institute of Technology. Her current research interest is developing high-efficiency and stable large-scale perovskite solar cells.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9647-5873
PQID 2621047760
PQPubID 2047494
PageCount 43
ParticipantIDs proquest_journals_2621047760
crossref_primary_10_1039_D1EE02882K
rsc_primary_d1ee02882k
crossref_citationtrail_10_1039_D1EE02882K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-19
PublicationDateYYYYMMDD 2022-01-19
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-19
  day: 19
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Klampaftis (D1EE02882K/cit60/1) 2011; 19
Jung (D1EE02882K/cit8/1) 2019; 567
Wu (D1EE02882K/cit161/1) 2019; 10
Hu (D1EE02882K/cit186/1) 2014; 2
Cheacharoen (D1EE02882K/cit104/1) 2018; 2
Burschka (D1EE02882K/cit122/1) 2013; 499
Dong (D1EE02882K/cit92/1) 2016; 9
Kim (D1EE02882K/cit196/1) 2017; 7
Tian Wang (D1EE02882K/cit209/1) 2021; 37
Yamada (D1EE02882K/cit81/1) 2011; 19
Zhang (D1EE02882K/cit236/1) 2018; 10
Liu (D1EE02882K/cit128/1) 2019; 141
Sangermano (D1EE02882K/cit225/1) 2014; 299
Dechthummarong (D1EE02882K/cit251/1) 2010; 94
Qiu (D1EE02882K/cit38/1) 2018; 7
Noh (D1EE02882K/cit123/1) 2013; 13
Hösel (D1EE02882K/cit248/1) 2013; 15
Adothu (D1EE02882K/cit90/1) 2019; 194
Nowlan (D1EE02882K/cit250/1)
Fu (D1EE02882K/cit31/1) 2019; 29
Pern (D1EE02882K/cit237/1) 1992; 268
Lee (D1EE02882K/cit149/1) 2018; 3
Wang (D1EE02882K/cit69/1) 2020; 30
Sultan (D1EE02882K/cit78/1) 1991; 43
Zhu (D1EE02882K/cit105/1) 2019; 10
Berhe (D1EE02882K/cit29/1) 2016; 9
You (D1EE02882K/cit119/1) 2014; 105
Schlothauer (D1EE02882K/cit217/1) 2017; 159
Brenes (D1EE02882K/cit130/1) 2018; 30
Matteocci (D1EE02882K/cit167/1) 2016; 30
Weerasinghe (D1EE02882K/cit163/1) 2015; 18
Kaltenbrunner (D1EE02882K/cit240/1) 2015; 14
Adothu (D1EE02882K/cit89/1)
Huang (D1EE02882K/cit49/1) 2019; 30
Aristidou (D1EE02882K/cit136/1) 2015; 54
Li (D1EE02882K/cit16/1) 2018; 2
Shang (D1EE02882K/cit52/1) 2018; 8
Hauch (D1EE02882K/cit165/1) 2008; 93
D1EE02882K/cit46/1
Chang (D1EE02882K/cit51/1) 2012; 52
Adothu (D1EE02882K/cit87/1) 2021; 224
da Silva Sobrinho (D1EE02882K/cit58/1) 1998; 16
Hossain (D1EE02882K/cit70/1) 2019; 11
Xu (D1EE02882K/cit91/1) 2016; 18
Heo (D1EE02882K/cit127/1) 2013; 7
Choi (D1EE02882K/cit243/1) 2018; 188
Lin (D1EE02882K/cit88/1) 2019; 140
Jiang (D1EE02882K/cit10/1) 2019; 13
Yin (D1EE02882K/cit55/1) 2012; 259
Ma (D1EE02882K/cit183/1) 2020; 16
Turowec (D1EE02882K/cit224/1) 2017; 66
Li (D1EE02882K/cit170/1) 2017; 121
Zhang (D1EE02882K/cit26/1) 2015; 5
Bella (D1EE02882K/cit98/1) 2016; 354
Hu (D1EE02882K/cit155/1) 2018; 8
Liu (D1EE02882K/cit18/1) 2020; 49
Channa (D1EE02882K/cit62/1) 2021; 14
Zayed (D1EE02882K/cit111/1) 2009; 28
Li (D1EE02882K/cit23/1) 2020; 10
Liu (D1EE02882K/cit34/1) 2021; 2
Pern (D1EE02882K/cit47/1)
Rolston (D1EE02882K/cit106/1) 2018; 8
Christians (D1EE02882K/cit158/1) 2018; 3
Hailegnaw (D1EE02882K/cit112/1) 2015; 6
Cao (D1EE02882K/cit145/1) 2015; 7
Bing-qian (D1EE02882K/cit235/1) 2019; 2019
Chen (D1EE02882K/cit82/1) 2013; 8
Jiang (D1EE02882K/cit140/1) 2015; 54
Boyd (D1EE02882K/cit200/1) 2018; 3
Domanski (D1EE02882K/cit222/1) 2018; 3
Jiang (D1EE02882K/cit116/1) 2019; 4
Khdary (D1EE02882K/cit64/1) 2012; 22
Bush (D1EE02882K/cit190/1) 2017; 2
Krauklis (D1EE02882K/cit231/1) 2018; 10
Ma (D1EE02882K/cit32/1) 2020; 10
Kim (D1EE02882K/cit239/1) 2019; 9
Zuo (D1EE02882K/cit114/1) 2014; 26
Zhang (D1EE02882K/cit146/1) 2015; 51
Pern (D1EE02882K/cit79/1) 1993; 41
Shao (D1EE02882K/cit37/1) 2020; 7
Lee (D1EE02882K/cit188/1) 2018; 9
Wang (D1EE02882K/cit191/1) 2018; 3
Christoph (D1EE02882K/cit241/1) 2006; 6197
Wang (D1EE02882K/cit150/1) 2017; 2
Wei (D1EE02882K/cit129/1) 2016; 10
Zhao (D1EE02882K/cit97/1) 2017; 7
Hoke (D1EE02882K/cit175/1) 2012; 2
Quan (D1EE02882K/cit143/1) 2016; 138
Holzhey (D1EE02882K/cit36/1) 2018; 6
Koushik (D1EE02882K/cit148/1) 2017; 10
Wen (D1EE02882K/cit234/1) 2017; 28
Zhang (D1EE02882K/cit24/1) 2019; 31
Li (D1EE02882K/cit35/1) 2018; 8
Khouri (D1EE02882K/cit84/1) 2020; 13
Li (D1EE02882K/cit179/1) 2016; 9
Tsai (D1EE02882K/cit168/1) 2018; 360
Crespo-Quesada (D1EE02882K/cit102/1) 2016; 7
Wang (D1EE02882K/cit184/1) 2019; 363
D1EE02882K/cit220/1
Park (D1EE02882K/cit27/1) 2019; 31
He (D1EE02882K/cit131/1) 2019; 141
Liu (D1EE02882K/cit157/1) 2016; 4
Svanström (D1EE02882K/cit39/1) 2020; 12
Chujo (D1EE02882K/cit68/1) 1992; 11
Pern (D1EE02882K/cit76/1)
Huang (D1EE02882K/cit83/1) 2018; 161
Wang (D1EE02882K/cit151/1) 2019; 29
Bischak (D1EE02882K/cit174/1) 2017; 17
Rolston (D1EE02882K/cit204/1) 2018; 8
Brinkmann (D1EE02882K/cit159/1) 2017; 8
Chen (D1EE02882K/cit201/1) 2015; 350
Khenkin (D1EE02882K/cit218/1) 2020; 5
Sarkar (D1EE02882K/cit43/1) 2010; 11
Abdelmageed (D1EE02882K/cit147/1) 2018; 1
Leijtens (D1EE02882K/cit176/1) 2013; 4
Schlothauer (D1EE02882K/cit54/1) 2012; 102
Dunfield (D1EE02882K/cit28/1) 2020; 10
Pern (D1EE02882K/cit75/1) 2000; 61
Jin (D1EE02882K/cit229/1) 2015; 29
Bryant (D1EE02882K/cit139/1) 2016; 9
Visco (D1EE02882K/cit86/1) 2018; 1981
Tsai (D1EE02882K/cit185/1) 2016; 536
Guarnera (D1EE02882K/cit193/1) 2015; 6
Han (D1EE02882K/cit96/1) 2015; 3
Fang (D1EE02882K/cit108/1) 2018; 28
Li (D1EE02882K/cit223/1) 2013; 5
Liu (D1EE02882K/cit107/1) 2018; 8
Liow (D1EE02882K/cit214/1) 2020; 137
Kempe (D1EE02882K/cit164/1) 2015; 23
Domanski (D1EE02882K/cit192/1) 2016; 10
Wang (D1EE02882K/cit22/1) 2020; 32
Reese (D1EE02882K/cit219/1) 2011; 95
Kim (D1EE02882K/cit7/1) 2012; 2
Kim (D1EE02882K/cit152/1) 2016; 9
Kim (D1EE02882K/cit3/1) 2020; 120
Cappel (D1EE02882K/cit126/1) 2012; 12
Ramasamy (D1EE02882K/cit232/1) 2019; 250
McKenna (D1EE02882K/cit101/1) 2017; 7
Chiang (D1EE02882K/cit226/1) 2006; 26
Bae (D1EE02882K/cit110/1) 2019; 9
Cao (D1EE02882K/cit144/1) 2015; 137
Gao (D1EE02882K/cit181/1) 2020; 4
Baranwal (D1EE02882K/cit228/1) 2019; 7
Mackenzie (D1EE02882K/cit67/1) 2000; 19
Askar (D1EE02882K/cit124/1) 2017; 121
Aristidou (D1EE02882K/cit137/1) 2017; 8
Niu (D1EE02882K/cit197/1) 2017; 7
Rolston (D1EE02882K/cit207/1) 2016; 9
Kasparavicius (D1EE02882K/cit132/1) 2018; 24
Leguy (D1EE02882K/cit33/1) 2015; 27
Mansur (D1EE02882K/cit66/1) 2000; 273
Shi (D1EE02882K/cit208/1) 2020; 368
Oreski (D1EE02882K/cit85/1) 2020; 28
Andersen (D1EE02882K/cit247/1) 2014; 7
Tu (D1EE02882K/cit203/1) 2019; 4
Kim (D1EE02882K/cit11/1) 2019; 3
Sun (D1EE02882K/cit50/1) 2018; 34
Rosungnern (D1EE02882K/cit153/1) 2021; 4
Zhang (D1EE02882K/cit215/1) 2015; 93
Palmstrom (D1EE02882K/cit13/1) 2019; 3
Dross (D1EE02882K/cit73/1) 2006; 90
Lin (D1EE02882K/cit109/1) 2018; 9
Li (D1EE02882K/cit71/1) 2020; 49
Zhang (D1EE02882K/cit162/1) 2018; 11
deQuilettes (D1EE02882K/cit172/1) 2016; 7
Chen (D1EE02882K/cit21/1) 2019; 48
Ni (D1EE02882K/cit135/1) 2007; 11
Wong-Stringer (D1EE02882K/cit93/1) 2018; 8
Peike (D1EE02882K/cit245/1) 2013; 19
Lee (D1EE02882K/cit9/1) 2012; 338
Ito (D1EE02882K/cit180/1) 2014; 118
Jiang (D1EE02882K/cit74/1) 2015; 9
Li (D1EE02882K/cit189/1) 2016; 28
Zhang (D1EE02882K/cit25/1) 2017; 29
Bi (D1EE02882K/cit202/1) 2019; 3
Wang (D1EE02882K/cit115/1) 2016; 28
Bonomo (D1EE02882K/cit210/1) 2020; 12
Green (D1EE02882K/cit14/1) 2016; 1
Søndergaard (D1EE02882K/cit246/1) 2012; 15
Chung (D1EE02882K/cit40/1) 2012; 136
Prakash (D1EE02882K/cit213/1) 2020; 34
Saliba (D1EE02882K/cit182/1) 2016; 354
Xue (D1EE02882K/cit206/1) 2020; 11
Corsini (D1EE02882K/cit72/1) 2020; 2
Tan (D1EE02882K/cit211/1) 2017; 48
Eperon (D1EE02882K/cit118/1) 2014; 24
O'Mahony (D1EE02882K/cit138/1) 2015; 3
Sutter-Fella (D1EE02882K/cit19/1) 2018; 18
Bracher (D1EE02882K/cit233/1) 2018; 6
Jiang (D1EE02882K/cit1/1) 2017; 29
Kim (D1EE02882K/cit20/1) 2018; 17
Czanderna (D1EE02882K/cit59/1) 1996; 43
Zhao (D1EE02882K/cit103/1) 2017; 3
Wang (D1EE02882K/cit133/1) 2015; 7
Finn (D1EE02882K/cit242/1) 2018; 174
Sprenger (D1EE02882K/cit230/1) 2013; 130
Kempe (D1EE02882K/cit221/1) 2018; 26
Cappel (D1EE02882K/cit169/1) 2017; 9
Bush (D1EE02882K/cit160/1) 2016; 28
Shimpi (D1EE02882K/cit249/1) 2019; 187
Jin (D1EE02882K/cit238/1) 2010; 17
Ramos (D1EE02882K/cit244/1) 2018; 2
Chiang (D1EE02882K/cit227/1) 2019; 136
Meng (D1EE02882K/cit15/1) 2018; 9
Dulub (D1EE02882K/cit134/1) 2007; 317
He (D1EE02882K/cit212/1) 2019; 188
Kim (D1EE02882K/cit99/1) 2017; 9
Chen (D1EE02882K/cit45/1) 2006; 153
Ferrara (D1EE02882K/cit77/1) 2012; 15
Wang (D1EE02882K/cit154/1) 2021; 31
Ahmad (D1EE02882K/cit53/1) 2013; 27
Yang (D1EE02882K/cit178/1) 2019; 29
Kojima (D1EE02882K/cit216/1) 2004; 81
Cheacharoen (D1EE02882K/cit30/1) 2018; 11
Zhou (D1EE02882K/cit117/1) 2014; 345
Fabini (D1EE02882K/cit100/1) 2015; 6
Smith (D1EE02882K/cit187/1) 2014; 53
Sultan (D1EE02882K/cit48/1) 1991; 43
Chen (D1EE02882K/cit57/1) 2015; 5
van Dyk (D1EE02882K/cit61/1) 2007; 91
Hoke (D1EE02882K/cit173/1) 2015; 6
Zhao (D1EE02882K/cit177/1) 2018; 3
Matsui (D1EE02882K/cit194/1) 2019; 31
Yang (D1EE02882K/cit5/1) 2020; 13
Fan (D1EE02882K/cit195/1) 2017; 1
Lee (D1EE02882K/cit166/1) 2013; 111
Fu (D1EE02882K/cit17/1) 2019; 5
Kulbak (D1EE02882K/cit120/1) 2016; 7
Grancini (D1EE02882K/cit156/1) 2017; 8
Bonucci (D1EE02882K/cit63/1) 2012; 98
Mont (D1EE02882K/cit41/1) 2008; 103
Baranwal (D1EE02882K/cit199/1) 2016; 9
Lee (D1EE02882K/cit94/1) 2018; 8
Pern (D1EE02882K/cit80/1) 1996; 41
Uddin (D1EE02882K/cit56/1) 2019; 9
Lyu (D1EE02882K/cit113/1) 2017; 7
D1EE02882K/cit12/1
Tang (D1EE02882K/cit171/1) 2016; 4
Jung (D1EE02882K/cit198/1) 2016; 9
Tai (D1EE02882K/cit141/1) 2016; 7
Stoumpos (D1EE02882K/cit121/1) 2013; 52
Kim (D1EE02882K/cit42/1) 2010; 22
Abdel-Fattah (D1EE02882K/cit44/1) 2015; 209
Budunoglu (D1EE02882K/cit65/1) 2011; 3
Wang (D1EE02882K/cit205/1) 2019; 31
Wehrenfennig (D1EE02882K/cit4/1) 2014; 26
Shi (D1EE02882K/cit95/1) 2017; 9
Maharjan (D1EE02882K/cit125/1) 2013; 15
Schloemer (D1EE02882K/cit2/1) 2019; 10
Kojima (D1EE02882K/cit6/1) 2009; 131
Saidaminov (D1EE02882K/cit142/1) 2018; 3
References_xml – doi: Nowlan Hogan Darkazalli Sutherland Breen Murach Patterson
– doi: Pern Czanderna Emery Dhere
– doi: Pern Glick
– doi: Adothu Bhatt Kartikay Zele Costa Oderkerk Mallick
– volume: 12
  start-page: 54862
  year: 2020
  ident: D1EE02882K/cit210/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c17652
– volume: 10
  start-page: 1161
  year: 2019
  ident: D1EE02882K/cit161/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09167-0
– volume: 28
  start-page: 1277
  year: 2020
  ident: D1EE02882K/cit85/1
  publication-title: Prog. Photovolt: Res. Appl.
  doi: 10.1002/pip.3323
– volume: 9
  start-page: 323
  year: 2016
  ident: D1EE02882K/cit29/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02733K
– volume: 15
  start-page: 6856
  year: 2013
  ident: D1EE02882K/cit125/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51070k
– volume: 4
  start-page: 3169
  year: 2021
  ident: D1EE02882K/cit153/1
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 2179
  year: 2019
  ident: D1EE02882K/cit11/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.014
– volume: 54
  start-page: 7617
  year: 2015
  ident: D1EE02882K/cit140/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503038
– volume: 8
  start-page: 9049
  year: 2018
  ident: D1EE02882K/cit52/1
  publication-title: RSC Adv.
  doi: 10.1039/C8RA00063H
– volume: 30
  start-page: 1706208
  year: 2018
  ident: D1EE02882K/cit130/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706208
– volume: 2
  start-page: 2398
  year: 2018
  ident: D1EE02882K/cit104/1
  publication-title: Renewable Sustainable Energy Rev.
– volume: 17
  start-page: 1028
  year: 2017
  ident: D1EE02882K/cit174/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04453
– volume: 7
  start-page: 24791
  year: 2015
  ident: D1EE02882K/cit133/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07703
– volume: 41
  start-page: 125
  year: 1993
  ident: D1EE02882K/cit79/1
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/0141-3910(93)90035-H
– volume: 9
  start-page: 34970
  year: 2017
  ident: D1EE02882K/cit169/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10643
– volume: 10
  start-page: 1903013
  year: 2020
  ident: D1EE02882K/cit23/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903013
– volume: 31
  start-page: 1904408
  year: 2019
  ident: D1EE02882K/cit205/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904408
– volume: 34
  start-page: 16847
  year: 2020
  ident: D1EE02882K/cit213/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c03250
– volume: 273
  start-page: 109
  year: 2000
  ident: D1EE02882K/cit66/1
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(00)00150-2
– volume: 22
  start-page: 3549
  year: 2010
  ident: D1EE02882K/cit42/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm100903b
– volume: 5
  start-page: 1401442
  year: 2015
  ident: D1EE02882K/cit57/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401442
– volume: 12
  start-page: 4925
  year: 2012
  ident: D1EE02882K/cit126/1
  publication-title: Nano Lett.
  doi: 10.1021/nl302509q
– volume: 11
  start-page: 58
  year: 2019
  ident: D1EE02882K/cit70/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0287-8
– ident: D1EE02882K/cit12/1
– volume: 95
  start-page: 1253
  year: 2011
  ident: D1EE02882K/cit219/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2011.01.036
– volume: 2
  start-page: 17115
  year: 2014
  ident: D1EE02882K/cit186/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03741C
– volume: 4
  start-page: 10700
  year: 2016
  ident: D1EE02882K/cit157/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02851A
– volume: 8
  start-page: 1800232
  year: 2018
  ident: D1EE02882K/cit107/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800232
– volume: 9
  start-page: 65
  year: 2019
  ident: D1EE02882K/cit56/1
  publication-title: Coatings
  doi: 10.3390/coatings9020065
– volume: 81
  start-page: 119
  year: 2004
  ident: D1EE02882K/cit216/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2003.09.003
– volume: 7
  start-page: 2925
  year: 2014
  ident: D1EE02882K/cit247/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01223B
– volume: 6
  start-page: 35
  year: 2018
  ident: D1EE02882K/cit233/1
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.180
– volume: 354
  start-page: 203
  year: 2016
  ident: D1EE02882K/cit98/1
  publication-title: Science
  doi: 10.1126/science.aah4046
– volume: 224
  start-page: 111024
  year: 2021
  ident: D1EE02882K/cit87/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2021.111024
– volume: 31
  start-page: 1806823
  year: 2019
  ident: D1EE02882K/cit194/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806823
– volume: 1
  start-page: 548
  year: 2017
  ident: D1EE02882K/cit195/1
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.005
– volume: 28
  start-page: 259
  year: 2009
  ident: D1EE02882K/cit111/1
  publication-title: Int. J. Toxicol.
  doi: 10.1177/1091581809337630
– volume: 3
  start-page: 2891
  year: 2018
  ident: D1EE02882K/cit177/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01507
– volume: 6
  start-page: 21794
  year: 2018
  ident: D1EE02882K/cit36/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06950F
– volume: 10
  start-page: 1017
  year: 2018
  ident: D1EE02882K/cit231/1
  publication-title: Polymers
  doi: 10.3390/polym10091017
– volume: 6
  start-page: 1543
  year: 2015
  ident: D1EE02882K/cit112/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00504
– volume: 3
  start-page: 61
  year: 2018
  ident: D1EE02882K/cit222/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0060-5
– volume: 19
  start-page: 85
  year: 2013
  ident: D1EE02882K/cit245/1
  publication-title: Photovoltaics Int.
– volume: 10
  start-page: 91
  year: 2017
  ident: D1EE02882K/cit148/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02687G
– volume: 3
  start-page: 855
  year: 2018
  ident: D1EE02882K/cit191/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0220-2
– volume: 121
  start-page: 1013
  year: 2017
  ident: D1EE02882K/cit124/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b10865
– volume: 3
  start-page: eaao5616
  year: 2017
  ident: D1EE02882K/cit103/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao5616
– volume: 111
  start-page: 97
  year: 2013
  ident: D1EE02882K/cit166/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2012.12.041
– volume: 8
  start-page: 3524
  year: 2013
  ident: D1EE02882K/cit82/1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)14409-9
– volume: 8
  start-page: 1701928
  year: 2018
  ident: D1EE02882K/cit94/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701928
– volume: 354
  start-page: 206
  year: 2016
  ident: D1EE02882K/cit182/1
  publication-title: Science
  doi: 10.1126/science.aah5557
– volume: 12
  start-page: 7212
  year: 2020
  ident: D1EE02882K/cit39/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20315
– volume: 26
  start-page: 520
  year: 2006
  ident: D1EE02882K/cit226/1
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2005.07.004
– volume: 161
  start-page: 187
  year: 2018
  ident: D1EE02882K/cit83/1
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.12.051
– volume: 10
  start-page: 815
  year: 2019
  ident: D1EE02882K/cit105/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08507-4
– volume: 13
  start-page: 1764
  year: 2013
  ident: D1EE02882K/cit123/1
  publication-title: Nano Lett.
  doi: 10.1021/nl400349b
– volume: 137
  start-page: 7843
  year: 2015
  ident: D1EE02882K/cit144/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03796
– volume: 120
  start-page: 7867
  year: 2020
  ident: D1EE02882K/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00107
– volume: 11
  start-page: 401
  year: 2007
  ident: D1EE02882K/cit135/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2005.01.009
– volume: 7
  start-page: 17473
  year: 2017
  ident: D1EE02882K/cit197/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28501E
– volume: 317
  start-page: 1052
  year: 2007
  ident: D1EE02882K/cit134/1
  publication-title: Science
  doi: 10.1126/science.1144787
– volume: 7
  start-page: 9443
  year: 2015
  ident: D1EE02882K/cit145/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR01820J
– volume: 3
  start-page: 68
  year: 2018
  ident: D1EE02882K/cit158/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0067-y
– volume: 5
  start-page: 1501354
  year: 2015
  ident: D1EE02882K/cit26/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501354
– volume: 9
  start-page: 3021
  year: 2018
  ident: D1EE02882K/cit188/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05454-4
– volume: 350
  start-page: 944
  year: 2015
  ident: D1EE02882K/cit201/1
  publication-title: Science
  doi: 10.1126/science.aad1015
– volume: 7
  start-page: 11105
  year: 2016
  ident: D1EE02882K/cit141/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11105
– volume: 8
  start-page: 1801954
  year: 2018
  ident: D1EE02882K/cit35/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801954
– volume: 15
  start-page: 379
  year: 2012
  ident: D1EE02882K/cit77/1
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.02.046
– volume: 6
  start-page: 613
  year: 2015
  ident: D1EE02882K/cit173/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC03141E
– volume: 118
  start-page: 16995
  year: 2014
  ident: D1EE02882K/cit180/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp500449z
– volume: 15
  start-page: 36
  year: 2012
  ident: D1EE02882K/cit246/1
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(12)70019-6
– volume: 194
  start-page: 581
  year: 2019
  ident: D1EE02882K/cit90/1
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.11.018
– volume: 16
  start-page: 2002628
  year: 2020
  ident: D1EE02882K/cit183/1
  publication-title: Small
  doi: 10.1002/smll.202002628
– volume: 24
  start-page: 9910
  year: 2018
  ident: D1EE02882K/cit132/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201801441
– volume: 9
  start-page: 4242
  year: 2019
  ident: D1EE02882K/cit110/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37229-8
– volume: 1
  start-page: 15015
  year: 2016
  ident: D1EE02882K/cit14/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.15
– volume: 7
  start-page: 1602512
  year: 2017
  ident: D1EE02882K/cit113/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602512
– volume: 2
  start-page: 2468
  year: 2018
  ident: D1EE02882K/cit244/1
  publication-title: Renewable Sustainable Energy Rev.
– volume: 48
  start-page: 3842
  year: 2019
  ident: D1EE02882K/cit21/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00853A
– volume: 7
  start-page: 12555
  year: 2016
  ident: D1EE02882K/cit102/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12555
– volume: 499
  start-page: 316
  year: 2013
  ident: D1EE02882K/cit122/1
  publication-title: Nature
  doi: 10.1038/nature12340
– volume: 7
  start-page: 4645
  year: 2017
  ident: D1EE02882K/cit196/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04690-w
– volume: 91
  start-page: 167
  year: 2007
  ident: D1EE02882K/cit61/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2006.08.001
– volume: 28
  start-page: 1800305
  year: 2018
  ident: D1EE02882K/cit108/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800305
– volume: 5
  start-page: 8968
  year: 2013
  ident: D1EE02882K/cit223/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402035r
– volume: 11
  start-page: 1896
  year: 2010
  ident: D1EE02882K/cit43/1
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2010.08.020
– volume: 187
  start-page: 226
  year: 2019
  ident: D1EE02882K/cit249/1
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.04.095
– ident: D1EE02882K/cit89/1
– volume: 9
  start-page: 25073
  year: 2017
  ident: D1EE02882K/cit95/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07625
– volume: 43
  start-page: 101
  year: 1996
  ident: D1EE02882K/cit59/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(95)00150-6
– volume: 93
  start-page: 103306
  year: 2008
  ident: D1EE02882K/cit165/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2975185
– volume: 7
  start-page: 167
  year: 2016
  ident: D1EE02882K/cit120/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02597
– volume: 28
  start-page: 3937
  year: 2016
  ident: D1EE02882K/cit160/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505279
– volume: 7
  start-page: 245
  year: 2019
  ident: D1EE02882K/cit228/1
  publication-title: Energy Technol.
  doi: 10.1002/ente.201800572
– volume: 188
  start-page: 312
  year: 2019
  ident: D1EE02882K/cit212/1
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.06.025
– volume: 363
  start-page: 265
  year: 2019
  ident: D1EE02882K/cit184/1
  publication-title: Science
  doi: 10.1126/science.aau5701
– volume: 11
  start-page: 2253
  year: 2018
  ident: D1EE02882K/cit162/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00580J
– volume: 4
  start-page: 796
  year: 2019
  ident: D1EE02882K/cit203/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00120
– volume: 6
  start-page: 432
  year: 2015
  ident: D1EE02882K/cit193/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502703p
– volume: 93
  start-page: 404
  year: 2015
  ident: D1EE02882K/cit215/1
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.04.057
– volume: 102
  start-page: 75
  year: 2012
  ident: D1EE02882K/cit54/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2012.03.022
– volume: 17
  start-page: 827
  year: 2010
  ident: D1EE02882K/cit238/1
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-009-9374-8
– volume: 90
  start-page: 2159
  year: 2006
  ident: D1EE02882K/cit73/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2006.02.011
– volume: 250
  start-page: 51
  year: 2019
  ident: D1EE02882K/cit232/1
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.04.082
– volume: 28
  start-page: 14522
  year: 2017
  ident: D1EE02882K/cit234/1
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 2
  start-page: 17135
  year: 2017
  ident: D1EE02882K/cit150/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.135
– volume: 15
  start-page: 1068
  year: 2013
  ident: D1EE02882K/cit248/1
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201300172
– volume: 8
  start-page: 1802139
  year: 2018
  ident: D1EE02882K/cit106/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802139
– volume: 54
  start-page: 8208
  year: 2015
  ident: D1EE02882K/cit136/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503153
– volume: 27
  start-page: 3397
  year: 2015
  ident: D1EE02882K/cit33/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00660
– volume: 153
  start-page: F244
  year: 2006
  ident: D1EE02882K/cit45/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2335592
– volume: 103
  start-page: 083120
  year: 2008
  ident: D1EE02882K/cit41/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2903484
– volume: 18
  start-page: 118
  year: 2015
  ident: D1EE02882K/cit163/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.10.006
– volume: 268
  start-page: 445
  year: 1992
  ident: D1EE02882K/cit237/1
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.42901
– volume: 10
  start-page: 1902472
  year: 2020
  ident: D1EE02882K/cit32/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902472
– volume: 9
  start-page: 2592
  year: 2016
  ident: D1EE02882K/cit198/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600957
– volume: 19
  start-page: 23
  year: 2000
  ident: D1EE02882K/cit67/1
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1023/A:1008701903087
– volume: 23
  start-page: 570
  year: 2015
  ident: D1EE02882K/cit164/1
  publication-title: Prog. Photovolt: Res. Appl.
  doi: 10.1002/pip.2465
– volume: 5
  start-page: 35
  year: 2020
  ident: D1EE02882K/cit218/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0529-5
– volume: 18
  start-page: 3473
  year: 2018
  ident: D1EE02882K/cit19/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00541
– volume: 41
  start-page: 587
  year: 1996
  ident: D1EE02882K/cit80/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(95)00128-X
– volume: 31
  start-page: 1805702
  year: 2019
  ident: D1EE02882K/cit24/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805702
– volume: 16
  start-page: 3190
  year: 1998
  ident: D1EE02882K/cit58/1
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/1.581519
– volume: 3
  start-page: 1772
  year: 2018
  ident: D1EE02882K/cit200/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00926
– volume: 2019
  start-page: 9876235
  year: 2019
  ident: D1EE02882K/cit235/1
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2019/9876235
– volume: 7
  start-page: 486
  year: 2013
  ident: D1EE02882K/cit127/1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.80
– volume: 13
  start-page: 460
  year: 2019
  ident: D1EE02882K/cit10/1
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0398-2
– volume: 34
  start-page: 326
  year: 2018
  ident: D1EE02882K/cit50/1
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-018-7228-9
– volume: 43
  start-page: 1747
  year: 1991
  ident: D1EE02882K/cit78/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1991.070430918
– volume: 131
  start-page: 6050
  year: 2009
  ident: D1EE02882K/cit6/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 52
  start-page: 9019
  year: 2013
  ident: D1EE02882K/cit121/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic401215x
– volume: 17
  start-page: 445
  year: 2018
  ident: D1EE02882K/cit20/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0038-0
– volume: 345
  start-page: 542
  year: 2014
  ident: D1EE02882K/cit117/1
  publication-title: Science
  doi: 10.1126/science.1254050
– volume: 259
  start-page: 758
  year: 2012
  ident: D1EE02882K/cit55/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.07.117
– volume: 9
  start-page: 522
  year: 2015
  ident: D1EE02882K/cit74/1
  publication-title: Macromol. React. Eng.
  doi: 10.1002/mren.201400065
– volume: 3
  start-page: 647
  year: 2018
  ident: D1EE02882K/cit149/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00121
– volume: 338
  start-page: 643
  year: 2012
  ident: D1EE02882K/cit9/1
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 9
  start-page: 5265
  year: 2018
  ident: D1EE02882K/cit15/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07255-1
– volume: 4
  start-page: 585
  year: 2019
  ident: D1EE02882K/cit116/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0406-2
– volume: 32
  start-page: 2000186
  year: 2020
  ident: D1EE02882K/cit22/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000186
– volume: 2
  start-page: 1559
  year: 2018
  ident: D1EE02882K/cit16/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.05.001
– volume: 130
  start-page: 1421
  year: 2013
  ident: D1EE02882K/cit230/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.39208
– volume: 10
  start-page: 6306
  year: 2016
  ident: D1EE02882K/cit192/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02613
– ident: D1EE02882K/cit76/1
– volume: 14
  start-page: 2496
  year: 2021
  ident: D1EE02882K/cit62/1
  publication-title: Materials
  doi: 10.3390/ma14102496
– volume: 3
  start-page: 2748
  year: 2019
  ident: D1EE02882K/cit202/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.030
– volume: 4
  start-page: 2885
  year: 2013
  ident: D1EE02882K/cit176/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3885
– ident: D1EE02882K/cit47/1
– volume: 2
  start-page: 33
  year: 2021
  ident: D1EE02882K/cit34/1
  publication-title: SmartMat
  doi: 10.1002/smm2.1025
– volume: 5
  start-page: 253
  year: 2019
  ident: D1EE02882K/cit17/1
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201800503
– volume: 7
  start-page: 169
  year: 2018
  ident: D1EE02882K/cit38/1
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2017.09.008
– volume: 2
  start-page: 1351
  year: 2012
  ident: D1EE02882K/cit175/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200169
– volume: 26
  start-page: 6454
  year: 2014
  ident: D1EE02882K/cit114/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401641
– volume: 19
  start-page: 134
  year: 2011
  ident: D1EE02882K/cit81/1
  publication-title: Prog. Photovolt: Res. Appl.
  doi: 10.1002/pip.994
– volume: 3
  start-page: 7219
  year: 2015
  ident: D1EE02882K/cit138/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01221J
– volume: 29
  start-page: 1809129
  year: 2019
  ident: D1EE02882K/cit31/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201809129
– volume: 3
  start-page: 8139
  year: 2015
  ident: D1EE02882K/cit96/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00358J
– volume: 7
  start-page: 11683
  year: 2016
  ident: D1EE02882K/cit172/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11683
– volume: 8
  start-page: 15218
  year: 2017
  ident: D1EE02882K/cit137/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15218
– volume: 26
  start-page: 93
  year: 2018
  ident: D1EE02882K/cit221/1
  publication-title: Prog. Photovolt: Res. Appl.
  doi: 10.1002/pip.2947
– volume: 2
  start-page: 591
  year: 2012
  ident: D1EE02882K/cit7/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep00591
– volume: 3
  start-page: 648
  year: 2018
  ident: D1EE02882K/cit142/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0192-2
– volume: 43
  start-page: 1737
  year: 1991
  ident: D1EE02882K/cit48/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1991.070430917
– volume: 7
  start-page: 32942
  year: 2017
  ident: D1EE02882K/cit101/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA06002E
– volume: 567
  start-page: 511
  year: 2019
  ident: D1EE02882K/cit8/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1036-3
– volume: 121
  start-page: 3904
  year: 2017
  ident: D1EE02882K/cit170/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11853
– volume: 13
  start-page: 4344
  year: 2020
  ident: D1EE02882K/cit5/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01736A
– volume: 53
  start-page: 11232
  year: 2014
  ident: D1EE02882K/cit187/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201406466
– volume: 4
  start-page: 2000478
  year: 2020
  ident: D1EE02882K/cit181/1
  publication-title: Small Methods
  doi: 10.1002/smtd.202000478
– volume: 9
  start-page: 27720
  year: 2017
  ident: D1EE02882K/cit99/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07071
– volume: 8
  start-page: 1702116
  year: 2018
  ident: D1EE02882K/cit204/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702116
– volume: 61
  start-page: 153
  year: 2000
  ident: D1EE02882K/cit75/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(99)00108-7
– volume: 10
  start-page: 333
  year: 2016
  ident: D1EE02882K/cit129/1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.41
– volume: 13
  start-page: 5391
  year: 2020
  ident: D1EE02882K/cit84/1
  publication-title: Energies
  doi: 10.3390/en13205391
– volume: 10
  start-page: 20131
  year: 2018
  ident: D1EE02882K/cit236/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR07022A
– volume: 536
  start-page: 312
  year: 2016
  ident: D1EE02882K/cit185/1
  publication-title: Nature
  doi: 10.1038/nature18306
– volume: 368
  start-page: eaba2412
  year: 2020
  ident: D1EE02882K/cit208/1
  publication-title: Science
  doi: 10.1126/science.aba2412
– volume: 209
  start-page: 348
  year: 2015
  ident: D1EE02882K/cit44/1
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2015.08.005
– volume: 360
  start-page: 67
  year: 2018
  ident: D1EE02882K/cit168/1
  publication-title: Science
  doi: 10.1126/science.aap8671
– volume: 3
  start-page: 539
  year: 2011
  ident: D1EE02882K/cit65/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am101116b
– volume: 28
  start-page: 6695
  year: 2016
  ident: D1EE02882K/cit115/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600626
– volume: 2
  start-page: 17009
  year: 2017
  ident: D1EE02882K/cit190/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.9
– volume: 7
  start-page: 1602599
  year: 2017
  ident: D1EE02882K/cit97/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602599
– volume: 9
  start-page: 353
  year: 2016
  ident: D1EE02882K/cit207/1
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2016.06.006
– volume: 10
  start-page: 1904054
  year: 2020
  ident: D1EE02882K/cit28/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904054
– volume: 6
  start-page: 3546
  year: 2015
  ident: D1EE02882K/cit100/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01747
– volume: 11
  start-page: 144
  year: 2018
  ident: D1EE02882K/cit30/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02564E
– volume: 9
  start-page: 2597
  year: 2016
  ident: D1EE02882K/cit92/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600868
– volume: 9
  start-page: 1655
  year: 2016
  ident: D1EE02882K/cit139/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00409A
– volume: 9
  start-page: 2604
  year: 2016
  ident: D1EE02882K/cit199/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600933
– volume: 27
  start-page: 104
  year: 2013
  ident: D1EE02882K/cit53/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2013.06.027
– volume: 11
  start-page: 1514
  year: 2020
  ident: D1EE02882K/cit206/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15338-1
– volume: 30
  start-page: 162
  year: 2016
  ident: D1EE02882K/cit167/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.041
– volume: 28
  start-page: 284
  year: 2016
  ident: D1EE02882K/cit189/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04107
– ident: D1EE02882K/cit220/1
– volume: 9
  start-page: 15461
  year: 2019
  ident: D1EE02882K/cit239/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51945-9
– volume: 11
  start-page: 100
  year: 1992
  ident: D1EE02882K/cit68/1
  publication-title: Adv. Polym. Sci.
– volume: 10
  start-page: 1904
  year: 2019
  ident: D1EE02882K/cit2/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05284K
– volume: 29
  start-page: 1900417
  year: 2019
  ident: D1EE02882K/cit151/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900417
– volume: 19
  start-page: 345
  year: 2011
  ident: D1EE02882K/cit60/1
  publication-title: Prog. Photovolt: Res. Appl.
  doi: 10.1002/pip.1019
– volume: 49
  start-page: 8235
  year: 2020
  ident: D1EE02882K/cit71/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00573H
– volume: 105
  start-page: 183902
  year: 2014
  ident: D1EE02882K/cit119/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4901510
– ident: D1EE02882K/cit250/1
– volume: 4
  start-page: 15896
  year: 2016
  ident: D1EE02882K/cit171/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06497C
– volume: 8
  start-page: 1703620
  year: 2018
  ident: D1EE02882K/cit155/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703620
– volume: 188
  start-page: 37
  year: 2018
  ident: D1EE02882K/cit243/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.08.016
– volume: 159
  start-page: 307
  year: 2017
  ident: D1EE02882K/cit217/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.09.011
– volume: 30
  start-page: 1818
  year: 2019
  ident: D1EE02882K/cit49/1
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.4614
– volume: 24
  start-page: 151
  year: 2014
  ident: D1EE02882K/cit118/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302090
– volume: 6197
  start-page: 619712
  year: 2006
  ident: D1EE02882K/cit241/1
  publication-title: Proc. SPIE
  doi: 10.1117/12.662829
– volume: 31
  start-page: 2008052
  year: 2021
  ident: D1EE02882K/cit154/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008052
– volume: 136
  start-page: 47948
  year: 2019
  ident: D1EE02882K/cit227/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.47948
– volume: 141
  start-page: 5798
  year: 2019
  ident: D1EE02882K/cit131/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13392
– volume: 22
  start-page: 12032
  year: 2012
  ident: D1EE02882K/cit64/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31104f
– volume: 2
  start-page: 031002
  year: 2020
  ident: D1EE02882K/cit72/1
  publication-title: J. Phys. Energy
  doi: 10.1088/2515-7655/ab8774
– volume: 136
  start-page: 868
  year: 2012
  ident: D1EE02882K/cit40/1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2012.08.013
– volume: 37
  start-page: 2007021
  year: 2021
  ident: D1EE02882K/cit209/1
  publication-title: Acta Phys. -Chim. Sin.
– volume: 26
  start-page: 1584
  year: 2014
  ident: D1EE02882K/cit4/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305172
– volume: 9
  start-page: 490
  year: 2016
  ident: D1EE02882K/cit179/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03522H
– volume: 48
  start-page: 308
  year: 2017
  ident: D1EE02882K/cit211/1
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.06.023
– volume: 138
  start-page: 2649
  year: 2016
  ident: D1EE02882K/cit143/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11740
– volume: 1981
  start-page: 020145
  year: 2018
  ident: D1EE02882K/cit86/1
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5046007
– volume: 29
  start-page: 1703852
  year: 2017
  ident: D1EE02882K/cit1/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703852
– volume: 51
  start-page: 7047
  year: 2015
  ident: D1EE02882K/cit146/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00128E
– volume: 29
  start-page: 1
  year: 2015
  ident: D1EE02882K/cit229/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.03.026
– volume: 3
  start-page: 2193
  year: 2019
  ident: D1EE02882K/cit13/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.009
– volume: 29
  start-page: 1604695
  year: 2017
  ident: D1EE02882K/cit25/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604695
– volume: 141
  start-page: 18075
  year: 2019
  ident: D1EE02882K/cit128/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07182
– volume: 94
  start-page: 1437
  year: 2010
  ident: D1EE02882K/cit251/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.03.038
– volume: 137
  start-page: 49147
  year: 2020
  ident: D1EE02882K/cit214/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.49147
– volume: 29
  start-page: 1902600
  year: 2019
  ident: D1EE02882K/cit178/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902600
– volume: 7
  start-page: 1901469
  year: 2020
  ident: D1EE02882K/cit37/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901469
– volume: 299
  start-page: 775
  year: 2014
  ident: D1EE02882K/cit225/1
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201300349
– ident: D1EE02882K/cit46/1
– volume: 174
  start-page: 7
  year: 2018
  ident: D1EE02882K/cit242/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.08.015
– volume: 8
  start-page: 13938
  year: 2017
  ident: D1EE02882K/cit159/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13938
– volume: 66
  start-page: 42
  year: 2017
  ident: D1EE02882K/cit224/1
  publication-title: Polym. Int.
  doi: 10.1002/pi.5250
– volume: 140
  start-page: 2259
  year: 2019
  ident: D1EE02882K/cit88/1
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-09006-w
– volume: 9
  start-page: 654
  year: 2018
  ident: D1EE02882K/cit109/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02679
– volume: 9
  start-page: 2326
  year: 2016
  ident: D1EE02882K/cit152/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00709K
– volume: 52
  start-page: 762
  year: 2012
  ident: D1EE02882K/cit51/1
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2011.07.063
– volume: 30
  start-page: 1908298
  year: 2020
  ident: D1EE02882K/cit69/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908298
– volume: 8
  start-page: 1801234
  year: 2018
  ident: D1EE02882K/cit93/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801234
– volume: 14
  start-page: 1032
  year: 2015
  ident: D1EE02882K/cit240/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4388
– volume: 31
  start-page: 1805337
  year: 2019
  ident: D1EE02882K/cit27/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805337
– volume: 98
  start-page: 398
  year: 2012
  ident: D1EE02882K/cit63/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2011.11.007
– volume: 18
  start-page: 27026
  year: 2016
  ident: D1EE02882K/cit91/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04553G
– volume: 1
  start-page: 387
  year: 2018
  ident: D1EE02882K/cit147/1
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 15684
  year: 2017
  ident: D1EE02882K/cit156/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15684
– volume: 49
  start-page: 1653
  year: 2020
  ident: D1EE02882K/cit18/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00711C
SSID ssj0062079
Score 2.6975162
SecondaryResourceType review_article
Snippet After a decade of research and development on perovskite solar cells (PSCs), the achievements targeting device stability have fallen far behind the progress...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Aging
Chemical reactions
Commercialization
Computer architecture
Crystal structure
Degradation
Encapsulation
Grain boundaries
Ion migration
Light emitting diodes
Materials selection
Modules
Moisture
Optimization
Optoelectronic devices
Oxygen
Perovskites
Photoelectricity
Photovoltaic cells
Photovoltaics
R&D
Research & development
Solar cells
Stability analysis
Thermal cycling
Thermal stability
Title Development of encapsulation strategies towards the commercialization of perovskite solar cells
URI https://www.proquest.com/docview/2621047760
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOFa-KpQVZggtapThO4jjHAksrKnpqRTlFduyoFWUXbbIcyp9n_EqypIfCJYosO0oyX-aVmc8IvUliRQzvXJSoikfg_1dRwSsZUa4EGCiwIJa34MsZO7lIP19ml5PJ72F3SSsPq9s7-0r-R6owBnI1XbL_INnuojAA5yBfOIKE4XgvGQ8qfozTB7cmIOh11W2zpg0sEOBfmtrYxjqZcB8_zC5L4sZ3YNqaZ71a_mpMInfWmFh3ZvL5zUbW3vUIGqAMeuNCR2U1qKB1eebrTp2sXYr1eH19e7VcjxLV34LtNHP92FkY8-kIauo6Iq_0nAbNszTKmNvg7lAPxnLCNtRuNoKX06GuN9VbY8fhO9LzJDE0qR_j-Rz8I05Pe2sW_uD_ZeS60kP70z0pyn7tFtqhEGOAktw5On1__DUYckaJpWrsniiw2ybFu371pj_TBylbq7CDjPVUzh-hXR9i4COHl8doohdP0MMB8eRTVA6Qg5c13kAO7pGDPXIwIAePkGNW9sjBFjnYIucZuvg0P_9wEvmtNqIqSfM2olLqXGWasDqNBSPgJUpdy1jGdRHrLJEVhAFccMUJ04mqmVQklWBkhSqqWIhkD20vlgv9HGHwQWUuUk51rdNM1QVlQnNSZ1ykOWfxFL0NL6ysPA-92Q7lphyLZoped3N_OvaVO2cdhPde-q-zKSmjhoUkZ2SK9kAW3XoVa23XfX9xr6vvowc9zg_Qdrta65fgiLbylQfMH7iAizM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+encapsulation+strategies+towards+the+commercialization+of+perovskite+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Ma%2C+Sai&rft.au=Yuan%2C+Guizhou&rft.au=Zhang%2C+Ying&rft.au=Yang%2C+Ning&rft.date=2022-01-19&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=15&rft.issue=1&rft.spage=13&rft.epage=55&rft_id=info:doi/10.1039%2FD1EE02882K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1EE02882K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon