Towards Low Light Enhancement With RAW Images

In this paper, we make the first benchmark effort to elaborate on the superiority of using RAW images in the low light enhancement and develop a novel alternative route to utilize RAW images in a more flexible and practical way. Inspired by a full consideration on the typical image processing pipeli...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 31; pp. 1391 - 1405
Main Authors Huang, Haofeng, Yang, Wenhan, Hu, Yueyu, Liu, Jiaying, Duan, Ling-Yu
Format Journal Article
LanguageEnglish
Published United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we make the first benchmark effort to elaborate on the superiority of using RAW images in the low light enhancement and develop a novel alternative route to utilize RAW images in a more flexible and practical way. Inspired by a full consideration on the typical image processing pipeline, we are inspired to develop a new evaluation framework, Factorized Enhancement Model ( FEM ), which decomposes the properties of RAW images into measurable factors and provides a tool for exploring how properties of RAW images affect the enhancement performance empirically. The empirical benchmark results show that the Linearity of data and Exposure Time recorded in meta-data play the most critical role, which brings distinct performance gains in various measures over the approaches taking the sRGB images as input. With the insights obtained from the benchmark results in mind, a RAW-guiding Exposure Enhancement Network (REENet) is developed, which makes trade-offs between the advantages and inaccessibility of RAW images in real applications in a way of using RAW images only in the training phase. REENet projects sRGB images into linear RAW domains to apply constraints with corresponding RAW images to reduce the difficulty of modeling training. After that, in the testing phase, our REENet does not rely on RAW images. Experimental results demonstrate not only the superiority of REENet to state-of-the-art sRGB-based methods and but also the effectiveness of the RAW guidance and all components.
AbstractList In this paper, we make the first benchmark effort to elaborate on the superiority of using RAW images in the low light enhancement and develop a novel alternative route to utilize RAW images in a more flexible and practical way. Inspired by a full consideration on the typical image processing pipeline, we are inspired to develop a new evaluation framework, Factorized Enhancement Model ( FEM ), which decomposes the properties of RAW images into measurable factors and provides a tool for exploring how properties of RAW images affect the enhancement performance empirically. The empirical benchmark results show that the Linearity of data and Exposure Time recorded in meta-data play the most critical role, which brings distinct performance gains in various measures over the approaches taking the sRGB images as input. With the insights obtained from the benchmark results in mind, a RAW-guiding Exposure Enhancement Network (REENet) is developed, which makes trade-offs between the advantages and inaccessibility of RAW images in real applications in a way of using RAW images only in the training phase. REENet projects sRGB images into linear RAW domains to apply constraints with corresponding RAW images to reduce the difficulty of modeling training. After that, in the testing phase, our REENet does not rely on RAW images. Experimental results demonstrate not only the superiority of REENet to state-of-the-art sRGB-based methods and but also the effectiveness of the RAW guidance and all components.
In this paper, we make the first benchmark effort to elaborate on the superiority of using RAW images in the low light enhancement and develop a novel alternative route to utilize RAW images in a more flexible and practical way. Inspired by a full consideration on the typical image processing pipeline, we are inspired to develop a new evaluation framework, Factorized Enhancement Model (FEM), which decomposes the properties of RAW images into measurable factors and provides a tool for exploring how properties of RAW images affect the enhancement performance empirically. The empirical benchmark results show that the Linearity of data and Exposure Time recorded in meta-data play the most critical role, which brings distinct performance gains in various measures over the approaches taking the sRGB images as input. With the insights obtained from the benchmark results in mind, a RAW-guiding Exposure Enhancement Network (REENet) is developed, which makes trade-offs between the advantages and inaccessibility of RAW images in real applications in a way of using RAW images only in the training phase. REENet projects sRGB images into linear RAW domains to apply constraints with corresponding RAW images to reduce the difficulty of modeling training. After that, in the testing phase, our REENet does not rely on RAW images. Experimental results demonstrate not only the superiority of REENet to state-of-the-art sRGB-based methods and but also the effectiveness of the RAW guidance and all components.In this paper, we make the first benchmark effort to elaborate on the superiority of using RAW images in the low light enhancement and develop a novel alternative route to utilize RAW images in a more flexible and practical way. Inspired by a full consideration on the typical image processing pipeline, we are inspired to develop a new evaluation framework, Factorized Enhancement Model (FEM), which decomposes the properties of RAW images into measurable factors and provides a tool for exploring how properties of RAW images affect the enhancement performance empirically. The empirical benchmark results show that the Linearity of data and Exposure Time recorded in meta-data play the most critical role, which brings distinct performance gains in various measures over the approaches taking the sRGB images as input. With the insights obtained from the benchmark results in mind, a RAW-guiding Exposure Enhancement Network (REENet) is developed, which makes trade-offs between the advantages and inaccessibility of RAW images in real applications in a way of using RAW images only in the training phase. REENet projects sRGB images into linear RAW domains to apply constraints with corresponding RAW images to reduce the difficulty of modeling training. After that, in the testing phase, our REENet does not rely on RAW images. Experimental results demonstrate not only the superiority of REENet to state-of-the-art sRGB-based methods and but also the effectiveness of the RAW guidance and all components.
Author Duan, Ling-Yu
Huang, Haofeng
Liu, Jiaying
Hu, Yueyu
Yang, Wenhan
Author_xml – sequence: 1
  givenname: Haofeng
  surname: Huang
  fullname: Huang, Haofeng
  email: hhf@pku.edu.cn
  organization: Peking University, Beijing, China
– sequence: 2
  givenname: Wenhan
  orcidid: 0000-0002-1692-0069
  surname: Yang
  fullname: Yang, Wenhan
  email: yangwenhan@pku.edu.cn
  organization: Peking University, Beijing, China
– sequence: 3
  givenname: Yueyu
  orcidid: 0000-0003-4919-4515
  surname: Hu
  fullname: Hu, Yueyu
  email: huyy@pku.edu.cn
  organization: Peking University, Beijing, China
– sequence: 4
  givenname: Jiaying
  orcidid: 0000-0002-0468-9576
  surname: Liu
  fullname: Liu, Jiaying
  email: liujiaying@pku.edu.cn
  organization: Peking University, Beijing, China
– sequence: 5
  givenname: Ling-Yu
  orcidid: 0000-0002-4491-2023
  surname: Duan
  fullname: Duan, Ling-Yu
  email: lingyu@pku.edu.cn
  organization: Peking University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35038292$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhdR_L4LggS8eEmdmd1NskcRPwoFRSo9LrvJxEaaRLMp4r83pa0HD55mDs_78vIcid2mbViIM4QRIpjr6fh5REA0kqggQdgRh2gUxgCKdocfdBqnqMyBOArhHQCVxmRfHEgNMiNDhyKetl-uK0I0ab-iSfU276O7Zu6anGtu-mhW9fPo5WYWjWv3xuFE7JVuEfh0c4_F6_3d9PYxnjw9jG9vJnEuVdrHWLCk3GelLnxJGozSnAKQl5iostDDRJ9qbbLSU5p6k8lcSu80IxkvOZfH4mrd-9G1n0sOva2rkPNi4Rpul8FSQgiYEeoBvfyDvrfLrhnWrSjKSGcEA3WxoZa-5sJ-dFXtum-7FTEAyRrIuzaEjkubV73rq7bpO1ctLIJdGbeDcbsybjfGhyD8CW67_4mcryMVM__iJskUyVT-ADZchuo
CODEN IIPRE4
CitedBy_id crossref_primary_10_1049_ipr2_12771
crossref_primary_10_1109_TIM_2025_3544706
crossref_primary_10_1109_JSEN_2024_3396195
crossref_primary_10_1109_ACCESS_2023_3328534
crossref_primary_10_1007_s00371_023_03249_3
crossref_primary_10_1038_s41598_024_69106_y
crossref_primary_10_1016_j_compeleceng_2023_108608
crossref_primary_10_1109_TCSVT_2023_3311766
crossref_primary_10_11834_jig_230794
crossref_primary_10_1109_TMM_2024_3400668
crossref_primary_10_1007_s11263_024_02143_2
crossref_primary_10_1109_TPAMI_2024_3382108
crossref_primary_10_1109_ACCESS_2023_3301614
crossref_primary_10_1109_TPAMI_2023_3301502
crossref_primary_10_1109_TCE_2024_3476033
crossref_primary_10_1109_TMM_2023_3293736
crossref_primary_10_1109_TMM_2023_3278385
crossref_primary_10_3390_app15010361
crossref_primary_10_1109_JSYST_2023_3262593
crossref_primary_10_1038_s41598_025_87412_x
crossref_primary_10_1016_j_image_2023_117060
crossref_primary_10_1109_TIM_2024_3497140
crossref_primary_10_1145_3705319
crossref_primary_10_3390_s23187763
crossref_primary_10_1038_s41598_024_72912_z
Cites_doi 10.1109/TIP.2009.2021548
10.1109/CVPR.2019.01129
10.1007/978-0-387-31439-6_482
10.1109/CVPR.2004.1315266
10.1109/ICCV.2019.00742
10.1016/j.patcog.2016.06.008
10.1109/TIP.2018.2794218
10.1109/VBC.1990.109340
10.1109/TIP.2021.3051462
10.1109/TIP.2016.2639450
10.1109/CVPR.2018.00347
10.1109/CVPR42600.2020.00277
10.1109/CVPR42600.2020.00313
10.1109/ICCV.2019.00328
10.1109/TVCG.2015.2461157
10.1109/TIP.2013.2261309
10.1109/TIP.2003.819861
10.1109/CVPR46437.2021.00904
10.1109/SITIS.2013.19
10.1109/CVPRW.2018.00121
10.1109/TCE.2007.4429280
10.1109/CVPR.2012.6247952
10.1109/ICME.2011.6012107
10.1109/83.557356
10.1109/CVPR.2018.00193
10.1109/TIP.2013.2284059
10.1016/j.sigpro.2016.05.031
10.1609/aaai.v34i07.7013
10.1109/TPAMI.2021.3070580
10.1109/TCE.2007.381734
10.1109/TCSVT.2017.2763180
10.1145/3072959.3073592
10.1109/VCIP.2017.8305143
10.1109/CVPR46437.2021.00016
10.1109/ICASSP.2014.6853785
10.1109/TIP.2005.859378
10.1109/LSP.2012.2227726
10.1109/ISCAS.2018.8351427
10.1109/TCSVT.2013.2276154
10.1109/TIP.2018.2872858
10.1109/CVPR.2019.00701
10.1109/CVPR42600.2020.00283
10.1007/978-3-319-24574-4_28
10.1109/ISPACS.2013.6704591
10.1109/83.597272
10.1109/TIP.2011.2157513
10.1109/TIP.2008.2001399
10.1145/3343031.3350926
10.1109/CVPR42600.2020.00185
10.1109/CVPR.2018.00068
10.1109/TIP.2018.2810539
10.1109/CVPR42600.2020.00235
10.1109/ICIP.2015.7351501
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2022.3140610
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1405
ExternalDocumentID 35038292
10_1109_TIP_2022_3140610
9684237
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018AAA0102702
  funderid: 10.13039/501100012166
– fundername: Peking University (PKU)-Nanyang Technological University (NTU) Joint Research Institute (JRI) by the Ng Teng Fong Charitable Foundation
  funderid: 10.13039/501100007937
– fundername: National Natural Science Foundation of China
  grantid: 62088102; 62172020
  funderid: 10.13039/501100001809
– fundername: State Key Laboratory of Media Convergence Production Technology and Systems
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-1de32cb8f5dbf250945e7002b3164fd5941b75598fb277b983c33ba5e129b3ec3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Jul 10 19:07:01 EDT 2025
Mon Jun 30 10:10:41 EDT 2025
Wed Feb 19 02:27:26 EST 2025
Tue Jul 01 02:03:27 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Wed Aug 27 03:00:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-1de32cb8f5dbf250945e7002b3164fd5941b75598fb277b983c33ba5e129b3ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4919-4515
0000-0002-0468-9576
0000-0002-1692-0069
0000-0002-4491-2023
PMID 35038292
PQID 2622825820
PQPubID 85429
PageCount 15
ParticipantIDs proquest_miscellaneous_2621018215
proquest_journals_2622825820
ieee_primary_9684237
crossref_citationtrail_10_1109_TIP_2022_3140610
crossref_primary_10_1109_TIP_2022_3140610
pubmed_primary_35038292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
Kingma (ref59)
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Brown (ref12)
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref31
ref30
ref33
ref32
ref2
ref1
Zhang (ref21)
ref38
Shen (ref34) 2017
Lv (ref36)
ref24
ref23
ref25
ref20
ref22
ref28
ref27
ref29
ref60
Wei (ref39)
Ying (ref26) 2017
References_xml – ident: ref6
  doi: 10.1109/TIP.2009.2021548
– ident: ref47
  doi: 10.1109/CVPR.2019.01129
– ident: ref49
  doi: 10.1007/978-0-387-31439-6_482
– ident: ref60
  doi: 10.1109/CVPR.2004.1315266
– ident: ref2
  doi: 10.1109/ICCV.2019.00742
– ident: ref9
  doi: 10.1016/j.patcog.2016.06.008
– ident: ref37
  doi: 10.1109/TIP.2018.2794218
– ident: ref16
  doi: 10.1109/VBC.1990.109340
– year: 2017
  ident: ref34
  article-title: MSR-Net: Low-light image enhancement using deep convolutional network
  publication-title: arXiv:1711.02488
– ident: ref40
  doi: 10.1109/TIP.2021.3051462
– ident: ref52
  doi: 10.1109/TIP.2016.2639450
– ident: ref1
  doi: 10.1109/CVPR.2018.00347
– ident: ref48
  doi: 10.1109/CVPR42600.2020.00277
– ident: ref42
  doi: 10.1109/CVPR42600.2020.00313
– ident: ref11
  doi: 10.1109/ICCV.2019.00328
– ident: ref23
  doi: 10.1109/TVCG.2015.2461157
– ident: ref29
  doi: 10.1109/TIP.2013.2261309
– ident: ref53
  doi: 10.1109/TIP.2003.819861
– ident: ref45
  doi: 10.1109/CVPR46437.2021.00904
– year: 2017
  ident: ref26
  article-title: A bio-inspired multi-exposure fusion framework for low-light image enhancement
  publication-title: arXiv:1711.00591
– ident: ref28
  doi: 10.1109/SITIS.2013.19
– start-page: 2034
  volume-title: Proc. 21st Int. Conf. Pattern Recognit.
  ident: ref21
  article-title: Enhancement and noise reduction of very low light level images
– ident: ref58
  doi: 10.1109/CVPRW.2018.00121
– ident: ref5
  doi: 10.1109/TCE.2007.4429280
– ident: ref57
  doi: 10.1109/CVPR.2012.6247952
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref59
  article-title: Adam: A method for stochastic optimization
– ident: ref7
  doi: 10.1109/ICME.2011.6012107
– ident: ref27
  doi: 10.1109/83.557356
– ident: ref44
  doi: 10.1109/CVPR.2018.00193
– ident: ref19
  doi: 10.1109/TIP.2013.2284059
– ident: ref31
  doi: 10.1016/j.sigpro.2016.05.031
– ident: ref15
  doi: 10.1609/aaai.v34i07.7013
– start-page: 1
  volume-title: Proc. IEEE/CVF Int. Conf. Comput. Vis. Tutorial
  ident: ref12
  article-title: Understanding color and the in-camera image processing pipeline for computer vision
– ident: ref3
  doi: 10.1109/TPAMI.2021.3070580
– ident: ref17
  doi: 10.1109/TCE.2007.381734
– ident: ref25
  doi: 10.1109/TCSVT.2017.2763180
– ident: ref43
  doi: 10.1145/3072959.3073592
– ident: ref35
  doi: 10.1109/VCIP.2017.8305143
– ident: ref46
  doi: 10.1109/CVPR46437.2021.00016
– ident: ref30
  doi: 10.1109/ICASSP.2014.6853785
– ident: ref54
  doi: 10.1109/TIP.2005.859378
– ident: ref55
  doi: 10.1109/LSP.2012.2227726
– ident: ref33
  doi: 10.1109/ISCAS.2018.8351427
– ident: ref18
  doi: 10.1109/TCSVT.2013.2276154
– ident: ref13
  doi: 10.1109/TIP.2018.2872858
– ident: ref38
  doi: 10.1109/CVPR.2019.00701
– ident: ref14
  doi: 10.1109/CVPR42600.2020.00283
– ident: ref51
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref20
  doi: 10.1109/ISPACS.2013.6704591
– ident: ref8
  doi: 10.1109/83.597272
– ident: ref24
  doi: 10.1109/TIP.2011.2157513
– ident: ref50
  doi: 10.1109/TIP.2008.2001399
– ident: ref10
  doi: 10.1145/3343031.3350926
– ident: ref41
  doi: 10.1109/CVPR42600.2020.00185
– start-page: 220
  volume-title: Proc. Brit. Mach. Vis. Conf.
  ident: ref36
  article-title: MBLLEN: Low-light image/video enhancement using cnns
– ident: ref56
  doi: 10.1109/CVPR.2018.00068
– ident: ref32
  doi: 10.1109/TIP.2018.2810539
– start-page: 155
  volume-title: Proc. Brit. Mach. Vis. Conf.
  ident: ref39
  article-title: Deep retinex decomposition for low-light enhancement
– ident: ref4
  doi: 10.1109/CVPR42600.2020.00235
– ident: ref22
  doi: 10.1109/ICIP.2015.7351501
SSID ssj0014516
Score 2.5974097
Snippet In this paper, we make the first benchmark effort to elaborate on the superiority of using RAW images in the low light enhancement and develop a novel...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1391
SubjectTerms benchmark
Benchmark testing
Benchmarks
deep learning
factorized enhancement model
Histograms
Image enhancement
Image processing
Lighting
Linearity
Low-light enhancement
Pipelines
RAW guidance
Training
Title Towards Low Light Enhancement With RAW Images
URI https://ieeexplore.ieee.org/document/9684237
https://www.ncbi.nlm.nih.gov/pubmed/35038292
https://www.proquest.com/docview/2622825820
https://www.proquest.com/docview/2621018215
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB61PbEHFtpdCBRkJC5IpA87ietjhbpqURch1Kq9RbFjaxFsuqKpkPj1zDgPAWIRt0hxnMQzY8_n8XwD8NroWDmTRGhICQKUyGahEjMTUvEplWUTO3GU73z9IVluo_f7eN-Bt20ujLXWHz6zI7r0sfz8YE60VTZWFDQSsgtdBG5VrlYbMaCCsz6yGctQotvfhCQnarxZfUQgyDniU1q-qPibIBYUrvhvq5Evr3K_p-lXnKtzuG6-tTpo8mV0KvXI_PiDxvF_f-YRPKxdTzavdOUxdGzRh_PaDWW1kR_7cPYLR-EAwo0_WHtk68N3tiYozxbFDekK9c92n8sb9mm-Y6tbnJmOF7C9WmzeLcO6xkJoRCTLcJpbwY2euTjXjhObXmwlzpJaII5yeayiqZZE4u40l1KrmTBC6Cy26CdoYY24hF5xKOxTYAiz1UxHce4iEzk5zSQavHCcOyJ9z5MAxs1Yp6YmIKc6GF9TD0QmKkVBpSSotBZUAG_aJ-4q8o1_tB3QGLft6uENYNiIM62t85jyhFPKLjo_Abxqb6NdUbAkK-zh5NsQmRl6RAE8qdSg7bvRnmd_f-dzeEBfVm3UDKFXfjvZF-i6lPql19mfDpvj6Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOLbQ8AgWMBAcO2c3aSbw-cKig1S7dVght1d5C7Nhq1TaLmqwq-C38Ff4bM85DgIBbJW6R4jzseXjGM_MNwEujE-VMGqMgpeigxDYPlRibkJpPqTyPbOSo3nn_IJ0cxu-Pk-MV-NbXwlhrffKZHdClj-UXC7Oko7KhoqCRkG0K5Z79coUOWvVm-g6p-Yrz3Z3520nY9hAIjYhlHY4KK7jRY5cU2nFCi0usRC2gBfoJrkhUPNKSQMqd5lJqNRZGCJ0nFvdBLawR-N4bcBPtjIQ31WF9jIJa3PpYaiJDiY5GFwSN1HA-_YCuJ-foEdOGSe3mBOGucMV_2f98Q5e_27Z-j9tdh-_d6jSpLWeDZa0H5utvwJH_6_LdhbXWuGbbjTTcgxVbbsB6a2izVo1VG3DnJxTGTQjnPnW4YrPFFZvRYQXbKU9IGmg-7Oi0PmEft4_Y9AJ1b3UfDq9lCg9gtVyU9hEwFUk11nFSuNjETo5yiSpNOM4dwdoXaQDDjraZaSHWqdPHeeZdrUhlyBgZMUbWMkYAr_snPjfwIv8Yu0k07ce15Axgq2OfrNU_VcZTTkXJaN4F8KK_jZqDwkF5aRdLP4bg2tDmC-Bhw3b9uztuffznbz6HW5P5_iybTQ_2nsBt-svmWGoLVuvLpX2Khlqtn3l5YfDpujnsB6hAQKI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Low+Light+Enhancement+With+RAW+Images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Huang%2C+Haofeng&rft.au=Yang%2C+Wenhan&rft.au=Hu%2C+Yueyu&rft.au=Liu%2C+Jiaying&rft.date=2022&rft.eissn=1941-0042&rft.volume=31&rft.spage=1391&rft_id=info:doi/10.1109%2FTIP.2022.3140610&rft_id=info%3Apmid%2F35038292&rft.externalDocID=35038292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon