Content-Based Image Retrieval Using Features Extracted From Halftoning-Based Block Truncation Coding

This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers an...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 24; no. 3; pp. 1010 - 1024
Main Authors Jing-Ming Guo, Prasetyo, Heri
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers and bitmap image. Two image features are proposed to index an image, namely, color co-occurrence feature (CCF) and bit pattern features (BPF), which are generated directly from the ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two ODBTC quantizers and bitmap, respectively, by involving the visual codebook. Experimental results show that the proposed method is superior to the block truncation coding image retrieval systems and the other earlier methods, and thus prove that the ODBTC scheme is not only suited for image compression, because of its simplicity, but also offers a simple and effective descriptor to index images in CBIR system.
AbstractList This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers and bitmap image. Two image features are proposed to index an image, namely, color co-occurrence feature (CCF) and bit pattern features (BPF), which are generated directly from the ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two ODBTC quantizers and bitmap, respectively, by involving the visual codebook. Experimental results show that the proposed method is superior to the block truncation coding image retrieval systems and the other earlier methods, and thus prove that the ODBTC scheme is not only suited for image compression, because of its simplicity, but also offers a simple and effective descriptor to index images in CBIR system.This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers and bitmap image. Two image features are proposed to index an image, namely, color co-occurrence feature (CCF) and bit pattern features (BPF), which are generated directly from the ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two ODBTC quantizers and bitmap, respectively, by involving the visual codebook. Experimental results show that the proposed method is superior to the block truncation coding image retrieval systems and the other earlier methods, and thus prove that the ODBTC scheme is not only suited for image compression, because of its simplicity, but also offers a simple and effective descriptor to index images in CBIR system.
This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers and bitmap image. Two image features are proposed to index an image, namely, color co-occurrence feature (CCF) and bit pattern features (BPF), which are generated directly from the ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two ODBTC quantizers and bitmap, respectively, by involving the visual codebook. Experimental results show that the proposed method is superior to the block truncation coding image retrieval systems and the other earlier methods, and thus prove that the ODBTC scheme is not only suited for image compression, because of its simplicity, but also offers a simple and effective descriptor to index images in CBIR system.
Author Jing-Ming Guo
Prasetyo, Heri
Author_xml – sequence: 1
  surname: Jing-Ming Guo
  fullname: Jing-Ming Guo
  email: jmguo@seed.net.tw
  organization: Dept. of Electr. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan
– sequence: 2
  givenname: Heri
  surname: Prasetyo
  fullname: Prasetyo, Heri
  email: heri_inf_its_02@yahoo.co.id
  organization: Dept. of Electr. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25420264$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r3DAQxUVJaT7ae6FQDL3k4o0k68M6Jks2WQi0hM1ZyPY4OLWlRJJD899nkt3kkENhQAP6vWHevEOy54MHQr4zumCMmpPN-s-CUyYWvNJcMfOJHDAjWEmp4HvYU6lLzYTZJ4cp3VEkJVNfyD6XglOuxAHplsFn8Lk8cwm6Yj25WyiuIccBHt1Y3KTB3xYrcHmOkIrzfzm6NiO4imEqLt3Y5-AR2cnPxtD-LTZx9q3LQ_DFMnT4-5V87t2Y4NvuPSI3q_PN8rK8-n2xXp5elW0ldC5Zpx3tQWrX8BpM02jaSPRlelGjK9koJYXoW9corZBzrJPcMMmx-r5y1RE53s69j-FhhpTtNKQWxtF5CHOyTEkuFNeiQvTXB_QuzNHjdkjVgtWUU43Uzx01NxN09j4Ok4tP9u1-CKgt0MaQUoTetkN-tY6HGkbLqH0JymJQ9iUouwsKhfSD8G32fyQ_tpIBAN5xZRStK1M9A3eUm_g
CODEN IIPRE4
CitedBy_id crossref_primary_10_1080_13682199_2017_1416737
crossref_primary_10_1109_ACCESS_2018_2889323
crossref_primary_10_1109_TIP_2022_3203612
crossref_primary_10_4018_IJCVIP_2018010104
crossref_primary_10_3390_jimaging3040043
crossref_primary_10_1002_asi_23907
crossref_primary_10_1002_cpe_6533
crossref_primary_10_1155_2016_3271924
crossref_primary_10_1016_j_dsp_2018_07_016
crossref_primary_10_1109_ACCESS_2020_3003911
crossref_primary_10_1155_2020_8851931
crossref_primary_10_1109_TCSVT_2020_3032685
crossref_primary_10_1109_ACCESS_2023_3308911
crossref_primary_10_1049_iet_ipr_2018_6153
crossref_primary_10_1007_s11042_019_7605_5
crossref_primary_10_1142_S1793351X1840010X
crossref_primary_10_1109_ACCESS_2020_2981720
crossref_primary_10_35860_iarej_811927
crossref_primary_10_1109_TIP_2016_2526902
crossref_primary_10_1186_s41074_017_0033_4
crossref_primary_10_1155_2021_4151482
crossref_primary_10_1007_s11042_019_08100_3
crossref_primary_10_25046_aj0601156
crossref_primary_10_1016_j_sigpro_2015_11_009
crossref_primary_10_1016_j_patcog_2015_12_012
crossref_primary_10_1007_s11042_019_08401_7
crossref_primary_10_1109_TIP_2017_2736343
crossref_primary_10_1109_TMM_2015_2399851
crossref_primary_10_3233_IDA_184411
crossref_primary_10_1007_s11277_018_5943_7
crossref_primary_10_1109_ACCESS_2019_2948266
crossref_primary_10_1016_j_knosys_2023_110953
crossref_primary_10_1007_s11042_019_7597_1
crossref_primary_10_3390_sym11010021
crossref_primary_10_3390_app9112211
crossref_primary_10_1016_j_jvcir_2015_12_016
crossref_primary_10_1049_iet_ipr_2019_1023
crossref_primary_10_1177_0020294018824122
crossref_primary_10_1007_s13042_016_0597_9
crossref_primary_10_1049_iet_ipr_2018_6619
crossref_primary_10_1016_j_jvcir_2021_103396
crossref_primary_10_1080_09540091_2020_1753174
crossref_primary_10_3390_info8010027
crossref_primary_10_3390_info9020041
crossref_primary_10_1007_s11042_017_5508_x
crossref_primary_10_1016_j_patcog_2019_04_003
crossref_primary_10_1142_S0218001417560092
crossref_primary_10_1016_j_jisa_2019_102367
crossref_primary_10_1007_s11042_018_6246_4
crossref_primary_10_1109_TIP_2015_2507404
crossref_primary_10_1007_s13735_016_0104_9
crossref_primary_10_1371_journal_pone_0194526
crossref_primary_10_1007_s11277_020_07721_4
crossref_primary_10_1109_TIP_2017_2781298
crossref_primary_10_1007_s11042_017_4812_9
crossref_primary_10_1155_2022_4554911
crossref_primary_10_1007_s11042_017_5587_8
crossref_primary_10_1109_TII_2017_2657545
Cites_doi 10.1007/978-1-4471-2099-5_24
10.1109/TMM.2014.2306175
10.1016/j.sigpro.2009.03.013
10.1016/j.sigpro.2004.10.009
10.1109/TIP.2012.2188809
10.1016/j.patcog.2011.11.009
10.1109/CVPR.2009.5206609
10.1109/IPTA.2008.4743780
10.1109/TIP.2014.2333655
10.1016/j.imavis.2008.07.004
10.1016/S0031-3203(02)00083-3
10.1023/B:VISI.0000029664.99615.94
10.1016/j.imavis.2004.03.026
10.1016/j.patrec.2009.02.006
10.1016/S0167-8655(02)00244-1
10.1016/j.ipm.2006.07.014
10.1109/ICIP.2008.4711909
10.1109/TPAMI.2009.155
10.1109/TIP.2009.2032313
10.1016/j.patrec.2008.10.005
10.1109/TSMCB.2005.850176
10.1109/97.650036
10.1002/sam.10093
10.1109/TCSVT.2003.816507
10.1109/76.927424
10.1109/TCOM.1984.1095973
10.1145/1348246.1348248
10.1049/el.2010.3232
10.1109/30.681944
10.1016/S0031-3203(00)00010-8
10.1109/TIP.2014.2310123
10.1109/TIP.2008.2007385
10.1109/TCOM.1987.1096773
10.1016/j.compeleceng.2012.11.023
10.1109/CVPR.2006.264
10.1016/j.dsp.2009.04.007
10.1109/TIP.2010.2042645
10.1016/S0923-5965(98)00037-X
10.1016/j.patcog.2011.02.003
10.1016/0031-3203(95)00067-4
10.1109/TIP.2002.807356
10.1016/j.mcm.2011.11.064
10.1109/TMM.2008.2001357
10.1109/26.99132
10.1109/TIM.2011.2135010
10.1007/BF00130487
10.1016/j.patcog.2009.08.017
10.1109/CVPR.2006.68
10.1049/el:20052176
10.1016/j.sigpro.2011.12.005
10.1109/CVPR.1997.609412
10.1109/TIP.2014.2313232
10.1109/34.531803
10.1023/A:1011139631724
10.1109/ICCV.2003.1238663
10.1109/TIP.2009.2035882
10.1109/TIP.2014.2305072
10.1109/TIP.2014.2329182
10.1109/TCOM.1979.1094560
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2014.2372619
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1024
ExternalDocumentID 3699427181
25420264
10_1109_TIP_2014_2372619
6960839
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: 10.13039/501100004663
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-1d7a0fe57ab28e9bb70b57269f489415b66544fcab676fe5a1d529152152ff3a3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 10:05:14 EDT 2025
Sun Jun 29 15:43:00 EDT 2025
Thu Apr 03 06:51:27 EDT 2025
Tue Jul 01 02:03:01 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Tue Aug 26 16:40:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ordered dither block truncation coding
Bit pattern feature
content-based image retrieval
color co-occurrence feature
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-1d7a0fe57ab28e9bb70b57269f489415b66544fcab676fe5a1d529152152ff3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25420264
PQID 1684180207
PQPubID 85429
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TIP_2014_2372619
crossref_primary_10_1109_TIP_2014_2372619
proquest_miscellaneous_1652462743
pubmed_primary_25420264
ieee_primary_6960839
proquest_journals_1684180207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-March
2015-3-00
2015-Mar
20150301
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-March
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref59
ref15
ref58
ref53
ref52
ref55
ref11
ref54
ref17
ref16
ref18
(ref75) 2007
chiang (ref19) 2006; 1
ref51
ref46
ref45
ref48
hoang (ref57) 2002
ref47
ref42
ref41
ref44
ref43
jia (ref67) 2012
huang (ref28) 1997
(ref29) 2001
jegou (ref72) 2008
ref8
ref7
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
jegou (ref50) 2013
ref74
ref30
ref33
ref32
ref2
ref1
ref39
ref38
guo (ref10) 2009
ref71
ref73
ref68
ref23
ndjiki-nya (ref25) 2000
ref26
ref64
ref20
(ref24) 2001
wu (ref5) 1998; 44
ref63
ref66
ref65
(ref69) 1977
ref21
wang (ref49) 2011
ref27
(ref70) 2002
poursistani (ref22) 2011; 57
silakari (ref14) 2009; 4
ref60
ref62
ref61
(ref76) 2006
gahroudi (ref12) 2007
References_xml – ident: ref45
  doi: 10.1007/978-1-4471-2099-5_24
– year: 2002
  ident: ref70
  publication-title: MIT-Vision Texture (VisTex) Image Database
– year: 2000
  ident: ref25
  article-title: Subjective evaluation of the MPEG-7 retrieval accuracy measure (ANMRR)
– ident: ref60
  doi: 10.1109/TMM.2014.2306175
– start-page: 2012
  year: 2009
  ident: ref10
  article-title: Reversible data hiding in highly efficient compression scheme
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process
– ident: ref9
  doi: 10.1016/j.sigpro.2009.03.013
– ident: ref56
  doi: 10.1016/j.sigpro.2004.10.009
– ident: ref40
  doi: 10.1109/TIP.2012.2188809
– ident: ref74
  doi: 10.1016/j.patcog.2011.11.009
– ident: ref46
  doi: 10.1109/CVPR.2009.5206609
– ident: ref52
  doi: 10.1109/IPTA.2008.4743780
– ident: ref58
  doi: 10.1109/TIP.2014.2333655
– ident: ref15
  doi: 10.1016/j.imavis.2008.07.004
– ident: ref17
  doi: 10.1016/S0031-3203(02)00083-3
– ident: ref61
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref16
  doi: 10.1016/j.imavis.2004.03.026
– year: 1977
  ident: ref69
  publication-title: SIPI-USC Brodatz Texture Image Database
– ident: ref54
  doi: 10.1016/j.patrec.2009.02.006
– ident: ref55
  doi: 10.1016/S0167-8655(02)00244-1
– ident: ref18
  doi: 10.1016/j.ipm.2006.07.014
– ident: ref43
  doi: 10.1109/ICIP.2008.4711909
– ident: ref63
  doi: 10.1109/TPAMI.2009.155
– ident: ref42
  doi: 10.1109/TIP.2009.2032313
– ident: ref71
  doi: 10.1016/j.patrec.2008.10.005
– ident: ref34
  doi: 10.1109/TSMCB.2005.850176
– ident: ref4
  doi: 10.1109/97.650036
– ident: ref59
  doi: 10.1002/sam.10093
– year: 2007
  ident: ref75
  publication-title: Outex Texture Image Database
– ident: ref30
  doi: 10.1109/TCSVT.2003.816507
– ident: ref26
  doi: 10.1109/76.927424
– ident: ref6
  doi: 10.1109/TCOM.1984.1095973
– ident: ref68
  doi: 10.1145/1348246.1348248
– ident: ref13
  doi: 10.1049/el.2010.3232
– volume: 4
  start-page: 31
  year: 2009
  ident: ref14
  article-title: Color image clustering using block truncation algorithm
  publication-title: Int J Comput Sci Issues
– volume: 44
  start-page: 317
  year: 1998
  ident: ref5
  article-title: An efficient BTC image compression technique
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/30.681944
– ident: ref62
  doi: 10.1016/S0031-3203(00)00010-8
– start-page: 73
  year: 2002
  ident: ref57
  article-title: Measurement of color texture
  publication-title: Proc Workshop Texture Anal Mach Vis
– ident: ref64
  doi: 10.1109/TIP.2014.2310123
– ident: ref7
  doi: 10.1109/TIP.2008.2007385
– ident: ref2
  doi: 10.1109/TCOM.1987.1096773
– ident: ref41
  doi: 10.1016/j.compeleceng.2012.11.023
– ident: ref73
  doi: 10.1109/CVPR.2006.264
– ident: ref8
  doi: 10.1016/j.dsp.2009.04.007
– ident: ref36
  doi: 10.1109/TIP.2010.2042645
– ident: ref23
  doi: 10.1016/S0923-5965(98)00037-X
– start-page: 304
  year: 2013
  ident: ref50
  article-title: Hamming embedding and weak geometric consistency for large scale image search
  publication-title: Proc 10th Eur Conf Comput Vis (ECCV)
– ident: ref53
  doi: 10.1016/j.patcog.2011.02.003
– ident: ref35
  doi: 10.1016/0031-3203(95)00067-4
– ident: ref11
  doi: 10.1109/TIP.2002.807356
– volume: 57
  start-page: 1005
  year: 2011
  ident: ref22
  article-title: Image indexing and retrieval in JPEG compressed domain based on vector quantization
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2011.11.064
– ident: ref31
  doi: 10.1109/TMM.2008.2001357
– year: 2001
  ident: ref24
  publication-title: Corel Photo Collection Color Image Database
– start-page: 304
  year: 2008
  ident: ref72
  article-title: Hamming embedding and weak geometric consistency for large scale image search
  publication-title: Proc 10th Eur Conf Comput Vis
– ident: ref3
  doi: 10.1109/26.99132
– ident: ref32
  doi: 10.1109/CVPR.2006.264
– ident: ref20
  doi: 10.1109/TIM.2011.2135010
– volume: 1
  start-page: 205
  year: 2006
  ident: ref19
  article-title: Content-based image retrieval using multiresolution color and texture features
  publication-title: J Inf Technol Appl
– ident: ref27
  doi: 10.1007/BF00130487
– ident: ref37
  doi: 10.1016/j.patcog.2009.08.017
– ident: ref65
  doi: 10.1109/CVPR.2006.68
– ident: ref21
  doi: 10.1049/el:20052176
– ident: ref38
  doi: 10.1016/j.sigpro.2011.12.005
– start-page: 762
  year: 1997
  ident: ref28
  article-title: Image indexing using color correlograms
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
  doi: 10.1109/CVPR.1997.609412
– ident: ref44
  doi: 10.1109/TIP.2014.2313232
– start-page: 1
  year: 2007
  ident: ref12
  article-title: Image retrieval based on texture and color method in BTC-VQ compressed domain
  publication-title: Proc 9th Int Symp Signal Process Appl
– ident: ref33
  doi: 10.1109/34.531803
– year: 2001
  ident: ref29
  publication-title: ISO/IEC 15938-3/FDIS Information Technology-Multimedia Content Description Interface-Part 3 Visual
– ident: ref66
  doi: 10.1023/A:1011139631724
– start-page: 209
  year: 2011
  ident: ref49
  article-title: Contextual weighting for vocabulary tree based image retrieval
  publication-title: Proc IEEE Int Conf Comput Vis (ICCV)
– ident: ref48
  doi: 10.1109/ICCV.2003.1238663
– ident: ref39
  doi: 10.1109/TIP.2009.2035882
– start-page: 3370
  year: 2012
  ident: ref67
  article-title: Beyond spatial pyramids: Receptive field learning for pooled image features
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref51
  doi: 10.1109/TIP.2014.2305072
– year: 2006
  ident: ref76
  publication-title: KTH-TIPS Texture Image Database
– ident: ref47
  doi: 10.1109/TIP.2014.2329182
– ident: ref1
  doi: 10.1109/TCOM.1979.1094560
SSID ssj0014516
Score 2.4859574
Snippet This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1010
SubjectTerms Arrays
Band-pass filters
Bit Pattern Feature
Color Co-occurrence feature
Content-Based Image Retrieval
Feature extraction
Image coding
Image color analysis
Image retrieval
Indexing
Ordered Dither Block Truncation Coding
Title Content-Based Image Retrieval Using Features Extracted From Halftoning-Based Block Truncation Coding
URI https://ieeexplore.ieee.org/document/6960839
https://www.ncbi.nlm.nih.gov/pubmed/25420264
https://www.proquest.com/docview/1684180207
https://www.proquest.com/docview/1652462743
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4BT-xhbMBGNzZ5Ei-TSJsmdhw_DkRVkJgmVCTeIttxXoAElURC_PXcOU60Tdu0t0g9N07vc--7H7kDOIodT7WzaWQURaus4VGe83mkkqqqUm3jyocuLr9ny2t-cSNuNuB4fBfGOeeLz9yULn0uv2xsR6GyWYZ0Gw36Jmyi49a_qzVmDGjgrM9sChlJpP1DSjJWs9X5D6rh4tMkleQwUANgwdHrz_gv1siPV_k70_QWZ7EDl8Ne-0KT22nXmql9_q2N4_8-zBt4Hagn-9Zj5S1suHoXdgINZeGQP-7Cq596FO5B6ftX1W10gvauZOf3-AfErvwcLgQp8yUHjIhkh447O3tqff_nki3WzT1b6ruq9QHfsPwEbectW627ug8VstOGjOc-XC_OVqfLKIxmiGzKZRvNS6njygmpTZI7ZYyMjcAfV1U8V8gJDA015pXVJpMZyul5KRJFXEEkhIH0HWzVTe0OgFlNbpvKs9w4jgLKImdMpJSlSvPEyAnMBhUVNvQtp_EZd4X3X2JVoH4L0m8R9DuBr-OKh75nxz9k90g1o1zQygQOBxQU4VA_FvMMUZwjv8Y9fRk_xuNIORZdu6YjGZFwmmeUTuB9j57xuwfQffjzPT_CNu5M9AVuh7DVrjv3CRlPaz57qL8A0VX4hA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8QA8MNgYFAYYiRck0qaJHcePbFrVwjoh1El7i2zHedmWoC6REH89d44TAQLEW6SeG6f3uffdj9wBvI0dT7WzaWQURaus4VGe83mkkqqqUm3jyocu1ufZ8oJ_vBSXO_B-fBfGOeeLz9yULn0uv2xsR6GyWYZ0Gw36HbiLdl8k_dtaY86ARs763KaQkUTiPyQlYzXbrD5TFRefJqkkl4FaAAuOfn_Gf7FHfsDK37mmtzmLPVgPu-1LTa6mXWum9vtvjRz_93EewcNAPtmHHi2PYcfV-7AXiCgLx_x2Hx781KXwAErfwapuo2O0eCVb3eBfEPviJ3EhTJkvOmBEJTt03dnpt9Z3gC7ZYtvcsKW-rlof8g3Lj9F6XrHNtqv7YCE7ach8PoGLxenmZBmF4QyRTblso3kpdVw5IbVJcqeMkbER-OOqiucKWYGhsca8stpkMkM5PS9FoogtiIRQkB7Cbt3U7hkwq8lxU3mWG8dRQFlkjYmUslRpnhg5gdmgosKGzuU0QOO68B5MrArUb0H6LYJ-J_BuXPG179rxD9kDUs0oF7QygaMBBUU41rfFPEMc58iwcU9vxo_xQFKWRdeu6UhGJJwmGqUTeNqjZ_zuAXTP_3zP13BvuVmfFWer808v4D7uUvTlbkew22479xL5T2teedj_APJx-84
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content-Based+Image+Retrieval+Using+Features+Extracted+From+Halftoning-Based+Block+Truncation+Coding&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Jing-Ming+Guo&rft.au=Prasetyo%2C+Heri&rft.date=2015-03-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=24&rft.issue=3&rft.spage=1010&rft.epage=1024&rft_id=info:doi/10.1109%2FTIP.2014.2372619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2014_2372619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon