Content-Based Image Retrieval Using Features Extracted From Halftoning-Based Block Truncation Coding
This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers an...
Saved in:
Published in | IEEE transactions on image processing Vol. 24; no. 3; pp. 1010 - 1024 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers and bitmap image. Two image features are proposed to index an image, namely, color co-occurrence feature (CCF) and bit pattern features (BPF), which are generated directly from the ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two ODBTC quantizers and bitmap, respectively, by involving the visual codebook. Experimental results show that the proposed method is superior to the block truncation coding image retrieval systems and the other earlier methods, and thus prove that the ODBTC scheme is not only suited for image compression, because of its simplicity, but also offers a simple and effective descriptor to index images in CBIR system. |
---|---|
AbstractList | This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers and bitmap image. Two image features are proposed to index an image, namely, color co-occurrence feature (CCF) and bit pattern features (BPF), which are generated directly from the ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two ODBTC quantizers and bitmap, respectively, by involving the visual codebook. Experimental results show that the proposed method is superior to the block truncation coding image retrieval systems and the other earlier methods, and thus prove that the ODBTC scheme is not only suited for image compression, because of its simplicity, but also offers a simple and effective descriptor to index images in CBIR system.This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers and bitmap image. Two image features are proposed to index an image, namely, color co-occurrence feature (CCF) and bit pattern features (BPF), which are generated directly from the ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two ODBTC quantizers and bitmap, respectively, by involving the visual codebook. Experimental results show that the proposed method is superior to the block truncation coding image retrieval systems and the other earlier methods, and thus prove that the ODBTC scheme is not only suited for image compression, because of its simplicity, but also offers a simple and effective descriptor to index images in CBIR system. This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers and bitmap image. Two image features are proposed to index an image, namely, color co-occurrence feature (CCF) and bit pattern features (BPF), which are generated directly from the ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two ODBTC quantizers and bitmap, respectively, by involving the visual codebook. Experimental results show that the proposed method is superior to the block truncation coding image retrieval systems and the other earlier methods, and thus prove that the ODBTC scheme is not only suited for image compression, because of its simplicity, but also offers a simple and effective descriptor to index images in CBIR system. |
Author | Jing-Ming Guo Prasetyo, Heri |
Author_xml | – sequence: 1 surname: Jing-Ming Guo fullname: Jing-Ming Guo email: jmguo@seed.net.tw organization: Dept. of Electr. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan – sequence: 2 givenname: Heri surname: Prasetyo fullname: Prasetyo, Heri email: heri_inf_its_02@yahoo.co.id organization: Dept. of Electr. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25420264$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1r3DAQxUVJaT7ae6FQDL3k4o0k68M6Jks2WQi0hM1ZyPY4OLWlRJJD899nkt3kkENhQAP6vWHevEOy54MHQr4zumCMmpPN-s-CUyYWvNJcMfOJHDAjWEmp4HvYU6lLzYTZJ4cp3VEkJVNfyD6XglOuxAHplsFn8Lk8cwm6Yj25WyiuIccBHt1Y3KTB3xYrcHmOkIrzfzm6NiO4imEqLt3Y5-AR2cnPxtD-LTZx9q3LQ_DFMnT4-5V87t2Y4NvuPSI3q_PN8rK8-n2xXp5elW0ldC5Zpx3tQWrX8BpM02jaSPRlelGjK9koJYXoW9corZBzrJPcMMmx-r5y1RE53s69j-FhhpTtNKQWxtF5CHOyTEkuFNeiQvTXB_QuzNHjdkjVgtWUU43Uzx01NxN09j4Ok4tP9u1-CKgt0MaQUoTetkN-tY6HGkbLqH0JymJQ9iUouwsKhfSD8G32fyQ_tpIBAN5xZRStK1M9A3eUm_g |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1080_13682199_2017_1416737 crossref_primary_10_1109_ACCESS_2018_2889323 crossref_primary_10_1109_TIP_2022_3203612 crossref_primary_10_4018_IJCVIP_2018010104 crossref_primary_10_3390_jimaging3040043 crossref_primary_10_1002_asi_23907 crossref_primary_10_1002_cpe_6533 crossref_primary_10_1155_2016_3271924 crossref_primary_10_1016_j_dsp_2018_07_016 crossref_primary_10_1109_ACCESS_2020_3003911 crossref_primary_10_1155_2020_8851931 crossref_primary_10_1109_TCSVT_2020_3032685 crossref_primary_10_1109_ACCESS_2023_3308911 crossref_primary_10_1049_iet_ipr_2018_6153 crossref_primary_10_1007_s11042_019_7605_5 crossref_primary_10_1142_S1793351X1840010X crossref_primary_10_1109_ACCESS_2020_2981720 crossref_primary_10_35860_iarej_811927 crossref_primary_10_1109_TIP_2016_2526902 crossref_primary_10_1186_s41074_017_0033_4 crossref_primary_10_1155_2021_4151482 crossref_primary_10_1007_s11042_019_08100_3 crossref_primary_10_25046_aj0601156 crossref_primary_10_1016_j_sigpro_2015_11_009 crossref_primary_10_1016_j_patcog_2015_12_012 crossref_primary_10_1007_s11042_019_08401_7 crossref_primary_10_1109_TIP_2017_2736343 crossref_primary_10_1109_TMM_2015_2399851 crossref_primary_10_3233_IDA_184411 crossref_primary_10_1007_s11277_018_5943_7 crossref_primary_10_1109_ACCESS_2019_2948266 crossref_primary_10_1016_j_knosys_2023_110953 crossref_primary_10_1007_s11042_019_7597_1 crossref_primary_10_3390_sym11010021 crossref_primary_10_3390_app9112211 crossref_primary_10_1016_j_jvcir_2015_12_016 crossref_primary_10_1049_iet_ipr_2019_1023 crossref_primary_10_1177_0020294018824122 crossref_primary_10_1007_s13042_016_0597_9 crossref_primary_10_1049_iet_ipr_2018_6619 crossref_primary_10_1016_j_jvcir_2021_103396 crossref_primary_10_1080_09540091_2020_1753174 crossref_primary_10_3390_info8010027 crossref_primary_10_3390_info9020041 crossref_primary_10_1007_s11042_017_5508_x crossref_primary_10_1016_j_patcog_2019_04_003 crossref_primary_10_1142_S0218001417560092 crossref_primary_10_1016_j_jisa_2019_102367 crossref_primary_10_1007_s11042_018_6246_4 crossref_primary_10_1109_TIP_2015_2507404 crossref_primary_10_1007_s13735_016_0104_9 crossref_primary_10_1371_journal_pone_0194526 crossref_primary_10_1007_s11277_020_07721_4 crossref_primary_10_1109_TIP_2017_2781298 crossref_primary_10_1007_s11042_017_4812_9 crossref_primary_10_1155_2022_4554911 crossref_primary_10_1007_s11042_017_5587_8 crossref_primary_10_1109_TII_2017_2657545 |
Cites_doi | 10.1007/978-1-4471-2099-5_24 10.1109/TMM.2014.2306175 10.1016/j.sigpro.2009.03.013 10.1016/j.sigpro.2004.10.009 10.1109/TIP.2012.2188809 10.1016/j.patcog.2011.11.009 10.1109/CVPR.2009.5206609 10.1109/IPTA.2008.4743780 10.1109/TIP.2014.2333655 10.1016/j.imavis.2008.07.004 10.1016/S0031-3203(02)00083-3 10.1023/B:VISI.0000029664.99615.94 10.1016/j.imavis.2004.03.026 10.1016/j.patrec.2009.02.006 10.1016/S0167-8655(02)00244-1 10.1016/j.ipm.2006.07.014 10.1109/ICIP.2008.4711909 10.1109/TPAMI.2009.155 10.1109/TIP.2009.2032313 10.1016/j.patrec.2008.10.005 10.1109/TSMCB.2005.850176 10.1109/97.650036 10.1002/sam.10093 10.1109/TCSVT.2003.816507 10.1109/76.927424 10.1109/TCOM.1984.1095973 10.1145/1348246.1348248 10.1049/el.2010.3232 10.1109/30.681944 10.1016/S0031-3203(00)00010-8 10.1109/TIP.2014.2310123 10.1109/TIP.2008.2007385 10.1109/TCOM.1987.1096773 10.1016/j.compeleceng.2012.11.023 10.1109/CVPR.2006.264 10.1016/j.dsp.2009.04.007 10.1109/TIP.2010.2042645 10.1016/S0923-5965(98)00037-X 10.1016/j.patcog.2011.02.003 10.1016/0031-3203(95)00067-4 10.1109/TIP.2002.807356 10.1016/j.mcm.2011.11.064 10.1109/TMM.2008.2001357 10.1109/26.99132 10.1109/TIM.2011.2135010 10.1007/BF00130487 10.1016/j.patcog.2009.08.017 10.1109/CVPR.2006.68 10.1049/el:20052176 10.1016/j.sigpro.2011.12.005 10.1109/CVPR.1997.609412 10.1109/TIP.2014.2313232 10.1109/34.531803 10.1023/A:1011139631724 10.1109/ICCV.2003.1238663 10.1109/TIP.2009.2035882 10.1109/TIP.2014.2305072 10.1109/TIP.2014.2329182 10.1109/TCOM.1979.1094560 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2014.2372619 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 1024 |
ExternalDocumentID | 3699427181 25420264 10_1109_TIP_2014_2372619 6960839 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: 10.13039/501100004663 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c347t-1d7a0fe57ab28e9bb70b57269f489415b66544fcab676fe5a1d529152152ff3a3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 10:05:14 EDT 2025 Sun Jun 29 15:43:00 EDT 2025 Thu Apr 03 06:51:27 EDT 2025 Tue Jul 01 02:03:01 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Tue Aug 26 16:40:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | ordered dither block truncation coding Bit pattern feature content-based image retrieval color co-occurrence feature |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-1d7a0fe57ab28e9bb70b57269f489415b66544fcab676fe5a1d529152152ff3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25420264 |
PQID | 1684180207 |
PQPubID | 85429 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TIP_2014_2372619 crossref_primary_10_1109_TIP_2014_2372619 proquest_miscellaneous_1652462743 pubmed_primary_25420264 ieee_primary_6960839 proquest_journals_1684180207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-March 2015-3-00 2015-Mar 20150301 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-March |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref59 ref15 ref58 ref53 ref52 ref55 ref11 ref54 ref17 ref16 ref18 (ref75) 2007 chiang (ref19) 2006; 1 ref51 ref46 ref45 ref48 hoang (ref57) 2002 ref47 ref42 ref41 ref44 ref43 jia (ref67) 2012 huang (ref28) 1997 (ref29) 2001 jegou (ref72) 2008 ref8 ref7 ref9 ref4 ref3 ref6 ref40 ref35 ref34 ref37 ref36 ref31 jegou (ref50) 2013 ref74 ref30 ref33 ref32 ref2 ref1 ref39 ref38 guo (ref10) 2009 ref71 ref73 ref68 ref23 ndjiki-nya (ref25) 2000 ref26 ref64 ref20 (ref24) 2001 wu (ref5) 1998; 44 ref63 ref66 ref65 (ref69) 1977 ref21 wang (ref49) 2011 ref27 (ref70) 2002 poursistani (ref22) 2011; 57 silakari (ref14) 2009; 4 ref60 ref62 ref61 (ref76) 2006 gahroudi (ref12) 2007 |
References_xml | – ident: ref45 doi: 10.1007/978-1-4471-2099-5_24 – year: 2002 ident: ref70 publication-title: MIT-Vision Texture (VisTex) Image Database – year: 2000 ident: ref25 article-title: Subjective evaluation of the MPEG-7 retrieval accuracy measure (ANMRR) – ident: ref60 doi: 10.1109/TMM.2014.2306175 – start-page: 2012 year: 2009 ident: ref10 article-title: Reversible data hiding in highly efficient compression scheme publication-title: Proc IEEE Int Conf Acoust Speech Signal Process – ident: ref9 doi: 10.1016/j.sigpro.2009.03.013 – ident: ref56 doi: 10.1016/j.sigpro.2004.10.009 – ident: ref40 doi: 10.1109/TIP.2012.2188809 – ident: ref74 doi: 10.1016/j.patcog.2011.11.009 – ident: ref46 doi: 10.1109/CVPR.2009.5206609 – ident: ref52 doi: 10.1109/IPTA.2008.4743780 – ident: ref58 doi: 10.1109/TIP.2014.2333655 – ident: ref15 doi: 10.1016/j.imavis.2008.07.004 – ident: ref17 doi: 10.1016/S0031-3203(02)00083-3 – ident: ref61 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref16 doi: 10.1016/j.imavis.2004.03.026 – year: 1977 ident: ref69 publication-title: SIPI-USC Brodatz Texture Image Database – ident: ref54 doi: 10.1016/j.patrec.2009.02.006 – ident: ref55 doi: 10.1016/S0167-8655(02)00244-1 – ident: ref18 doi: 10.1016/j.ipm.2006.07.014 – ident: ref43 doi: 10.1109/ICIP.2008.4711909 – ident: ref63 doi: 10.1109/TPAMI.2009.155 – ident: ref42 doi: 10.1109/TIP.2009.2032313 – ident: ref71 doi: 10.1016/j.patrec.2008.10.005 – ident: ref34 doi: 10.1109/TSMCB.2005.850176 – ident: ref4 doi: 10.1109/97.650036 – ident: ref59 doi: 10.1002/sam.10093 – year: 2007 ident: ref75 publication-title: Outex Texture Image Database – ident: ref30 doi: 10.1109/TCSVT.2003.816507 – ident: ref26 doi: 10.1109/76.927424 – ident: ref6 doi: 10.1109/TCOM.1984.1095973 – ident: ref68 doi: 10.1145/1348246.1348248 – ident: ref13 doi: 10.1049/el.2010.3232 – volume: 4 start-page: 31 year: 2009 ident: ref14 article-title: Color image clustering using block truncation algorithm publication-title: Int J Comput Sci Issues – volume: 44 start-page: 317 year: 1998 ident: ref5 article-title: An efficient BTC image compression technique publication-title: IEEE Trans Consum Electron doi: 10.1109/30.681944 – ident: ref62 doi: 10.1016/S0031-3203(00)00010-8 – start-page: 73 year: 2002 ident: ref57 article-title: Measurement of color texture publication-title: Proc Workshop Texture Anal Mach Vis – ident: ref64 doi: 10.1109/TIP.2014.2310123 – ident: ref7 doi: 10.1109/TIP.2008.2007385 – ident: ref2 doi: 10.1109/TCOM.1987.1096773 – ident: ref41 doi: 10.1016/j.compeleceng.2012.11.023 – ident: ref73 doi: 10.1109/CVPR.2006.264 – ident: ref8 doi: 10.1016/j.dsp.2009.04.007 – ident: ref36 doi: 10.1109/TIP.2010.2042645 – ident: ref23 doi: 10.1016/S0923-5965(98)00037-X – start-page: 304 year: 2013 ident: ref50 article-title: Hamming embedding and weak geometric consistency for large scale image search publication-title: Proc 10th Eur Conf Comput Vis (ECCV) – ident: ref53 doi: 10.1016/j.patcog.2011.02.003 – ident: ref35 doi: 10.1016/0031-3203(95)00067-4 – ident: ref11 doi: 10.1109/TIP.2002.807356 – volume: 57 start-page: 1005 year: 2011 ident: ref22 article-title: Image indexing and retrieval in JPEG compressed domain based on vector quantization publication-title: Math Comput Model doi: 10.1016/j.mcm.2011.11.064 – ident: ref31 doi: 10.1109/TMM.2008.2001357 – year: 2001 ident: ref24 publication-title: Corel Photo Collection Color Image Database – start-page: 304 year: 2008 ident: ref72 article-title: Hamming embedding and weak geometric consistency for large scale image search publication-title: Proc 10th Eur Conf Comput Vis – ident: ref3 doi: 10.1109/26.99132 – ident: ref32 doi: 10.1109/CVPR.2006.264 – ident: ref20 doi: 10.1109/TIM.2011.2135010 – volume: 1 start-page: 205 year: 2006 ident: ref19 article-title: Content-based image retrieval using multiresolution color and texture features publication-title: J Inf Technol Appl – ident: ref27 doi: 10.1007/BF00130487 – ident: ref37 doi: 10.1016/j.patcog.2009.08.017 – ident: ref65 doi: 10.1109/CVPR.2006.68 – ident: ref21 doi: 10.1049/el:20052176 – ident: ref38 doi: 10.1016/j.sigpro.2011.12.005 – start-page: 762 year: 1997 ident: ref28 article-title: Image indexing using color correlograms publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit doi: 10.1109/CVPR.1997.609412 – ident: ref44 doi: 10.1109/TIP.2014.2313232 – start-page: 1 year: 2007 ident: ref12 article-title: Image retrieval based on texture and color method in BTC-VQ compressed domain publication-title: Proc 9th Int Symp Signal Process Appl – ident: ref33 doi: 10.1109/34.531803 – year: 2001 ident: ref29 publication-title: ISO/IEC 15938-3/FDIS Information Technology-Multimedia Content Description Interface-Part 3 Visual – ident: ref66 doi: 10.1023/A:1011139631724 – start-page: 209 year: 2011 ident: ref49 article-title: Contextual weighting for vocabulary tree based image retrieval publication-title: Proc IEEE Int Conf Comput Vis (ICCV) – ident: ref48 doi: 10.1109/ICCV.2003.1238663 – ident: ref39 doi: 10.1109/TIP.2009.2035882 – start-page: 3370 year: 2012 ident: ref67 article-title: Beyond spatial pyramids: Receptive field learning for pooled image features publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref51 doi: 10.1109/TIP.2014.2305072 – year: 2006 ident: ref76 publication-title: KTH-TIPS Texture Image Database – ident: ref47 doi: 10.1109/TIP.2014.2329182 – ident: ref1 doi: 10.1109/TCOM.1979.1094560 |
SSID | ssj0014516 |
Score | 2.4859574 |
Snippet | This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low-complexity ordered-dither block truncation coding... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1010 |
SubjectTerms | Arrays Band-pass filters Bit Pattern Feature Color Co-occurrence feature Content-Based Image Retrieval Feature extraction Image coding Image color analysis Image retrieval Indexing Ordered Dither Block Truncation Coding |
Title | Content-Based Image Retrieval Using Features Extracted From Halftoning-Based Block Truncation Coding |
URI | https://ieeexplore.ieee.org/document/6960839 https://www.ncbi.nlm.nih.gov/pubmed/25420264 https://www.proquest.com/docview/1684180207 https://www.proquest.com/docview/1652462743 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4BT-xhbMBGNzZ5Ei-TSJsmdhw_DkRVkJgmVCTeIttxXoAElURC_PXcOU60Tdu0t0g9N07vc--7H7kDOIodT7WzaWQURaus4VGe83mkkqqqUm3jyocuLr9ny2t-cSNuNuB4fBfGOeeLz9yULn0uv2xsR6GyWYZ0Gw36Jmyi49a_qzVmDGjgrM9sChlJpP1DSjJWs9X5D6rh4tMkleQwUANgwdHrz_gv1siPV_k70_QWZ7EDl8Ne-0KT22nXmql9_q2N4_8-zBt4Hagn-9Zj5S1suHoXdgINZeGQP-7Cq596FO5B6ftX1W10gvauZOf3-AfErvwcLgQp8yUHjIhkh447O3tqff_nki3WzT1b6ruq9QHfsPwEbectW627ug8VstOGjOc-XC_OVqfLKIxmiGzKZRvNS6njygmpTZI7ZYyMjcAfV1U8V8gJDA015pXVJpMZyul5KRJFXEEkhIH0HWzVTe0OgFlNbpvKs9w4jgLKImdMpJSlSvPEyAnMBhUVNvQtp_EZd4X3X2JVoH4L0m8R9DuBr-OKh75nxz9k90g1o1zQygQOBxQU4VA_FvMMUZwjv8Y9fRk_xuNIORZdu6YjGZFwmmeUTuB9j57xuwfQffjzPT_CNu5M9AVuh7DVrjv3CRlPaz57qL8A0VX4hA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8QA8MNgYFAYYiRck0qaJHcePbFrVwjoh1El7i2zHedmWoC6REH89d44TAQLEW6SeG6f3uffdj9wBvI0dT7WzaWQURaus4VGe83mkkqqqUm3jyocu1ufZ8oJ_vBSXO_B-fBfGOeeLz9yULn0uv2xsR6GyWYZ0Gw36HbiLdl8k_dtaY86ARs763KaQkUTiPyQlYzXbrD5TFRefJqkkl4FaAAuOfn_Gf7FHfsDK37mmtzmLPVgPu-1LTa6mXWum9vtvjRz_93EewcNAPtmHHi2PYcfV-7AXiCgLx_x2Hx781KXwAErfwapuo2O0eCVb3eBfEPviJ3EhTJkvOmBEJTt03dnpt9Z3gC7ZYtvcsKW-rlof8g3Lj9F6XrHNtqv7YCE7ach8PoGLxenmZBmF4QyRTblso3kpdVw5IbVJcqeMkbER-OOqiucKWYGhsca8stpkMkM5PS9FoogtiIRQkB7Cbt3U7hkwq8lxU3mWG8dRQFlkjYmUslRpnhg5gdmgosKGzuU0QOO68B5MrArUb0H6LYJ-J_BuXPG179rxD9kDUs0oF7QygaMBBUU41rfFPEMc58iwcU9vxo_xQFKWRdeu6UhGJJwmGqUTeNqjZ_zuAXTP_3zP13BvuVmfFWer808v4D7uUvTlbkew22479xL5T2teedj_APJx-84 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content-Based+Image+Retrieval+Using+Features+Extracted+From+Halftoning-Based+Block+Truncation+Coding&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Jing-Ming+Guo&rft.au=Prasetyo%2C+Heri&rft.date=2015-03-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=24&rft.issue=3&rft.spage=1010&rft.epage=1024&rft_id=info:doi/10.1109%2FTIP.2014.2372619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2014_2372619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |