How Does the Left Ventricle Work? Ventricular Rotation as a New Index of Cardiac Performance

Although simple cylindrical or ellipsoidal left ventricular (LV) geometry with transverse or circumferential muscle contraction has been traditionally used to estimate LV performance, the estimated LV ejection fraction (EF) with muscle fiber shortening up to 20% is less than 50% of maximum, which is...

Full description

Saved in:
Bibliographic Details
Published inKorean circulation journal Vol. 39; no. 9; pp. 347 - 351
Main Author Song, Jae-Kwan
Format Journal Article
LanguageEnglish
Published Korea (South) The Korean Society of Cardiology 01.09.2009
대한심장학회
Subjects
Online AccessGet full text
ISSN1738-5520
1738-5555
1738-5555
DOI10.4070/kcj.2009.39.9.347

Cover

Abstract Although simple cylindrical or ellipsoidal left ventricular (LV) geometry with transverse or circumferential muscle contraction has been traditionally used to estimate LV performance, the estimated LV ejection fraction (EF) with muscle fiber shortening up to 20% is less than 50% of maximum, which is lower than the normal EF observed in routine clinical practice. Thus, oblique fiber orientation and LV rotation, in addition to radial thickening and longitudinal shortening, is predicted as an essential component of effective LV pumping. This was confirmed by animal experiments using surgically implanted markers or invasive sonomicrometry. Demonstration of the muscle band extending from the pulmonary artery to the aorta, which connects the ventricular myocardium, both right ventricle and LV as a continuous band (muscle band theory) provides an anatomical backbone of helical configuration of the cardiac muscle band with descending and ascending segments wrapping the LV apex. Moreover, sequential, non-simultaneous, activation and contraction of the helicoids muscle band contributes to LV rotation or twist motion. Recently, magnetic resonance imaging and speckle tracking echocardiography (STE) techniques have provided an excellent noninvasive way to measure LV rotation and twist, which is expected to contribute to a more thorough evaluation of both LV systolic and diastolic function. Initial animal experiments showed that quantification of apical rotation or LV twist using STE is more accurate for estimating LV systolic function than conventional EF under a variety of LV inotropic conditions, irrespective of coronary ligation. As de-rotation or the untwisting rate can also be measured by STE, the role of ventricular untwisting as a temporal link between LV relaxation and suction can be addressed. Further clinical investigations are needed to determine the real clinical impact of these new indices of LV mechanical function.
AbstractList Although simple cylindrical or ellipsoidal left ventricular (LV) geometry with transverse or circumferential muscle contraction has been traditionally used to estimate LV performance, the estimated LV ejection fraction (EF) with muscle fiber shortening up to 20% is less than 50% of maximum, which is lower than the normal EF observed in routine clinical practice. Thus, oblique fiber orientation and LV rotation, in addition to radial thickening and longitudinal shortening, is predicted as an essential component of effective LV pumping. This was confirmed by animal experiments using surgically implanted markers or invasive sonomicrometry. Demonstration of the muscle band extending from the pulmonary artery to the aorta, which connects the ventricular myocardium, both right ventricle and LV as a continuous band (muscle band theory) provides an anatomical backbone of helical configuration of the cardiac muscle band with descending and ascending segments wrapping the LV apex. Moreover, sequential, non-simultaneous, activation and contraction of the helicoids muscle band contributes to LV rotation or twist motion. Recently, magnetic resonance imaging and speckle tracking echocardiography (STE) techniques have provided an excellent noninvasive way to measure LV rotation and twist, which is expected to contribute to a more thorough evaluation of both LV systolic and diastolic function. Initial animal experiments showed that quantification of apical rotation or LV twist using STE is more accurate for estimating LV systolic function than conventional EF under a variety of LV inotropic conditions, irrespective of coronary ligation. As de-rotation or the untwisting rate can also be measured by STE, the role of ventricular untwisting as a temporal link between LV relaxation and suction can be addressed. Further clinical investigations are needed to determine the real clinical impact of these new indices of LV mechanical function.Although simple cylindrical or ellipsoidal left ventricular (LV) geometry with transverse or circumferential muscle contraction has been traditionally used to estimate LV performance, the estimated LV ejection fraction (EF) with muscle fiber shortening up to 20% is less than 50% of maximum, which is lower than the normal EF observed in routine clinical practice. Thus, oblique fiber orientation and LV rotation, in addition to radial thickening and longitudinal shortening, is predicted as an essential component of effective LV pumping. This was confirmed by animal experiments using surgically implanted markers or invasive sonomicrometry. Demonstration of the muscle band extending from the pulmonary artery to the aorta, which connects the ventricular myocardium, both right ventricle and LV as a continuous band (muscle band theory) provides an anatomical backbone of helical configuration of the cardiac muscle band with descending and ascending segments wrapping the LV apex. Moreover, sequential, non-simultaneous, activation and contraction of the helicoids muscle band contributes to LV rotation or twist motion. Recently, magnetic resonance imaging and speckle tracking echocardiography (STE) techniques have provided an excellent noninvasive way to measure LV rotation and twist, which is expected to contribute to a more thorough evaluation of both LV systolic and diastolic function. Initial animal experiments showed that quantification of apical rotation or LV twist using STE is more accurate for estimating LV systolic function than conventional EF under a variety of LV inotropic conditions, irrespective of coronary ligation. As de-rotation or the untwisting rate can also be measured by STE, the role of ventricular untwisting as a temporal link between LV relaxation and suction can be addressed. Further clinical investigations are needed to determine the real clinical impact of these new indices of LV mechanical function.
Although simple cylindrical or ellipsoidal left ventricular (LV) geometry with transverse or circumferential muscle contraction has been traditionally used to estimate LV performance, the estimated LV ejection fraction (EF) with muscle fiber shortening up to 20% is less than 50% of maximum, which is lower than the normal EF observed in routine clinical practice. Thus, oblique fiber orientation and LV rotation, in addition to radial thickening and longitudinal shortening, is predicted as an essential component of effective LV pumping. This was confirmed by animal experiments using surgically implanted markers or invasive sonomicrometry. Demonstration of the muscle band extending from the pulmonary artery to the aorta, which connects the ventricular myocardium, both right ventricle and LV as a continuous band (muscle band theory) provides an anatomical backbone of helical configuration of the cardiac muscle band with descending and ascending segments wrapping the LV apex. Moreover, sequential, non-simultaneous, activation and contraction of the helicoids muscle band contributes to LV rotation or twist motion. Recently, magnetic resonance imaging and speckle tracking echocardiography (STE) techniques have provided an excellent noninvasive way to measure LV rotation and twist, which is expected to contribute to a more thorough evaluation of both LV systolic and diastolic function. Initial animal experiments showed that quantification of apical rotation or LV twist using STE is more accurate for estimating LV systolic function than conventional EF under a variety of LV inotropic conditions, irrespective of coronary ligation. As de-rotation or the untwisting rate can also be measured by STE, the role of ventricular untwisting as a temporal link between LV relaxation and suction can be addressed. Further clinical investigations are needed to determine the real clinical impact of these new indices of LV mechanical function.
Although simple cylindrical or ellipsoidal left ventricular (LV) geometry with transverse or circumferential muscle contraction has been traditionally used to estimate LV performance, the estimated LV ejection fraction (EF) with muscle fiber shortening up to 20% is less than 50% of maximum, which is lower than the normal EF observed in routine clinical practice. Thus, oblique fiber orientation and LV rotation, in addition to radial thickening and longitudinal shortening, is predicted as an essential component of effective LV pumping. This was confirmed by animal experiments using surgically implanted markers or invasive sonomicrometry. Demonstration of the muscle band extending from the pulmonary artery to the aorta, which connects the ventricular myocardium, both right ventricle and LV as a continuous band (muscle band theory) provides an anatomical backbone of helical configuration of the cardiac muscle band with descending and ascending segments wrapping the LV apex. Moreover, sequential, non-simultaneous, activation and contraction of the helicoids muscle band contributes to LV rotation or twist motion. Recently, magnetic resonance imaging and speckle tracking echocardiography (STE) techniques have provided an excellent noninvasive way to measure LV rotation and twist, which is expected to contribute to a more thorough evaluation of both LV systolic and diastolic function. Initial animal experiments showed that quantification of apical rotation or LV twist using STE is more accurate for estimating LV systolic function than conventional EF under a variety of LV inotropic conditions, irrespective of coronary ligation. As de-rotation or the untwisting rate can also be measured by STE, the role of ventricular untwisting as a temporal link between LV relaxation and suction can be addressed. Further clinical investigations are needed to determine the real clinical impact of these new indices of LV mechanical function. KCI Citation Count: 0
Author Song, Jae-Kwan
AuthorAffiliation Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
AuthorAffiliation_xml – name: Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
Author_xml – sequence: 1
  givenname: Jae-Kwan
  surname: Song
  fullname: Song, Jae-Kwan
  organization: Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19949617$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001378430$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UU1vEzEQtVAR_YAfwAX5hjgktb32Or6AqgBtpKhFVQQXJMs7O0udbOzW3lD49zhNWz4O-DAzlt9788ZzSPZCDEjIS87Gkml2vILlWDBmxpUZlyD1E3LAdTUZqXL2HmvB9slhzkvGaimFeUb2uTHS1FwfkK9n8Za-j5jpcIV0jt1AP2MYkoce6ZeYVu8e7pveJXoZBzf4GKjL1NFzvKWz0OIPGjs6dan1DugnTF1MaxcAn5OnneszvrjPR2Tx8cNiejaaX5zOpifzERTPeqQVCmDAOQena-UapSZOQmsqqJVqmVM1E4B1p5hoGykaphvRmlZrxjrA6oi82cmG1NkVeBudv8vfol0le3K5mFnOtRGKF-zbHfZ606yxhe1srrfXya9d-nnH_Psl-Kui890KrfmkEkXg9b1AijcbzINd-wzY9y5g3GSrK8mLayEL8tWfrR57PHx-AfAdAFLMOWH3G8LsdsFliKXdLthWxpYgtxz9Dwf8biXFre__w_wF3LWrBA
CitedBy_id crossref_primary_10_4137_CMC_S18744
crossref_primary_10_1016_j_echo_2012_07_007
crossref_primary_10_1186_1476_7120_12_6
crossref_primary_10_1016_j_amjcard_2010_05_042
crossref_primary_10_1016_j_jacbts_2020_07_011
crossref_primary_10_1136_bcr_2018_225439
crossref_primary_10_1148_rg_325115098
crossref_primary_10_3390_diagnostics13203162
Cites_doi 10.1016/j.jacc.2005.10.039
10.3233/THC-1997-51-205
10.1093/oxfordjournals.eurheartj.a060210
10.1161/CIRCULATIONAHA.104.508457
10.1016/j.ejcts.2006.02.051
10.1067/mtc.2001.113745
10.1016/j.echo.2006.07.007
10.1016/S0006-3495(69)86429-5
10.1016/j.jacc.2006.08.030
10.1093/cvr/28.5.629
10.1161/01.CIR.89.1.142
10.1161/01.CIR.92.12.3539
10.1161/01.CIR.83.4.1315
10.1161/CIRCIMAGING.108.794719
10.1161/01.CIR.52.5.859
10.1152/ajpheart.00975.2007
ContentType Journal Article
Copyright Copyright © 2009 The Korean Society of Cardiology 2009
Copyright_xml – notice: Copyright © 2009 The Korean Society of Cardiology 2009
DBID AAYXX
CITATION
NPM
7X8
5PM
ACYCR
DOI 10.4070/kcj.2009.39.9.347
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1738-5555
EndPage 351
ExternalDocumentID oai_kci_go_kr_ARTI_1179251
PMC2771832
19949617
10_4070_kcj_2009_39_9_347
Genre Journal Article
GroupedDBID ---
5-W
8JR
8XY
9ZL
AAYXX
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CITATION
DIK
E3Z
EF.
F5P
HYE
KQ8
M48
O5R
O5S
OK1
PGMZT
RPM
M~E
NPM
7X8
5PM
ACYCR
ID FETCH-LOGICAL-c3477-75e2c0c111ca765ab558a4cd93c655d0a5602ce6f502db42b07b2d9d7700fce3
IEDL.DBID M48
ISSN 1738-5520
1738-5555
IngestDate Sun Mar 09 08:00:04 EDT 2025
Thu Aug 21 14:34:27 EDT 2025
Fri Jul 11 00:44:52 EDT 2025
Thu Jan 02 22:03:50 EST 2025
Tue Jul 01 02:56:35 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Rotation
Ventricular function
Echocardiography
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3477-75e2c0c111ca765ab558a4cd93c655d0a5602ce6f502db42b07b2d9d7700fce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
G704-000708.2009.39.9.003
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.4070/kcj.2009.39.9.347
PMID 19949617
PQID 734165524
PQPubID 23479
PageCount 5
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1179251
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2771832
proquest_miscellaneous_734165524
pubmed_primary_19949617
crossref_primary_10_4070_kcj_2009_39_9_347
crossref_citationtrail_10_4070_kcj_2009_39_9_347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090901
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 9
  year: 2009
  text: 20090901
  day: 1
PublicationDecade 2000
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Korean circulation journal
PublicationTitleAlternate Korean Circ J
PublicationYear 2009
Publisher The Korean Society of Cardiology
대한심장학회
Publisher_xml – name: The Korean Society of Cardiology
– name: 대한심장학회
References Moon (10.4070/kcj.2009.39.9.347_ref12) 1994; 89
Torrent-Guasp (10.4070/kcj.2009.39.9.347_ref5) 2001; 122
Tomioka (10.4070/kcj.2009.39.9.347_ref10) 2006; 29
Buchalter (10.4070/kcj.2009.39.9.347_ref13) 1994; 28
Kroeker (10.4070/kcj.2009.39.9.347_ref14) 1995; 92
Helm (10.4070/kcj.2009.39.9.347_ref7) 2005; 111
Kim (10.4070/kcj.2009.39.9.347_ref15) 2009; 2
Smiseth (10.4070/kcj.2009.39.9.347_ref8) 2006; 47
Sallin (10.4070/kcj.2009.39.9.347_ref1) 1969; 9
Sengupta (10.4070/kcj.2009.39.9.347_ref9) 2006; 48
Notomi (10.4070/kcj.2009.39.9.347_ref17) 2007; 294
Kim (10.4070/kcj.2009.39.9.347_ref16) 2007; 20
Hansen (10.4070/kcj.2009.39.9.347_ref11) 1991; 83
Lower (10.4070/kcj.2009.39.9.347_ref3) 1968
Ingels (10.4070/kcj.2009.39.9.347_ref2) 1997; 5
Prinzen (10.4070/kcj.2009.39.9.347_ref6) 1992; 13
Ingels (10.4070/kcj.2009.39.9.347_ref4) 1975; 52
5791550 - Biophys J. 1969 Jul;9(7):954-64
15911694 - Circulation. 2005 May 31;111(21):2760-7
9134618 - Technol Health Care. 1997 Apr;5(1-2):45-52
1600995 - Eur Heart J. 1992 Apr;13(4):535-43
17218201 - J Am Soc Echocardiogr. 2007 Jan;20(1):45-53
8025907 - Cardiovasc Res. 1994 May;28(5):629-35
11479518 - J Thorac Cardiovasc Surg. 2001 Aug;122(2):389-92
17112989 - J Am Coll Cardiol. 2006 Nov 21;48(10):1988-2001
2013149 - Circulation. 1991 Apr;83(4):1315-26
8521577 - Circulation. 1995 Dec 15;92(12):3539-48
18032523 - Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H505-13
8281641 - Circulation. 1994 Jan;89(1):142-50
1175267 - Circulation. 1975 Nov;52(5):859-67
16563786 - Eur J Cardiothorac Surg. 2006 Apr;29 Suppl 1:S198-206
19808578 - Circ Cardiovasc Imaging. 2009 Mar;2(2):123-31
16386682 - J Am Coll Cardiol. 2006 Jan 3;47(1):173-4
References_xml – volume: 47
  start-page: 173
  year: 2006
  ident: 10.4070/kcj.2009.39.9.347_ref8
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2005.10.039
– volume: 5
  start-page: 45
  year: 1997
  ident: 10.4070/kcj.2009.39.9.347_ref2
  publication-title: Technol Health Care
  doi: 10.3233/THC-1997-51-205
– volume: 13
  start-page: 535
  year: 1992
  ident: 10.4070/kcj.2009.39.9.347_ref6
  publication-title: Eur Heart J
  doi: 10.1093/oxfordjournals.eurheartj.a060210
– volume: 111
  start-page: 2760
  year: 2005
  ident: 10.4070/kcj.2009.39.9.347_ref7
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.104.508457
– volume: 29
  start-page: S198
  issue: Suppl 1
  year: 2006
  ident: 10.4070/kcj.2009.39.9.347_ref10
  publication-title: Eur J Cardiothoracic Surg
  doi: 10.1016/j.ejcts.2006.02.051
– volume: 122
  start-page: 389
  year: 2001
  ident: 10.4070/kcj.2009.39.9.347_ref5
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1067/mtc.2001.113745
– volume: 20
  start-page: 45
  year: 2007
  ident: 10.4070/kcj.2009.39.9.347_ref16
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2006.07.007
– start-page: 1669
  volume-title: Early Science in Oxford
  year: 1968
  ident: 10.4070/kcj.2009.39.9.347_ref3
– volume: 9
  start-page: 954
  year: 1969
  ident: 10.4070/kcj.2009.39.9.347_ref1
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(69)86429-5
– volume: 48
  start-page: 1988
  year: 2006
  ident: 10.4070/kcj.2009.39.9.347_ref9
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2006.08.030
– volume: 28
  start-page: 629
  year: 1994
  ident: 10.4070/kcj.2009.39.9.347_ref13
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/28.5.629
– volume: 89
  start-page: 142
  year: 1994
  ident: 10.4070/kcj.2009.39.9.347_ref12
  publication-title: Circulation
  doi: 10.1161/01.CIR.89.1.142
– volume: 92
  start-page: 3539
  year: 1995
  ident: 10.4070/kcj.2009.39.9.347_ref14
  publication-title: Circulation
  doi: 10.1161/01.CIR.92.12.3539
– volume: 83
  start-page: 1315
  year: 1991
  ident: 10.4070/kcj.2009.39.9.347_ref11
  publication-title: Circulation
  doi: 10.1161/01.CIR.83.4.1315
– volume: 2
  start-page: 123
  year: 2009
  ident: 10.4070/kcj.2009.39.9.347_ref15
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.108.794719
– volume: 52
  start-page: 859
  year: 1975
  ident: 10.4070/kcj.2009.39.9.347_ref4
  publication-title: Circulation
  doi: 10.1161/01.CIR.52.5.859
– volume: 294
  start-page: H505
  year: 2007
  ident: 10.4070/kcj.2009.39.9.347_ref17
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00975.2007
– reference: 8025907 - Cardiovasc Res. 1994 May;28(5):629-35
– reference: 16563786 - Eur J Cardiothorac Surg. 2006 Apr;29 Suppl 1:S198-206
– reference: 16386682 - J Am Coll Cardiol. 2006 Jan 3;47(1):173-4
– reference: 8521577 - Circulation. 1995 Dec 15;92(12):3539-48
– reference: 19808578 - Circ Cardiovasc Imaging. 2009 Mar;2(2):123-31
– reference: 1600995 - Eur Heart J. 1992 Apr;13(4):535-43
– reference: 17112989 - J Am Coll Cardiol. 2006 Nov 21;48(10):1988-2001
– reference: 17218201 - J Am Soc Echocardiogr. 2007 Jan;20(1):45-53
– reference: 18032523 - Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H505-13
– reference: 15911694 - Circulation. 2005 May 31;111(21):2760-7
– reference: 11479518 - J Thorac Cardiovasc Surg. 2001 Aug;122(2):389-92
– reference: 2013149 - Circulation. 1991 Apr;83(4):1315-26
– reference: 8281641 - Circulation. 1994 Jan;89(1):142-50
– reference: 1175267 - Circulation. 1975 Nov;52(5):859-67
– reference: 9134618 - Technol Health Care. 1997 Apr;5(1-2):45-52
– reference: 5791550 - Biophys J. 1969 Jul;9(7):954-64
SSID ssj0064429
Score 1.8077829
SecondaryResourceType review_article
Snippet Although simple cylindrical or ellipsoidal left ventricular (LV) geometry with transverse or circumferential muscle contraction has been traditionally used to...
Although simple cylindrical or ellipsoidal left ventricular (LV) geometry with transverse or circumferential muscle contraction has been traditionally used to...
SourceID nrf
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 347
SubjectTerms Review
내과학
Title How Does the Left Ventricle Work? Ventricular Rotation as a New Index of Cardiac Performance
URI https://www.ncbi.nlm.nih.gov/pubmed/19949617
https://www.proquest.com/docview/734165524
https://pubmed.ncbi.nlm.nih.gov/PMC2771832
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001378430
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Circulation Journal, 2009, 39(9), , pp.347-351
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED4Bk6a9IDbGFjbQCfE0KeA5dlw_ITSBukndEyAeJlm24wCjSiAtYvv3OydpO1C3F0dJ7Fj22b7vdJfvAPZzFmQgPZJ-VmWWCslYqr0sUkXwwMuBG6g2iGb0PR-ei2-X8nIFZumt-gmcLDXtYj6p82Z88Ov-9xFteMKvB2SOsMNb_7MjniS5UyHUKrwgxZRHW2wk5k4F0vxcd47N5c1aAlEtdN5mL1toqdWqKZcB0OdxlH8pptMNWO8RJR53S-A1rITqDbwc9T7zTfgxrB-xqMMECevhOJRTjDGOTayNMSzrCC-6-xiRik3dOefRTtAigW5sCRWxLtG3q8nj3eJng7dwdnpy9mWY9jkVUk8jVKmSgXvm6YTzVuXSOikHVvhCZz6XsmCWEBD3IS8l44UT3DHleKELpRgrfci2YK2qq_AekGchC85mshSZ4Nw5P7A6BKFt7rzQIQE2m0Lje77xmPZibMjuiAIwJICYBVObTBsqhErg07zJXUe28b_KeyQXen5jIkV2vF7V5rYxZAh8jRzmmqBbAjgTm6F9E50htgr1w8QoUt80Yi4SeNdJcdFlvwgSUE_kO68Q-3v6prq5bqm5uVLxjNz-5zc_wKvOHxWj1D7C2rR5CDsEa6Zut12sfwBzxfQ4
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+the+left+ventricle+work%3F+Ventricular+rotation+as+a+new+index+of+cardiac+performance&rft.jtitle=Korean+circulation+journal&rft.au=Song%2C+Jae-Kwan&rft.date=2009-09-01&rft.eissn=1738-5555&rft.volume=39&rft.issue=9&rft.spage=347&rft_id=info:doi/10.4070%2Fkcj.2009.39.9.347&rft_id=info%3Apmid%2F19949617&rft.externalDocID=19949617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5520&client=summon