A Welding Defect Detection Model Based on Hybrid-Enhanced Multi-Granularity Spatiotemporal Representation Learning
Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) an...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 15; p. 4656 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.07.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability of deep learning models, this paper proposes a multi-granularity spatiotemporal representation learning algorithm based on the hybrid enhancement of handcrafted and deep learning features. A MobileNetV2 backbone network integrated with a Temporal Shift Module (TSM) is designed to progressively capture the short-term dynamic features of the molten pool and integrate temporal information across both low-level and high-level features. A multi-granularity attention-based feature aggregation module is developed to select key interference-free frames using cross-frame attention, generate multi-granularity features via grouped pooling, and apply the Convolutional Block Attention Module (CBAM) at each granularity level. Finally, these multi-granularity spatiotemporal features are adaptively fused. Meanwhile, an independent branch utilizes the Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) features to extract long-term spatial structural information from historical edge images, enhancing the model’s interpretability. The proposed method achieves an accuracy of 99.187% on a self-constructed dataset. Additionally, it attains a real-time inference speed of 20.983 ms per sample on a hardware platform equipped with an Intel i9-12900H CPU and an RTX 3060 GPU, thus effectively balancing accuracy, speed, and interpretability. |
---|---|
AbstractList | Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability of deep learning models, this paper proposes a multi-granularity spatiotemporal representation learning algorithm based on the hybrid enhancement of handcrafted and deep learning features. A MobileNetV2 backbone network integrated with a Temporal Shift Module (TSM) is designed to progressively capture the short-term dynamic features of the molten pool and integrate temporal information across both low-level and high-level features. A multi-granularity attention-based feature aggregation module is developed to select key interference-free frames using cross-frame attention, generate multi-granularity features via grouped pooling, and apply the Convolutional Block Attention Module (CBAM) at each granularity level. Finally, these multi-granularity spatiotemporal features are adaptively fused. Meanwhile, an independent branch utilizes the Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) features to extract long-term spatial structural information from historical edge images, enhancing the model’s interpretability. The proposed method achieves an accuracy of 99.187% on a self-constructed dataset. Additionally, it attains a real-time inference speed of 20.983 ms per sample on a hardware platform equipped with an Intel i9-12900H CPU and an RTX 3060 GPU, thus effectively balancing accuracy, speed, and interpretability. Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability of deep learning models, this paper proposes a multi-granularity spatiotemporal representation learning algorithm based on the hybrid enhancement of handcrafted and deep learning features. A MobileNetV2 backbone network integrated with a Temporal Shift Module (TSM) is designed to progressively capture the short-term dynamic features of the molten pool and integrate temporal information across both low-level and high-level features. A multi-granularity attention-based feature aggregation module is developed to select key interference-free frames using cross-frame attention, generate multi-granularity features via grouped pooling, and apply the Convolutional Block Attention Module (CBAM) at each granularity level. Finally, these multi-granularity spatiotemporal features are adaptively fused. Meanwhile, an independent branch utilizes the Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) features to extract long-term spatial structural information from historical edge images, enhancing the model's interpretability. The proposed method achieves an accuracy of 99.187% on a self-constructed dataset. Additionally, it attains a real-time inference speed of 20.983 ms per sample on a hardware platform equipped with an Intel i9-12900H CPU and an RTX 3060 GPU, thus effectively balancing accuracy, speed, and interpretability.Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability of deep learning models, this paper proposes a multi-granularity spatiotemporal representation learning algorithm based on the hybrid enhancement of handcrafted and deep learning features. A MobileNetV2 backbone network integrated with a Temporal Shift Module (TSM) is designed to progressively capture the short-term dynamic features of the molten pool and integrate temporal information across both low-level and high-level features. A multi-granularity attention-based feature aggregation module is developed to select key interference-free frames using cross-frame attention, generate multi-granularity features via grouped pooling, and apply the Convolutional Block Attention Module (CBAM) at each granularity level. Finally, these multi-granularity spatiotemporal features are adaptively fused. Meanwhile, an independent branch utilizes the Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) features to extract long-term spatial structural information from historical edge images, enhancing the model's interpretability. The proposed method achieves an accuracy of 99.187% on a self-constructed dataset. Additionally, it attains a real-time inference speed of 20.983 ms per sample on a hardware platform equipped with an Intel i9-12900H CPU and an RTX 3060 GPU, thus effectively balancing accuracy, speed, and interpretability. |
Author | Zhu, Changsheng Yu, Yue Shi, Chenbo Zhang, Chun Feng, Xiaobing Wang, Lei Zang, Xiangteng Liu, Aiping Yan, Shaojia |
AuthorAffiliation | 1 College of lntelligent Equipment, Shandong University of Science and Technology, Taian 271019, China; skd996523@sdust.edu.cn (C.S.); 202383230010@sdust.edu.cn (S.Y.); 202283230040@sdust.edu.cn (L.W.); zcs@sdust.edu.cn (C.Z.); 202383230013@sdust.edu.cn (Y.Y.); zangxt@sdust.edu.cn (X.Z.) 2 Beijing Botsing Technology Co., Ltd., Beijing 100176, China; lap@botsing.net |
AuthorAffiliation_xml | – name: 1 College of lntelligent Equipment, Shandong University of Science and Technology, Taian 271019, China; skd996523@sdust.edu.cn (C.S.); 202383230010@sdust.edu.cn (S.Y.); 202283230040@sdust.edu.cn (L.W.); zcs@sdust.edu.cn (C.Z.); 202383230013@sdust.edu.cn (Y.Y.); zangxt@sdust.edu.cn (X.Z.) – name: 2 Beijing Botsing Technology Co., Ltd., Beijing 100176, China; lap@botsing.net |
Author_xml | – sequence: 1 givenname: Chenbo surname: Shi fullname: Shi, Chenbo – sequence: 2 givenname: Shaojia surname: Yan fullname: Yan, Shaojia – sequence: 3 givenname: Lei surname: Wang fullname: Wang, Lei – sequence: 4 givenname: Changsheng surname: Zhu fullname: Zhu, Changsheng – sequence: 5 givenname: Yue surname: Yu fullname: Yu, Yue – sequence: 6 givenname: Xiangteng surname: Zang fullname: Zang, Xiangteng – sequence: 7 givenname: Aiping surname: Liu fullname: Liu, Aiping – sequence: 8 givenname: Chun orcidid: 0009-0009-3865-963X surname: Zhang fullname: Zhang, Chun – sequence: 9 givenname: Xiaobing orcidid: 0009-0008-3624-5807 surname: Feng fullname: Feng, Xiaobing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40807822$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1URD_gwB9AkbjAIeDP2DmhUkpbaSskqMTRsp3J1qusndoJ0v57vLtl1XJ67ZnXj2fsOUVHIQZA6C3Bnxhr8edMBRG8Ec0LdEI45bWiFB89WR-j05xXGFPGmHqFjjlWWJbECUrn1W8YOh-W1TfowU1FpiI-huo2djBUX02Grirb641Nvqsvw70JroRu52Hy9VUyYR5M8tOm-jWacnCC9RiTGaqfMCbIECazwy3ApFAueo1e9mbI8OZRz9Dd98u7i-t68ePq5uJ8UTvGZVM7zmnfSostU5YKBoRiSaVTjvclZynthewka51oGwGkty0YzLgxTvbOsjN0s8d20az0mPzapI2OxutdIKalNmnybgDNBReqbZRte8IlExYTSo1pbOOU4CAK68ueNc52DZ0rPZUGn0GfZ4K_18v4RxPKeEvwlvDhkZDiwwx50mufHQyDCRDnrBllLceM0aZY3_9nXcU5hfJUOxdWEqut693Tkg61_PvaYvi4N7gUc07QHywE6-3Y6MPYsL9zwbOd |
Cites_doi | 10.1016/j.jmapro.2020.12.067 10.1016/S1003-6326(13)62925-8 10.1109/TIE.2022.3201304 10.29391/2020.99.027 10.1007/s11263-019-01228-7 10.1109/TII.2024.3369235 10.1109/TII.2018.2870933 10.1016/j.jmapro.2020.08.028 10.1016/j.patcog.2008.08.014 10.1109/CVPR52688.2022.00936 10.1109/ICCV.2011.6126543 10.1016/j.optlastec.2020.106126 10.1109/TII.2019.2937563 10.1007/978-3-031-05744-1 10.1016/j.jmapro.2020.12.052 10.1007/s10845-011-0526-4 10.1007/978-1-4842-6168-2 10.1016/j.jmsy.2021.01.017 10.1109/ICCV.2019.00718 10.3390/s24206561 10.3390/s18124369 10.1016/j.jmapro.2021.04.007 10.1109/TII.2022.3199258 10.1016/j.jmapro.2020.05.033 10.1016/j.jmsy.2019.02.004 10.1038/s43586-022-00184-w 10.1016/j.jmapro.2023.01.014 10.1109/CVPR.2018.00474 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s25154656 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journal Collection url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_45458968b9f14735b0122aa6b6c854e5 PMC12349105 40807822 10_3390_s25154656 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shandong Mingjia Technology Co. grantid: CXXM--2021006 – fundername: Shandong Mingjia Technology Co. OF FUNDER grantid: CXXM–2021006 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. M48 PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c3476-c442f97b0b38b253e120727c8c4fc44b22f57d739c5965e1fb9ea034aac7fcb3 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:59:04 EDT 2025 Thu Aug 21 18:25:53 EDT 2025 Thu Aug 14 17:33:49 EDT 2025 Sat Aug 23 13:04:42 EDT 2025 Mon Aug 18 01:32:37 EDT 2025 Thu Jul 31 00:01:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | key interference-free frames deep learning porosity defect image interference multi-granularity spatiotemporal features |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3476-c442f97b0b38b253e120727c8c4fc44b22f57d739c5965e1fb9ea034aac7fcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0009-3865-963X 0009-0008-3624-5807 |
OpenAccessLink | https://doaj.org/article/45458968b9f14735b0122aa6b6c854e5 |
PMID | 40807822 |
PQID | 3239087086 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_45458968b9f14735b0122aa6b6c854e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12349105 proquest_miscellaneous_3239403326 proquest_journals_3239087086 pubmed_primary_40807822 crossref_primary_10_3390_s25154656 |
PublicationCentury | 2000 |
PublicationDate | 20250727 |
PublicationDateYYYYMMDD | 2025-07-27 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250727 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hong (ref_8) 2024; 20 Hong (ref_6) 2023; 19 Zhang (ref_15) 2019; 51 Hong (ref_4) 2023; 70 ref_33 ref_32 Wu (ref_7) 2019; 15 ref_30 Xia (ref_9) 2020; 56 Jiao (ref_18) 2020; 99 Liu (ref_17) 2022; 62 Selvaraju (ref_19) 2020; 128 Greenacre (ref_29) 2022; 2 Wu (ref_14) 2021; 66 Chokkalingham (ref_3) 2011; 23 Ma (ref_10) 2021; 64 Liu (ref_13) 2023; 87 Lu (ref_1) 2020; 126 Pallas (ref_12) 2019; 31 Bestard (ref_31) 2021; 62 ref_25 ref_23 ref_22 Schmid (ref_20) 2009; 42 ref_21 Chen (ref_16) 2021; 68 Feng (ref_11) 2020; 16 ref_2 Dong (ref_5) 2013; 23 ref_28 Tomasi (ref_24) 2012; 1 ref_27 ref_26 |
References_xml | – ident: ref_28 – ident: ref_30 – ident: ref_32 – volume: 64 start-page: 130 year: 2021 ident: ref_10 article-title: A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2020.12.067 – volume: 23 start-page: 3748 year: 2013 ident: ref_5 article-title: Analysis of high-power disk laser welding stability based on classification of plume and spatter characteristics publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(13)62925-8 – volume: 31 start-page: 789 year: 2019 ident: ref_12 article-title: A convolutional approach to quality monitoring for laser manufacturing publication-title: J. Intell. Manuf. – volume: 70 start-page: 7353 year: 2023 ident: ref_4 article-title: Filter-PCA-Based Process Monitoring and Defect Identification During Climbing Helium Arc Welding Process Using DE-SVM publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2022.3201304 – volume: 99 start-page: 295 year: 2020 ident: ref_18 article-title: Prediction of Weld Penetration Using Dynamic Weld Pool Arc Images publication-title: Weld. J. doi: 10.29391/2020.99.027 – volume: 128 start-page: 336 year: 2020 ident: ref_19 article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01228-7 – volume: 20 start-page: 8218 year: 2024 ident: ref_8 article-title: A Novel Quality Monitoring Approach Based on Multigranularity Spatiotemporal Attentive Representation Learning During Climbing GTAW publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2024.3369235 – volume: 15 start-page: 2732 year: 2019 ident: ref_7 article-title: Online Monitoring and Model-Free Adaptive Control of Weld Penetration in VPPAW Based on Extreme Learning Machine publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2870933 – volume: 68 start-page: 209 year: 2021 ident: ref_16 article-title: Prediction of welding quality characteristics during pulsed GTAW process of aluminum alloy by multisensory fusion and hybrid network model publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2020.08.028 – volume: 42 start-page: 425 year: 2009 ident: ref_20 article-title: Description of interest regions with local binary patterns publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.08.014 – ident: ref_23 doi: 10.1109/CVPR52688.2022.00936 – ident: ref_33 doi: 10.1109/ICCV.2011.6126543 – volume: 126 start-page: 106126 year: 2020 ident: ref_1 article-title: Online welding quality diagnosis based on molten pool behavior prediction publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106126 – volume: 16 start-page: 465 year: 2020 ident: ref_11 article-title: DeepWelding: A Deep Learning Enhanced Approach to GTAW Using Multisource Sensing Images publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2937563 – ident: ref_25 doi: 10.1007/978-3-031-05744-1 – volume: 62 start-page: 695 year: 2021 ident: ref_31 article-title: Analysis of GMAW process with deep learning and machine learning techniques publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.12.052 – volume: 23 start-page: 1995 year: 2011 ident: ref_3 article-title: Predicting the depth of penetration and weld bead width from the infra red thermal image of the weld pool using artificial neural network modeling publication-title: J. Intell. Manuf. doi: 10.1007/s10845-011-0526-4 – ident: ref_21 doi: 10.1007/978-1-4842-6168-2 – volume: 62 start-page: 811 year: 2022 ident: ref_17 article-title: 3DSMDA-Net: An improved 3DCNN with separable structure and multi-dimensional attention for welding status recognition publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.01.017 – ident: ref_27 doi: 10.1109/ICCV.2019.00718 – ident: ref_22 doi: 10.3390/s24206561 – ident: ref_2 doi: 10.3390/s18124369 – volume: 66 start-page: 153 year: 2021 ident: ref_14 article-title: In situ monitoring and penetration prediction of plasma arc welding based on welder intelligence-enhanced deep random forest fusion publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2021.04.007 – volume: 19 start-page: 5506 year: 2023 ident: ref_6 article-title: Real-Time Quality Monitoring of Ultrathin Sheets Edge Welding Based on Microvision Sensing and SOCIFS-SVM publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3199258 – volume: 56 start-page: 845 year: 2020 ident: ref_9 article-title: Vision based defects detection for Keyhole TIG welding using deep learning with visual explanation publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2020.05.033 – volume: 51 start-page: 87 year: 2019 ident: ref_15 article-title: Welding defects detection based on deep learning with multiple optical sensors during disk laser welding of thick plates publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2019.02.004 – volume: 2 start-page: 100 year: 2022 ident: ref_29 article-title: Principal component analysis publication-title: Nat. Rev. Methods Prim. doi: 10.1038/s43586-022-00184-w – volume: 87 start-page: 150 year: 2023 ident: ref_13 article-title: An attention-based bilinear feature extraction mechanism for fine-grained laser welding molten pool/keyhole defect recognition publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2023.01.014 – ident: ref_26 doi: 10.1109/CVPR.2018.00474 – volume: 1 start-page: 1 year: 2012 ident: ref_24 article-title: Histograms of oriented gradients publication-title: Comput. Vis. Sampl. |
SSID | ssj0023338 |
Score | 2.4530423 |
Snippet | Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 4656 |
SubjectTerms | Accuracy Cameras Decision making Deep learning Defects image interference key interference-free frames Methods Morphology multi-granularity spatiotemporal features porosity defect Vision systems |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCCuVr1-54RaaFkhwQGK2FtkO3ZbqcqW3e2h_74zjnfbRYhTlIwjWR7b841n_A0hH3xQPgWtmRI-MNUbD0tKtSwaA1umy9yWQPu372b6S32d6Vk9cFvWtMr1nlg26n4e8Yx8TwrwzmFyOfPx4g_DqlEYXa0lNO6Se0hdhrPazm4cLgn-18gmJOHnvSXYcqz9bbZsUKHq_xe-_DtN8pbdOXpEHlbASPdHDT8md9LwhDy4RSP4lCz26e9Ugkj0c8L0DHisSorVQLHW2Tk9AFvVU3idXuENLXY4nJbIPy33b9kXMFiYjgqInP4sKdaVseqc_iiZsvWC0kArHevJM3J8dHj8acpqLQUWpbKGRaVEbm3gQbogtEwTwQG6RBdVBlkQImvbW9lG3RqdJjm0yXOpvI82xyCfk51hPqSXhIqMe4DP4NdxEPfOpailyuAp-sR9aMj79eB2FyNjRgeeBmqg22igIQc47JsGSHJdPswXJ11dM53CoF5rXGjzBCskBwwDem-CiU6rpBuyu1ZaV1fesruZJw15txHDmsFAiB_S_HJso7gE5NqQF6OONz1R3BXU1BC3pf2trm5LhrPTwssNIEAB-tKv_t-v1-S-wCLC3DJhd8nOanGZ3gCyWYW3ZfpeA6pj-os priority: 102 providerName: ProQuest |
Title | A Welding Defect Detection Model Based on Hybrid-Enhanced Multi-Granularity Spatiotemporal Representation Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40807822 https://www.proquest.com/docview/3239087086 https://www.proquest.com/docview/3239403326 https://pubmed.ncbi.nlm.nih.gov/PMC12349105 https://doaj.org/article/45458968b9f14735b0122aa6b6c854e5 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB7S5NIeStv0sWlqlJKriKz3HuPWjikklDyob4skS0khbEriHPLvO9KujV0KvfSyy-4IpNWsNN8wo28ADp2XLnqlqOTOUznXDpeUrGnQGrdMm5gpgfbTMz29kt9marZW6ivnhHX0wN3EHckc2am19XUa5jK5PseCnNNeB6tkLOylaPOWzlTvagn0vDoeIYFO_dEDWvFc9VtvWJ9C0v83ZPlnguSaxZm8gpc9VCTH3RBfw1Zs38CLNQLBXbg_Jj9iCR-RrzEnZuBtUZKrWpKrnN2SEVqpOcHH6VM-m0XH7U2J-ZNy8paeoKnKiaiIxclFSa7uuapuyXnJke2PJrWkJ2K9fguXk_HllyntqyjQIKTRNEjJU20888J6rkQccoagJdggE8o850mZuRF1ULVWcZh8HR0T0rlgUvDiHWy3d238AISnvPpdQo-OoXhubQxKyIQ-oovM-Qo-Lye3-dVxZTToY2QNNCsNVDDK075qkOmtywtUetMrvfmX0ivYXyqt6dfcQyM4doTbj8U-DlZiXC05BOLaePfYtZFMIGat4H2n49VIJLMFL1VgN7S_MdRNSfvzpjByo_mXiLvU3v_4uI_wnOciw8xQbvZhe3H_GD8h8ln4ATwzM4NXOzkZwM5ofPb9fFB-_N9WkgUf |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDcpBQyCo1WvX0kOCLW02y19HGARvUW2Y7dIVbbd3Qr1R_EfGTvZ0EWIW09RMlFkeWY8M5lvZgDeGSuNt0pRyY2lstYGVUqW1GmNR2YRWJ4S7YdHevRNfj5Wxyvwa1ELE2GVizMxHdT1xMV_5BuCY3SOwlXoj-cXNE6NitnVxQiNViz2_dVPDNlmH_a2kb_vOR_ujD-NaDdVgDohc02dlDyUuWVWFJYr4QecoRF3hZMBaZbzoPI6F6VTpVZ-EGzpDRPSGJcHZwV-9hbclgINeSxMH-728Z3AcK9tXoREtjFD1yGOGtdLJi9NBviXO_s3KvOamRs-gPudf0o2W4F6CCu-eQT3rnUtfAzTTfLdp5wV2fYRDYKXeUJ0NSSOVjsjW2gaa4K3o6tYEEZ3mtMENCCp3Jfuon2M6FcMAMjXhOjuGmSdkS8JmNvVQzWk6_568gTGN7HJT2G1mTT-ORAe4pFjAoaRDMl1UXinhAwYmBrPjM3g7WJzq_O2QUeFgU3kQNVzIIOtuO39C7GndnowmZ5UnYpWMuYQS13YMgziQGYbs47GaKtdoaRXGawvmFZ1ij6r_ohlBm96MqpozLuYxk8u23ckE-goZ_Cs5XG_EsmK5KRlUCxxf2mpy5Tmx2lqA44-h0RnT639f12v4c5ofHhQHewd7b-AuzzOL2Y55fk6rM6nl_4lOlVz-yqJMoHqhlXnNxfCNrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgcgQEGwWPU1F9JHhBaaUvHoJrGEHuLbMfeJk3p1nZC-9P47zg7H6wI8banKHEUWb473_1yP98BvFWaK6uFiDlVOualVGhSPI-NlLhlZi5JQ6L960xOv_PPR-JoA361Z2E8rbLdE8NGXc6N_0feZxTROSpXJvuuoUXsjyYfzi9i30HKZ1rbdhq1iuzZq58I35bvd0co63eUTsaHH6dx02EgNoynMjacU5enOtEs01QwO6AJOnSTGe5wTFPqRFqmLDcil8IOnM6tShhXyqTOaIafvQWbqQdFPdgcjmf7Bx3aYwj-6lJGDGfeX2Ig4RuPyzUHGPoE_Cu4_Zujec3pTe7DvSZaJTu1ej2ADVs9hLvXahg-gsUO-WFDBouMrOeG4GUV-F0V8Y3WzsgQHWVJ8HZ65Y-HxePqJNAOSDj8G39Cb-m5sAgHyLfA727KZZ2Rg0DTbU5HVaSpBXv8GA5vYpmfQK-aV_YpEOr8BqQcgsoEh8sss0Yw7hCmKpsoHcGbdnGL87pcR4Ewx0ug6CQQwdAve_eCr7AdHswXx0VjsAX3GcVcZjp3A9-eWfscpFJSS5MJbkUE263Qisbsl8UfJY3gdTeMBuuzMKqy88v6HZ4wDJsj2Kpl3M2EJ1kI2SLI1qS_NtX1ker0JBQFxwiEY-gnnv1_Xq_gNppN8WV3tvcc7lDfzDhJY5puQ2-1uLQvMMJa6ZeNLhMobth6fgN_NjxO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Welding+Defect+Detection+Model+Based+on+Hybrid-Enhanced+Multi-Granularity+Spatiotemporal+Representation+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shi%2C+Chenbo&rft.au=Yan%2C+Shaojia&rft.au=Wang%2C+Lei&rft.au=Zhu%2C+Changsheng&rft.date=2025-07-27&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=15&rft_id=info:doi/10.3390%2Fs25154656&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |