A Welding Defect Detection Model Based on Hybrid-Enhanced Multi-Granularity Spatiotemporal Representation Learning

Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) an...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 15; p. 4656
Main Authors Shi, Chenbo, Yan, Shaojia, Wang, Lei, Zhu, Changsheng, Yu, Yue, Zang, Xiangteng, Liu, Aiping, Zhang, Chun, Feng, Xiaobing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.07.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability of deep learning models, this paper proposes a multi-granularity spatiotemporal representation learning algorithm based on the hybrid enhancement of handcrafted and deep learning features. A MobileNetV2 backbone network integrated with a Temporal Shift Module (TSM) is designed to progressively capture the short-term dynamic features of the molten pool and integrate temporal information across both low-level and high-level features. A multi-granularity attention-based feature aggregation module is developed to select key interference-free frames using cross-frame attention, generate multi-granularity features via grouped pooling, and apply the Convolutional Block Attention Module (CBAM) at each granularity level. Finally, these multi-granularity spatiotemporal features are adaptively fused. Meanwhile, an independent branch utilizes the Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) features to extract long-term spatial structural information from historical edge images, enhancing the model’s interpretability. The proposed method achieves an accuracy of 99.187% on a self-constructed dataset. Additionally, it attains a real-time inference speed of 20.983 ms per sample on a hardware platform equipped with an Intel i9-12900H CPU and an RTX 3060 GPU, thus effectively balancing accuracy, speed, and interpretability.
AbstractList Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability of deep learning models, this paper proposes a multi-granularity spatiotemporal representation learning algorithm based on the hybrid enhancement of handcrafted and deep learning features. A MobileNetV2 backbone network integrated with a Temporal Shift Module (TSM) is designed to progressively capture the short-term dynamic features of the molten pool and integrate temporal information across both low-level and high-level features. A multi-granularity attention-based feature aggregation module is developed to select key interference-free frames using cross-frame attention, generate multi-granularity features via grouped pooling, and apply the Convolutional Block Attention Module (CBAM) at each granularity level. Finally, these multi-granularity spatiotemporal features are adaptively fused. Meanwhile, an independent branch utilizes the Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) features to extract long-term spatial structural information from historical edge images, enhancing the model’s interpretability. The proposed method achieves an accuracy of 99.187% on a self-constructed dataset. Additionally, it attains a real-time inference speed of 20.983 ms per sample on a hardware platform equipped with an Intel i9-12900H CPU and an RTX 3060 GPU, thus effectively balancing accuracy, speed, and interpretability.
Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability of deep learning models, this paper proposes a multi-granularity spatiotemporal representation learning algorithm based on the hybrid enhancement of handcrafted and deep learning features. A MobileNetV2 backbone network integrated with a Temporal Shift Module (TSM) is designed to progressively capture the short-term dynamic features of the molten pool and integrate temporal information across both low-level and high-level features. A multi-granularity attention-based feature aggregation module is developed to select key interference-free frames using cross-frame attention, generate multi-granularity features via grouped pooling, and apply the Convolutional Block Attention Module (CBAM) at each granularity level. Finally, these multi-granularity spatiotemporal features are adaptively fused. Meanwhile, an independent branch utilizes the Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) features to extract long-term spatial structural information from historical edge images, enhancing the model's interpretability. The proposed method achieves an accuracy of 99.187% on a self-constructed dataset. Additionally, it attains a real-time inference speed of 20.983 ms per sample on a hardware platform equipped with an Intel i9-12900H CPU and an RTX 3060 GPU, thus effectively balancing accuracy, speed, and interpretability.Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability of deep learning models, this paper proposes a multi-granularity spatiotemporal representation learning algorithm based on the hybrid enhancement of handcrafted and deep learning features. A MobileNetV2 backbone network integrated with a Temporal Shift Module (TSM) is designed to progressively capture the short-term dynamic features of the molten pool and integrate temporal information across both low-level and high-level features. A multi-granularity attention-based feature aggregation module is developed to select key interference-free frames using cross-frame attention, generate multi-granularity features via grouped pooling, and apply the Convolutional Block Attention Module (CBAM) at each granularity level. Finally, these multi-granularity spatiotemporal features are adaptively fused. Meanwhile, an independent branch utilizes the Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) features to extract long-term spatial structural information from historical edge images, enhancing the model's interpretability. The proposed method achieves an accuracy of 99.187% on a self-constructed dataset. Additionally, it attains a real-time inference speed of 20.983 ms per sample on a hardware platform equipped with an Intel i9-12900H CPU and an RTX 3060 GPU, thus effectively balancing accuracy, speed, and interpretability.
Author Zhu, Changsheng
Yu, Yue
Shi, Chenbo
Zhang, Chun
Feng, Xiaobing
Wang, Lei
Zang, Xiangteng
Liu, Aiping
Yan, Shaojia
AuthorAffiliation 1 College of lntelligent Equipment, Shandong University of Science and Technology, Taian 271019, China; skd996523@sdust.edu.cn (C.S.); 202383230010@sdust.edu.cn (S.Y.); 202283230040@sdust.edu.cn (L.W.); zcs@sdust.edu.cn (C.Z.); 202383230013@sdust.edu.cn (Y.Y.); zangxt@sdust.edu.cn (X.Z.)
2 Beijing Botsing Technology Co., Ltd., Beijing 100176, China; lap@botsing.net
AuthorAffiliation_xml – name: 1 College of lntelligent Equipment, Shandong University of Science and Technology, Taian 271019, China; skd996523@sdust.edu.cn (C.S.); 202383230010@sdust.edu.cn (S.Y.); 202283230040@sdust.edu.cn (L.W.); zcs@sdust.edu.cn (C.Z.); 202383230013@sdust.edu.cn (Y.Y.); zangxt@sdust.edu.cn (X.Z.)
– name: 2 Beijing Botsing Technology Co., Ltd., Beijing 100176, China; lap@botsing.net
Author_xml – sequence: 1
  givenname: Chenbo
  surname: Shi
  fullname: Shi, Chenbo
– sequence: 2
  givenname: Shaojia
  surname: Yan
  fullname: Yan, Shaojia
– sequence: 3
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 4
  givenname: Changsheng
  surname: Zhu
  fullname: Zhu, Changsheng
– sequence: 5
  givenname: Yue
  surname: Yu
  fullname: Yu, Yue
– sequence: 6
  givenname: Xiangteng
  surname: Zang
  fullname: Zang, Xiangteng
– sequence: 7
  givenname: Aiping
  surname: Liu
  fullname: Liu, Aiping
– sequence: 8
  givenname: Chun
  orcidid: 0009-0009-3865-963X
  surname: Zhang
  fullname: Zhang, Chun
– sequence: 9
  givenname: Xiaobing
  orcidid: 0009-0008-3624-5807
  surname: Feng
  fullname: Feng, Xiaobing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40807822$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URD_gwB9AkbjAIeDP2DmhUkpbaSskqMTRsp3J1qusndoJ0v57vLtl1XJ67ZnXj2fsOUVHIQZA6C3Bnxhr8edMBRG8Ec0LdEI45bWiFB89WR-j05xXGFPGmHqFjjlWWJbECUrn1W8YOh-W1TfowU1FpiI-huo2djBUX02Grirb641Nvqsvw70JroRu52Hy9VUyYR5M8tOm-jWacnCC9RiTGaqfMCbIECazwy3ApFAueo1e9mbI8OZRz9Dd98u7i-t68ePq5uJ8UTvGZVM7zmnfSostU5YKBoRiSaVTjvclZynthewka51oGwGkty0YzLgxTvbOsjN0s8d20az0mPzapI2OxutdIKalNmnybgDNBReqbZRte8IlExYTSo1pbOOU4CAK68ueNc52DZ0rPZUGn0GfZ4K_18v4RxPKeEvwlvDhkZDiwwx50mufHQyDCRDnrBllLceM0aZY3_9nXcU5hfJUOxdWEqut693Tkg61_PvaYvi4N7gUc07QHywE6-3Y6MPYsL9zwbOd
Cites_doi 10.1016/j.jmapro.2020.12.067
10.1016/S1003-6326(13)62925-8
10.1109/TIE.2022.3201304
10.29391/2020.99.027
10.1007/s11263-019-01228-7
10.1109/TII.2024.3369235
10.1109/TII.2018.2870933
10.1016/j.jmapro.2020.08.028
10.1016/j.patcog.2008.08.014
10.1109/CVPR52688.2022.00936
10.1109/ICCV.2011.6126543
10.1016/j.optlastec.2020.106126
10.1109/TII.2019.2937563
10.1007/978-3-031-05744-1
10.1016/j.jmapro.2020.12.052
10.1007/s10845-011-0526-4
10.1007/978-1-4842-6168-2
10.1016/j.jmsy.2021.01.017
10.1109/ICCV.2019.00718
10.3390/s24206561
10.3390/s18124369
10.1016/j.jmapro.2021.04.007
10.1109/TII.2022.3199258
10.1016/j.jmapro.2020.05.033
10.1016/j.jmsy.2019.02.004
10.1038/s43586-022-00184-w
10.1016/j.jmapro.2023.01.014
10.1109/CVPR.2018.00474
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s25154656
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journal Collection
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_45458968b9f14735b0122aa6b6c854e5
PMC12349105
40807822
10_3390_s25154656
Genre Journal Article
GrantInformation_xml – fundername: Shandong Mingjia Technology Co.
  grantid: CXXM--2021006
– fundername: Shandong Mingjia Technology Co. OF FUNDER
  grantid: CXXM–2021006
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
M48
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c3476-c442f97b0b38b253e120727c8c4fc44b22f57d739c5965e1fb9ea034aac7fcb3
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 00:59:04 EDT 2025
Thu Aug 21 18:25:53 EDT 2025
Thu Aug 14 17:33:49 EDT 2025
Sat Aug 23 13:04:42 EDT 2025
Mon Aug 18 01:32:37 EDT 2025
Thu Jul 31 00:01:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords key interference-free frames
deep learning
porosity defect
image interference
multi-granularity spatiotemporal features
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3476-c442f97b0b38b253e120727c8c4fc44b22f57d739c5965e1fb9ea034aac7fcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0009-3865-963X
0009-0008-3624-5807
OpenAccessLink https://doaj.org/article/45458968b9f14735b0122aa6b6c854e5
PMID 40807822
PQID 3239087086
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_45458968b9f14735b0122aa6b6c854e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12349105
proquest_miscellaneous_3239403326
proquest_journals_3239087086
pubmed_primary_40807822
crossref_primary_10_3390_s25154656
PublicationCentury 2000
PublicationDate 20250727
PublicationDateYYYYMMDD 2025-07-27
PublicationDate_xml – month: 7
  year: 2025
  text: 20250727
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hong (ref_8) 2024; 20
Hong (ref_6) 2023; 19
Zhang (ref_15) 2019; 51
Hong (ref_4) 2023; 70
ref_33
ref_32
Wu (ref_7) 2019; 15
ref_30
Xia (ref_9) 2020; 56
Jiao (ref_18) 2020; 99
Liu (ref_17) 2022; 62
Selvaraju (ref_19) 2020; 128
Greenacre (ref_29) 2022; 2
Wu (ref_14) 2021; 66
Chokkalingham (ref_3) 2011; 23
Ma (ref_10) 2021; 64
Liu (ref_13) 2023; 87
Lu (ref_1) 2020; 126
Pallas (ref_12) 2019; 31
Bestard (ref_31) 2021; 62
ref_25
ref_23
ref_22
Schmid (ref_20) 2009; 42
ref_21
Chen (ref_16) 2021; 68
Feng (ref_11) 2020; 16
ref_2
Dong (ref_5) 2013; 23
ref_28
Tomasi (ref_24) 2012; 1
ref_27
ref_26
References_xml – ident: ref_28
– ident: ref_30
– ident: ref_32
– volume: 64
  start-page: 130
  year: 2021
  ident: ref_10
  article-title: A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network
  publication-title: J. Manuf. Processes
  doi: 10.1016/j.jmapro.2020.12.067
– volume: 23
  start-page: 3748
  year: 2013
  ident: ref_5
  article-title: Analysis of high-power disk laser welding stability based on classification of plume and spatter characteristics
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(13)62925-8
– volume: 31
  start-page: 789
  year: 2019
  ident: ref_12
  article-title: A convolutional approach to quality monitoring for laser manufacturing
  publication-title: J. Intell. Manuf.
– volume: 70
  start-page: 7353
  year: 2023
  ident: ref_4
  article-title: Filter-PCA-Based Process Monitoring and Defect Identification During Climbing Helium Arc Welding Process Using DE-SVM
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2022.3201304
– volume: 99
  start-page: 295
  year: 2020
  ident: ref_18
  article-title: Prediction of Weld Penetration Using Dynamic Weld Pool Arc Images
  publication-title: Weld. J.
  doi: 10.29391/2020.99.027
– volume: 128
  start-page: 336
  year: 2020
  ident: ref_19
  article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– volume: 20
  start-page: 8218
  year: 2024
  ident: ref_8
  article-title: A Novel Quality Monitoring Approach Based on Multigranularity Spatiotemporal Attentive Representation Learning During Climbing GTAW
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3369235
– volume: 15
  start-page: 2732
  year: 2019
  ident: ref_7
  article-title: Online Monitoring and Model-Free Adaptive Control of Weld Penetration in VPPAW Based on Extreme Learning Machine
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2870933
– volume: 68
  start-page: 209
  year: 2021
  ident: ref_16
  article-title: Prediction of welding quality characteristics during pulsed GTAW process of aluminum alloy by multisensory fusion and hybrid network model
  publication-title: J. Manuf. Processes
  doi: 10.1016/j.jmapro.2020.08.028
– volume: 42
  start-page: 425
  year: 2009
  ident: ref_20
  article-title: Description of interest regions with local binary patterns
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.08.014
– ident: ref_23
  doi: 10.1109/CVPR52688.2022.00936
– ident: ref_33
  doi: 10.1109/ICCV.2011.6126543
– volume: 126
  start-page: 106126
  year: 2020
  ident: ref_1
  article-title: Online welding quality diagnosis based on molten pool behavior prediction
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106126
– volume: 16
  start-page: 465
  year: 2020
  ident: ref_11
  article-title: DeepWelding: A Deep Learning Enhanced Approach to GTAW Using Multisource Sensing Images
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2937563
– ident: ref_25
  doi: 10.1007/978-3-031-05744-1
– volume: 62
  start-page: 695
  year: 2021
  ident: ref_31
  article-title: Analysis of GMAW process with deep learning and machine learning techniques
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.12.052
– volume: 23
  start-page: 1995
  year: 2011
  ident: ref_3
  article-title: Predicting the depth of penetration and weld bead width from the infra red thermal image of the weld pool using artificial neural network modeling
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-011-0526-4
– ident: ref_21
  doi: 10.1007/978-1-4842-6168-2
– volume: 62
  start-page: 811
  year: 2022
  ident: ref_17
  article-title: 3DSMDA-Net: An improved 3DCNN with separable structure and multi-dimensional attention for welding status recognition
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.01.017
– ident: ref_27
  doi: 10.1109/ICCV.2019.00718
– ident: ref_22
  doi: 10.3390/s24206561
– ident: ref_2
  doi: 10.3390/s18124369
– volume: 66
  start-page: 153
  year: 2021
  ident: ref_14
  article-title: In situ monitoring and penetration prediction of plasma arc welding based on welder intelligence-enhanced deep random forest fusion
  publication-title: J. Manuf. Processes
  doi: 10.1016/j.jmapro.2021.04.007
– volume: 19
  start-page: 5506
  year: 2023
  ident: ref_6
  article-title: Real-Time Quality Monitoring of Ultrathin Sheets Edge Welding Based on Microvision Sensing and SOCIFS-SVM
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3199258
– volume: 56
  start-page: 845
  year: 2020
  ident: ref_9
  article-title: Vision based defects detection for Keyhole TIG welding using deep learning with visual explanation
  publication-title: J. Manuf. Processes
  doi: 10.1016/j.jmapro.2020.05.033
– volume: 51
  start-page: 87
  year: 2019
  ident: ref_15
  article-title: Welding defects detection based on deep learning with multiple optical sensors during disk laser welding of thick plates
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2019.02.004
– volume: 2
  start-page: 100
  year: 2022
  ident: ref_29
  article-title: Principal component analysis
  publication-title: Nat. Rev. Methods Prim.
  doi: 10.1038/s43586-022-00184-w
– volume: 87
  start-page: 150
  year: 2023
  ident: ref_13
  article-title: An attention-based bilinear feature extraction mechanism for fine-grained laser welding molten pool/keyhole defect recognition
  publication-title: J. Manuf. Processes
  doi: 10.1016/j.jmapro.2023.01.014
– ident: ref_26
  doi: 10.1109/CVPR.2018.00474
– volume: 1
  start-page: 1
  year: 2012
  ident: ref_24
  article-title: Histograms of oriented gradients
  publication-title: Comput. Vis. Sampl.
SSID ssj0023338
Score 2.4530423
Snippet Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4656
SubjectTerms Accuracy
Cameras
Decision making
Deep learning
Defects
image interference
key interference-free frames
Methods
Morphology
multi-granularity spatiotemporal features
porosity defect
Vision systems
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCCuVr1-54RaaFkhwQGK2FtkO3ZbqcqW3e2h_74zjnfbRYhTlIwjWR7b841n_A0hH3xQPgWtmRI-MNUbD0tKtSwaA1umy9yWQPu372b6S32d6Vk9cFvWtMr1nlg26n4e8Yx8TwrwzmFyOfPx4g_DqlEYXa0lNO6Se0hdhrPazm4cLgn-18gmJOHnvSXYcqz9bbZsUKHq_xe-_DtN8pbdOXpEHlbASPdHDT8md9LwhDy4RSP4lCz26e9Ugkj0c8L0DHisSorVQLHW2Tk9AFvVU3idXuENLXY4nJbIPy33b9kXMFiYjgqInP4sKdaVseqc_iiZsvWC0kArHevJM3J8dHj8acpqLQUWpbKGRaVEbm3gQbogtEwTwQG6RBdVBlkQImvbW9lG3RqdJjm0yXOpvI82xyCfk51hPqSXhIqMe4DP4NdxEPfOpailyuAp-sR9aMj79eB2FyNjRgeeBmqg22igIQc47JsGSHJdPswXJ11dM53CoF5rXGjzBCskBwwDem-CiU6rpBuyu1ZaV1fesruZJw15txHDmsFAiB_S_HJso7gE5NqQF6OONz1R3BXU1BC3pf2trm5LhrPTwssNIEAB-tKv_t-v1-S-wCLC3DJhd8nOanGZ3gCyWYW3ZfpeA6pj-os
  priority: 102
  providerName: ProQuest
Title A Welding Defect Detection Model Based on Hybrid-Enhanced Multi-Granularity Spatiotemporal Representation Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/40807822
https://www.proquest.com/docview/3239087086
https://www.proquest.com/docview/3239403326
https://pubmed.ncbi.nlm.nih.gov/PMC12349105
https://doaj.org/article/45458968b9f14735b0122aa6b6c854e5
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB7S5NIeStv0sWlqlJKriKz3HuPWjikklDyob4skS0khbEriHPLvO9KujV0KvfSyy-4IpNWsNN8wo28ADp2XLnqlqOTOUznXDpeUrGnQGrdMm5gpgfbTMz29kt9marZW6ivnhHX0wN3EHckc2am19XUa5jK5PseCnNNeB6tkLOylaPOWzlTvagn0vDoeIYFO_dEDWvFc9VtvWJ9C0v83ZPlnguSaxZm8gpc9VCTH3RBfw1Zs38CLNQLBXbg_Jj9iCR-RrzEnZuBtUZKrWpKrnN2SEVqpOcHH6VM-m0XH7U2J-ZNy8paeoKnKiaiIxclFSa7uuapuyXnJke2PJrWkJ2K9fguXk_HllyntqyjQIKTRNEjJU20888J6rkQccoagJdggE8o850mZuRF1ULVWcZh8HR0T0rlgUvDiHWy3d238AISnvPpdQo-OoXhubQxKyIQ-oovM-Qo-Lye3-dVxZTToY2QNNCsNVDDK075qkOmtywtUetMrvfmX0ivYXyqt6dfcQyM4doTbj8U-DlZiXC05BOLaePfYtZFMIGat4H2n49VIJLMFL1VgN7S_MdRNSfvzpjByo_mXiLvU3v_4uI_wnOciw8xQbvZhe3H_GD8h8ln4ATwzM4NXOzkZwM5ofPb9fFB-_N9WkgUf
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDcpBQyCo1WvX0kOCLW02y19HGARvUW2Y7dIVbbd3Qr1R_EfGTvZ0EWIW09RMlFkeWY8M5lvZgDeGSuNt0pRyY2lstYGVUqW1GmNR2YRWJ4S7YdHevRNfj5Wxyvwa1ELE2GVizMxHdT1xMV_5BuCY3SOwlXoj-cXNE6NitnVxQiNViz2_dVPDNlmH_a2kb_vOR_ujD-NaDdVgDohc02dlDyUuWVWFJYr4QecoRF3hZMBaZbzoPI6F6VTpVZ-EGzpDRPSGJcHZwV-9hbclgINeSxMH-728Z3AcK9tXoREtjFD1yGOGtdLJi9NBviXO_s3KvOamRs-gPudf0o2W4F6CCu-eQT3rnUtfAzTTfLdp5wV2fYRDYKXeUJ0NSSOVjsjW2gaa4K3o6tYEEZ3mtMENCCp3Jfuon2M6FcMAMjXhOjuGmSdkS8JmNvVQzWk6_568gTGN7HJT2G1mTT-ORAe4pFjAoaRDMl1UXinhAwYmBrPjM3g7WJzq_O2QUeFgU3kQNVzIIOtuO39C7GndnowmZ5UnYpWMuYQS13YMgziQGYbs47GaKtdoaRXGawvmFZ1ij6r_ohlBm96MqpozLuYxk8u23ckE-goZ_Cs5XG_EsmK5KRlUCxxf2mpy5Tmx2lqA44-h0RnT639f12v4c5ofHhQHewd7b-AuzzOL2Y55fk6rM6nl_4lOlVz-yqJMoHqhlXnNxfCNrw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgcgQEGwWPU1F9JHhBaaUvHoJrGEHuLbMfeJk3p1nZC-9P47zg7H6wI8banKHEUWb473_1yP98BvFWaK6uFiDlVOualVGhSPI-NlLhlZi5JQ6L960xOv_PPR-JoA361Z2E8rbLdE8NGXc6N_0feZxTROSpXJvuuoUXsjyYfzi9i30HKZ1rbdhq1iuzZq58I35bvd0co63eUTsaHH6dx02EgNoynMjacU5enOtEs01QwO6AJOnSTGe5wTFPqRFqmLDcil8IOnM6tShhXyqTOaIafvQWbqQdFPdgcjmf7Bx3aYwj-6lJGDGfeX2Ig4RuPyzUHGPoE_Cu4_Zujec3pTe7DvSZaJTu1ej2ADVs9hLvXahg-gsUO-WFDBouMrOeG4GUV-F0V8Y3WzsgQHWVJ8HZ65Y-HxePqJNAOSDj8G39Cb-m5sAgHyLfA727KZZ2Rg0DTbU5HVaSpBXv8GA5vYpmfQK-aV_YpEOr8BqQcgsoEh8sss0Yw7hCmKpsoHcGbdnGL87pcR4Ewx0ug6CQQwdAve_eCr7AdHswXx0VjsAX3GcVcZjp3A9-eWfscpFJSS5MJbkUE263Qisbsl8UfJY3gdTeMBuuzMKqy88v6HZ4wDJsj2Kpl3M2EJ1kI2SLI1qS_NtX1ker0JBQFxwiEY-gnnv1_Xq_gNppN8WV3tvcc7lDfzDhJY5puQ2-1uLQvMMJa6ZeNLhMobth6fgN_NjxO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Welding+Defect+Detection+Model+Based+on+Hybrid-Enhanced+Multi-Granularity+Spatiotemporal+Representation+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shi%2C+Chenbo&rft.au=Yan%2C+Shaojia&rft.au=Wang%2C+Lei&rft.au=Zhu%2C+Changsheng&rft.date=2025-07-27&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=15&rft_id=info:doi/10.3390%2Fs25154656&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon